MAE/MSE 502, Spring 2022 Homework \#5

For all problems in this homework, we expect a closed-form solution without any unevaluated integrals. The solution, $u(x, t)$, must be written explicitly as a function of x and t.

Problem 1 (2.5 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$e^{t} \frac{\partial u}{\partial t}+x e^{t} \frac{\partial u}{\partial x}=x u+1$
with the boundary condition,
$u(x, 0)=0$.
Make a plot of the solution, $u(x, t)$, as a function of x at $t=0.1,0.3$, and 0.5 . Please collect all 3 curves in one plot.

Problem 2 (2.5 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=2$
with the boundary condition,
$u(x, 0)=\left\{\begin{array}{c}-\frac{1}{x}, \text { if } x \leq-1 \\ 1, \text { if } x>-1\end{array}\right.$
Plot the solution, $u(x, t)$, as a function of x at $t=0,0.2$ and 0.5 . The recommended range for plotting is $-3 \leq x \leq 1$. Please collect all three curves in a single plot.

Problem 3 (2.5 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=x+1$
with the boundary condition,
$u(x, 0)=-x$.
Problem 4 (2.5 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+x$
with the boundary conditions in t-direction given as
(i) $u(x, 0)=1$
(ii) $u_{t}(x, 0)=0$.

