MAE/MSE 502, Fall 2022 Homework \#3

Please follow the rules on collaboration as given in Homework \#1. A statement of collaboration is required.

Problem 1 (2.5 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 100$ and $t \geq 0$, consider the 1 -D Wave equation,
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$,
with the boundary conditions,
(i) $u(0, t)=0, \quad$ (ii) $u(100, t)=0, \quad$ (iii) $u(x, 0)=P(x), \quad$ (iv) $u_{t}(x, 0)=0$.
(a) Solve the system with $P(x)$ given as
$P(x)= \begin{cases}x / 25, & \text { if } 0 \leq x \leq 25 \\ (100-x) / 75, & \text { if } 25<x \leq 100\end{cases}$
and plot the solution as a function of x at $t=0,30,50,70,100,180$. Please collect all 6 curves in one plot. (See remarks below HW1-Prob1 on proper truncation of infinite series.)
(b) Solve the system with $P(x)$ given as (this emulates a "wave packet")
$P(x)=\sum_{n=30}^{50} \exp \left[-\left(\frac{n-40}{4}\right)^{2}\right] \sin \left(\frac{n \pi x}{100}\right)$,
and plot the solution as a function of x at $t=0,50,100$, and 125 . For this part, it is recommended that the four curves be plotted separately, for example arranged in 4 panels using "subplot" in Matlab.

Problem 2 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, consider the PDE (in which U, K, and B are constants)
$\frac{\partial u}{\partial t}=U \frac{\partial u}{\partial x}+K \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{3} u}{\partial x^{3}}$
with periodic boundary conditions in the x-direction. The boundary condition at $t=0$ is given as
$u(x, 0)=\frac{[1-\cos (x)]^{8}}{256}$.

Solve the PDE and plot the solution $u(x, t)$ at $t=0.2$ for the four cases: (i) $(U=10, K=0, B=0)$, (ii) $(U=0, K=1.5, B=0)$, (iii) $(U=10, K=1.5, B=0)$, and (iv) $(U=0, K=0, B=0.15)$, Also, plot the initial state $u(x, 0)$ (which is the same for all four cases). Please collect all five curves in one plot. [The solution can be expressed as an infinite series. To compute the value of u, the series needs to be truncated to a finite number of terms (see remarks below HW1-Prob1). Matlab can be used to evaluate the expansion coefficients by numerical integration.]

For Problem 3-5, we expect a closed-form solution which consists of only a finite number of terms and no unevaluated integrals. The solution should be expressed in real numbers and functions. Expect a deduction if an imaginary number " i " $(=\sqrt{-1})$ is left in the solution.

Problem 3 (2.5 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,
$\frac{\partial u}{\partial t}=t \frac{\partial^{5} u}{\partial x^{5}}+t \frac{\partial^{3} u}{\partial x^{3}}+t^{2} \frac{\partial^{2} u}{\partial x^{2}}+4 t^{2} u$,
with periodic boundary conditions in the x-direction. The boundary condition in the t-direction is given as
$u(x, 0)=\sin (x)+\cos (x)+\cos (2 x)$.
Problem 4 (2.5 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{4} u}{\partial x^{4}}+4 \frac{\partial^{2} u}{\partial x^{2}}+4 u$,
with periodic boundary conditions in the x-direction. The boundary conditions in the t-direction are given as
(i) $u(x, 0)=\sin (x)$
(ii) $u_{t}(x, 0)=\cos (2 x)$.

Problem 5 (2.5 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial^{2} u}{\partial t^{2}}-4 \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial x \partial t}-3 \frac{\partial u}{\partial t}-4 u=0$,
with periodic boundary conditions in the x-direction, and the boundary conditions at $t=0$ given as
(i) $u(x, 0)=3+\cos (x)$
(ii) $u_{t}(x, 0)=2+\cos (x)$.

