MAE502 Homework \#2

Prob. 1 (4 points)
(a) Work out the Fourier Sine series expansion,

$$
F(x)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x)
$$

for the following function defined on $x \in[0,1]$,

$$
\begin{aligned}
F(x) & =2 x, 0 \leq x \leq 1 / 2 \\
& =1-x, 1 / 2<x \leq 1 .
\end{aligned}
$$

A sketch of $F(x)$ is shown at right; Notice a discontinuity at $x=1 / 2$.
(b) Plot the original $F(x)$ and its Fourier Sine series representation truncated at $n=5,10$, and 30 . Please collect all four curves in a single plot. What are the values of $F(x)$ at $x=0.35$ for the three cases truncated at $n=5,10$, and 30 using Fourier Sine series expansion? Compare them to the exact value, $F(0.35)$, to determine the percentage error (using the exact value as denominator) for the three cases. Repeat the exercise for $x=0.49$ (a point close to the discontinuity). Discuss the results.
(c) Find the analytic expression for the value of $F(x)$ at $x=1 / 2$ using the Fourier Sine series representation in (a). Define $S(\mathrm{~N})$ as the value of $F(1 / 2)$ calculated from the Fourier Sine series truncated at $n=\mathrm{N}$, plot $S(\mathrm{~N})$ as a function of N for the range $1 \leq \mathrm{N} \leq 30$. What value does $S(\mathrm{~N})$ approach to at large N ?

Prob 2. (5 points)

(a) Solve the Laplace equation for $u(x, y), x \in[0,1], y \in[0,1]$,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

with the boundary conditions,

$$
\text { (I) } u(x, 0)=0, \quad \text { (II) } u(x, 1)=P(x), \quad \text { (III) } u(0, y)=F(y), \quad \text { (IV) } u(1, y)=0
$$

where

$$
\begin{aligned}
P(x) & =\sin ^{2}(\pi x) \quad(\text { Note that it is "sine square", not just "sine".) }, \\
F(y) & =y \quad, 0 \leq y \leq 1 / 2 \\
& =1-y, 1 / 2<y \leq 1
\end{aligned}
$$

(b) Plot the solution, $u(x, y)$, as a color/contour map for $x \in[0,1], y \in[0,1]$ in the same fashion as the color/contour map in Matlab Example \#3. When doing so, truncate all of the infinite series that appear in your solution at $n=20$ (i.e., retain 20 terms in these series.) Indicate the contour levels in your plot. (The recommended contour interval is 0.05 , with $\min =0.05$ and $\max =0.95$.) Discuss the result. With the 20 -term truncation, what are the values of $u(x, y)$ at $(x, y)=(0.25,0.25)$ and $(x, y)=(0.5,0.75)$?

If you do not have a color printer, a contour-only (no color shading) map is also acceptable for 2(b).

