Prob. 1 (5 points)

(a) Solve the heat equation for $u(x, t), x \in[0,1], t \in[0, \infty)$,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

with the boundary conditions,
(i) $u(0, t)=0$
(ii) $u_{x}(1, t)=0 \quad\left(u_{x} \equiv \partial u / \partial x\right)$
(iii) $u(x, 0)=2 \sin \left(\frac{\pi x}{2}\right)+\sin \left(\frac{9 \pi x}{2}\right)$
[This mathematical model, with u as temperature, describes heat transfer along a metal rod, one end of it $(x=1)$ is insulated with zero heat flux while the other end $(x=0)$ is attached to a thermal reservoir to keep its temperature fixed at $u=0$. Note that $\phi \equiv-\partial u / \partial x$ is heat flux. Boundary condition (iii) provides the initial distribution of temperature.]
(b) Find the equilibrium solution, $u(x, t)$ as $t \rightarrow \infty$.
(c) From (a) and (b), plot the solution $u(x, t)$ at $t=0$ (initial state), $0.003,0.01,0.1,0.3,1$, and $t \rightarrow \infty$. (Please collect them in a single plot.) Interpret your result.
(d) From (a) and (b), find the analytic expression of heat flux, $\phi \equiv-\partial u / \partial x$. Plot $\phi(x, t)$ at $t=0,0.003,0.01,0.1,0.3,1$, and $t \rightarrow \infty$. Interpret your result.
(e) At $x=0$, temperature is fixed but heat flux is allowed to change. Plot the heat flux at $x=0, \phi(0, t)$, as a function of t. Does heat energy flow into or out of the metal rod through this end?
(f) The parameter, $S(t) \equiv \int_{0}^{1}\left(\frac{\partial u}{\partial x}\right)^{2} d x$, is a measure of the sharpness of temperature gradient (a smoother temperature profile corresponds to a smaller S). Derive the analytic expression for $S(t)$ and plot it as a function of t. Discuss the result.

Prob. 2 (3 points)

Find the general solution of each of the following PDEs by the method of separation of variables.
(a) $\frac{\partial^{2} u}{\partial x \partial y}+u=0$
(b) $\frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}=0$

