
MAE 502  Partial Differential Equations in Engineering 

Spring 2009  Mon/Wed 5:30-6:45 PM    SCOB 201  
  

    • Instructor: Huei-Ping Huang (hp.huang@asu.edu), 
         ISTB2 Room 219A

    • Office hours: 
       Tuesday 3:00-4:30 PM, Wednesday after class (nominally 6:45-8:00 PM),
        or by appointment

    • Course website  
       http://www.public.asu.edu/~hhuang38/MAE502.html



Course Outline

I. Analytic treatment for linear PDE 

           1. Overview of PDE
                    Commonly encountered PDEs in engineering and science
                    Types of PDEs, the physical phenomena they represent, and 
                    relevant boundary conditions

           2. Some analytical solutions of PDEs 
                    Separation of variables, Method of characteristics, etc.

           3. Review of boundary value problems with ODE 
                   Sturm-Liouville Problem and orthogonal functions; 
                   Representation using orthogonal basis

           4. Fourier Series 
                     Solution of ODE and PDE by Fourier Series expansion

           5. Fourier transform and Laplace transform
                     Solution of PDE by Fourier/Laplace transform

           6. Series expansion and integral transform methods for PDEs with 
               non-Cartesian geometry (if time permits)



           (continued)

                                                   II. Numerical methods for PDE 

           7. Introduction to Numerical solution of PDE 
                     Overview; Numerical error and stability condition
                     Evolution equations; Elliptic equations with closed boundary 
                     Spectral method (if time permits)

                                                III. Additional topics (if time permits) 

           8. Brief introduction to nonlinear PDE
                     Examples of nonlinear PDEs for real world phenomena; Behavior of their
                     solutions; Conservation laws; Strategies for numerical solutions

           9. Miscellanies
                     Green's function and applications to solutions of ODE and PDE
                     Asymptotic solutions



   [1] Primary textbook:  "Applied Partial Differential Equations", 4th Edition,
        by R. Haberman.  Prentice Hall.   Required

  [2] Additional material for numerical methods will be drawn from 
        "Applied Partial Differential Equations", by P. DuChateau and 
        D. Zachmann. Dover Publications. Recommended

   [3] Lecture notes by instructor

   
    • Will follow [1] as closely as possible for Part I (analytic solutions)
       but some departure is expected

    • Book [2] is better organized but with relatively terse treatments on
       analytic solutions - useful alternative to [1] if you want "second
       opinion".

    • Book [2] has detailed treatments on numerical methods for PDE.



                Grade:  

         50%  Homework/projects 
          20%  Midterm (1 exam)   
          30%  Final

         



Useful things to review ...

             • Basic material for ordinary differential equations (ODE),
            linear algebra, and calculus of multiple variables.

          • Working knowledge of Matlab (or an alternative with 
             similar programming/graphics capability) - useful for 
             plotting results for homework/project and/or speeding 
             up some calculations for homework.  
             This is not an absolute necessity but might give you a slight edge.

            Access to Matlab:   https://apps.asu.edu
                     (i) Login using ASURITE ID/password
                     (ii) Choose appropriate version of Matlab for
                           your computer.  (Matlab 2007b works for most PC)



                                 Use office hours wisely ...

         Instructor will help you to

         • Catch up with the class when you are falling behind

         • Get an update of the latest happening when you miss a class

         • Resolve technical difficulties related to homework/projects

         Cannot make it to regular office hours?  --> Schedule an appointment



A few quick examples of PDEs

(Not to worry about details - they will be discussed in later lectures)



Heat (or diffusion) equation

To help explain the correspondence between a PDE and a real world phenomenon, we will use t to denote 
time and (x, y, z) to denote the 3 spatial coordinates

Heat (or diffusion) equation:    ∂u
∂ t

= ∂2 u
∂ x2  , describes the diffusion of temperature or the density of a 

chemical constituent from an initially concentrated distribution (e.g., a "hot spot" on a metal rod, or a 
speck of pollutant in the open air)

A typical solution (when the initial distribution of u is a "spike"):  u x , t  = 1
t

exp − x2

4 t
    

(Exercise: Verify that this solution does satisfy the original equation)

The figure in next page shows this solution at a few different times.  As t increases, u(x, t) becomes 
broader; Its maximum decreases but its "center of mass" does not move. These features characterize a 
"diffusion process". 



                                Solution of the heat equation at different times. The three curves are
                                u(x, 1), u(x, 3), and u(x,10)

           



Linear advection (transport) equation

Linear advection equation:  ∂u
∂ t

= c ∂u
∂ x , describes the constant movement of an initial distribution

of u with a "speed" of − c along the x-axis.  The distribution moves while preserving its shape. 

A typical solution:  u(x, t) = F(ξ) , ξ ≡ x+ct ;  F can be any function that depends only on x+ct. 
(Exercise: Verify that this is indeed a solution of the original equation.)
The following figure illustrate the behavior of the solution with c = 1.  The initial condition, u(x, t = 0), is a 
"top hat" structure. At later times, this structure moves to the left with a "speed" of δx/δt = −1 while 
preserving its shape.  (The δx and δt here are the increments in space and time in the figure.)



                                                      The 3 panels are u(x, 0), u(x, 1), and u(x, 2)



Linear wave equation

Linear wave equation: ∂2 u
∂ t 2 = c2 ∂2 u

∂ x2 , describes wave motion

For example, a simple traveling sinusoidal structure, u(x, t) = sin(x + ct), as illustrated in the next figure, is 
a solution of the equation.  (While at this level the solution is similar to that of the linear advection 
equation, more interesting behavior would emerge when we consider the superposition of different 
sinusoidal "modes", and when we introduce more interesting boundary conditions for the two equations.) 





Laplace equation

Laplace equation:  ∂2 u
∂ x2 

∂2 u
∂ y2 = 0 .  (It belongs to the more general class of elliptic equations.)

It is usually defined on a closed domain as illustrated in the following.  In this case, boundary conditions 
need to be specified at all of the four "walls" while we seek the solution within the closed domain that 
satisfies both the PDE and the boundary conditions.

                   



                  Heat equation in two and three spatial dimensions

Heat equation in two- and three-dimensions:

               ∂u
∂ t

= ∂2 u
∂ x2 

∂2 u
∂ y2                     (2-D)

                ∂u
∂ t

= ∂2 u
∂ x2 

∂2 u
∂ y2 

∂2 u
∂ z2         (3-D)

The behavior of the solutions of these equations is similar to that of the 1-D heat equation. An initially 
concentrated distribution in u will spread in space and become more smooth as t increases.


