MAE/MSE 502, Spring 2022 Homework \#4

Please include a statement of collaboration in your work.
For all problems in this homework, we expect an exact solution expressed in only a finite number of terms and without any unevaluated integrals. The solution, $u(x, t)$, should be expressed in real functions of x and t and real numbers. There will be a deduction if these requirements are not satisfied.

Problem 1 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+u+e^{t}+\cos (x) \sin (t)$
with the boundary conditions
(i) $u_{x}(0, t)=0$
(ii) $u_{x}(\pi, t)=0$
(iii) $u(x, 0)=1+\cos (3 x)$.

Problem 2 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}-\sin (x)$
with the boundary conditions
$\begin{array}{llll}\text { (i) } u(0, t)=0 & \text { (ii) } u(\pi, t)=0 & \text { (iii) } u(x, 0)=\sin (x) & \text { (iv) } u_{t}(x, 0)=\sin (x)\end{array}$
Problem 3 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq \pi / 2$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+u+1$
with the boundary conditions,
(i) $u(0, t)=-1$
(ii) $u(\pi / 2, t)=0$
(iii) $u(x, 0)=\sin (x)+\sin (2 x)-1$.

Problem 4 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial u}{\partial x}+\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{3} u}{\partial x^{3}}+\sin (t)$
with periodic boundary conditions in x-direction, and the boundary conditions in t-direction given as
(i) $u(x, 0)=\cos (x)$
(ii) $u_{t}(x, 0)=1$

