Problem 1

[Note: The solution is essentially that given in Lecture 11. We write it in a slightly more compact way.]
$u(x, y)=\sum_{n=1}^{\infty}\left[a_{n} \sinh (n \pi y)+b_{n} \sinh (n \pi(1-y))\right] \sin (n \pi x)$
where

$$
a_{n}=\frac{2}{\sinh (n \pi)} \int_{0}^{1} 2\left(x-x^{5}\right) \sin (n \pi x) d x, b_{n}=\frac{2}{\sinh (n \pi)} \int_{0}^{1} \sin (\pi \sqrt{x}) \sin (n \pi x) d x
$$

Problem 2
(a) Solvability condition is satisfied. (b) The system has infinite many solutions:
$u(x, y)=x+C+\frac{\cosh (4 \pi x) \cos (3 \pi y)}{4 \pi \sinh (4 \pi)}, C$ an arbitrary constant
Problem 3
$u(x, y)=\left(5 e^{y}-e^{3 y}\right) \sin (2 x)$
Problem 4
[Note: One could just define $\hat{u} \equiv u-3$, then the system for \hat{u} is identical to that solved in Lecture 10.]

$$
u(x, y)=3+\frac{\sin (2023 \pi y) \sinh (2023 \pi x)}{\sinh (2023 \pi)}
$$

