MAE502 Homework \#3

Prob. 1 (6 points)

(a) Solve the two-dimensional wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}},
$$

for $u(x, y, t)$ defined on $x \in[0,1], y \in[0,1]$, and $t \in[0, \infty)$, with the following boundary conditions
(i) $u(0, y, t)=0$
(ii) $u(1, y, t)=0$
(iii) $u(x, 0, t)=0$
(iv) $u(x, 1, t)=0$
(v) $u(x, y, 0)=\sin ^{2}(\pi x)[\sin (\pi y)+\sin (2 \pi y)]$
(vi) $u_{t}(x, y, 0)=0 \quad\left(\right.$ Note: $\left.u_{t} \equiv \partial u / \partial t\right)$.
(b) Plot the solution $u(x, y, t)$ at $t=0$ (initial state), $0.3,0.7$, and 2.47 as contour/color maps in the same fashion as Matlab Example \#3 or \#5. Discuss your results. In this exercise, use your own judgment to keep a sufficient number of terms in the infinite series to ensure accuracy of the solution for the plots. Please indicate how you truncate the infinite series.

