MAE/MSE 502, Spring 2023 Homework \#3 (14 points)

A statement of collaboration is required.

For Problem 1 and 2, the solution can be expressed as an infinite series. To compute the values of u for the plots, the series needs to be truncated to a finite number of terms (see relevant remarks below HW1-Q1). Matlab can be used to evaluate the expansion coefficients by numerical integration, for example using the "trapz" function.

Problem 1 (2.5 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 5$ and $t \geq 0$, consider the 1-D Wave equation,
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$,
with the boundary conditions,
(i) $u(0, t)=0$,
(ii) $u(5, t)=0, \quad$ (iii) $u(x, 0)=P(x), \quad$ (iv) $u_{t}(x, 0)=0$.
(a) Solve the system with $\mathrm{P}(x)$ given as
$P(x)= \begin{cases}x, & \text { if } 0 \leq x<1 \\ 1.25-0.25 x, & \text { if } 1 \leq x \leq 5\end{cases}$
and plot the solution as a function of x at $t=0,1.5,2.5,3.5,5$, and 9 . Please collect all 6 curves in one plot.
(b) Solve the system with $P(x)$ given as (this emulates a "wave packet")
$P(x)=\sum_{n=32}^{48} \exp \left[-\left(\frac{n-40}{5}\right)^{2}\right] \sin \left(\frac{n \pi x}{5}\right)$,
and plot the solution as a function of x at $t=0,2.5,5$, and 6 . For this part, it is recommended that the four curves be plotted separately, for example arranged in 4 panels using "subplot" in Matlab.

Problem 2 (4 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, consider the PDE (in which U, K, B, and D are constants)
$\frac{\partial u}{\partial t}=U \frac{\partial u}{\partial x}+K \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{3} u}{\partial x^{3}}+D \frac{\partial^{5} u}{\partial x^{5}}$
with periodic boundary conditions in the x-direction. The boundary condition in the t-direction is given as
$u(x, 0)=\frac{[1-\cos (x)]^{8}}{256}$.
To prepare for the major tasks below, first solve the PDE by Fourier series expansion.
(a) Plot the solution $u(x, t)$ at $t=0.2$ for the three cases: (i) $(U=-10, K=0, B=0, D=0)$, (ii) (U $=0, K=1, B=0, D=0)$, (iii) $(U=-10, K=1, B=0, D=0)$. Also, plot the solution at $t=0$ (which is the same for all three cases). Collect all four curves in one plot.
(b) Plot the solution $u(x, t)$ at $t=0.2$ for the two cases: (i) $(U=0, K=0, B=0.15, D=0)$, (ii) (U $=0, K=0, B=0, D=0.008$). Also, plot the solution at $t=0$ (which is the same for the two cases). Collect all three curves in one plot.

For Problem 3-5, we expect an exact solution which consists of only a finite number of terms and no unevaluated integrals. The solution should be expressed in real numbers and functions. Expect a deduction if an imaginary number " i " $(=\sqrt{-1})$ is left in the solution.

Problem 3 (2.5 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,
$\frac{\partial u}{\partial t}=9 t \frac{\partial^{3} u}{\partial x^{3}}+\frac{\partial^{4} u}{\partial x^{4}}+t \frac{\partial^{5} u}{\partial x^{5}}-u$,
with periodic boundary conditions in the x-direction, and the boundary condition in the t-direction given as
$u(x, 0)=1+\sin (x)+\cos (3 x)$.

Problem 4 (2.5 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x \partial t}+u$,
with periodic boundary conditions in the x-direction, and the boundary conditions at $t=0$ given as
$\begin{array}{ll}\text { (i) } u(x, 0)=1 & \text { (ii) } u_{t}(x, 0)=\cos (x) \text {. }\end{array}$

Problem 5 (2.5 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial^{2} u}{\partial t^{2}}-2 \frac{\partial u}{\partial t}-\frac{\partial^{4} u}{\partial x^{4}}+u=0$,
with periodic boundary conditions in the x-direction, and the boundary conditions at $t=0$ given as
(i) $u(x, 0)=\sin (x)$
(ii) $u_{t}(x, 0)=\cos (2 x)$.

