## MAE/MSE 502, Fall 2022 Homework \#5

A statement of collaboration is required. For all problems in this homework, we expect a closedform solution without any unevaluated integrals. The solution, $u(x, t)$, must be written explicitly as a function of $x$ and $t$.

Problem 1 (2.5 points) For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$e^{-t} \frac{\partial u}{\partial t}-2 x e^{-t} \frac{\partial u}{\partial x}=x u e^{t}+e^{-t}$
with the boundary condition,
$u(x, 0)=1$.
Plot the solution, $u(x, t)$, as a function of $x$ at $t=0,0.1,0.2$, and 0.3 . The plot should be made over the range of $1 \leq x \leq 5$. Please collect all four curves in a single plot.

Problem 2 (2.5 points) For $u(x, t)$ defined on the infinite domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}+2 u \frac{\partial u}{\partial x}=2 x+e^{2 t}$
with the boundary condition,

$$
u(x, 0)=-x
$$

Problem 3 (3 points) For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}-u \frac{\partial u}{\partial x}=1$
with the boundary condition,
$u(x, 0)=\left\{\begin{array}{l}1, \text { if } x<1 \\ \frac{1}{x}, \text { if } x \geq 1\end{array}\right.$
Plot the solution, $u(x, t)$, as a function of $x$ at $t=0,0.2$ and 0.5 . The plot should be made over the range of $-1 \leq x \leq 3$. Please collect all three curves in a single plot.

Problem 4 (3 points) For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+0.5 x$
with the boundary conditions in $t$-direction given as
(i) $u(x, 0)=x$
(ii) $u_{t}(x, 0)=0$.

