MAE/MSE 502, Spring 2023 Homework \#5

A statement of collaboration is required. For all problems, we expect a closed-form solution without any unevaluated integrals. The solution, $u(x, t)$, must be written explicitly as a function of x and t.

Problem 1 (2 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}+3 u \frac{\partial u}{\partial x}+e^{3 t} \frac{\partial u}{\partial x}=3 x$
with the boundary condition,

$$
u(x, 0)=1-x
$$

Problem 2 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}+e^{u} \frac{\partial u}{\partial x}-t \frac{\partial u}{\partial x}=e^{-u}$
with the boundary condition,

$$
u(x, 0)=\left\{\begin{array}{l}
0, \text { if } x<1 \\
\ln (x), \text { if } x \geq 1
\end{array}\right.
$$

where $\ln (x)$ is the natural logarithm of x. (Note that $e^{\ln (A)}=A$.) Plot the solution, $u(x, t)$, as a function of x at $t=0,0.5$, and 1 . The plot should be made over the range of $0 \leq x \leq 5$. Collect all three curves in a single plot.

Problem 3 (2 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}=x u e^{-t}+1$
with the boundary condition,
$u(x, 0)=1$.
Plot the solution, $u(x, t)$, as a function of x at $t=0,0.2,0.5$, and 1.5 . The plot should be made over the range of $1 \leq x \leq 5$. Collect all four curves in a single plot.

Problem 4 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+x$
with the boundary conditions in t-direction given as
(i) $u(x, 0)=x$
(ii) $u_{t}(x, 0)=1$.

