MAE 502 Homework #4

Prob 1 (5 points)

(a) Solve the nonhomogeneous PDE (heat equation with internal heat source/sink),

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + Q(x,t) \quad ,$$

for u(x, t) defined on $x \in [0,1]$, $t \in [0, \infty)$, with the boundary conditions

(I) u(0, t) = 0, (II) u(1, t) = 0, (III) $u(x, 0) = 2\sin(\pi x) + 5\sin(2\pi x)$,

and with Q(x, t) given as

$$Q(x, t) = \sin(\pi x)\exp(-2t) + \sin(3\pi x)\exp(-t).$$

(b) Using the solution in (a), find the values of u(x,t) at (x, t) = (0.75, 0.1) and (0.75, 0.3).

Prob 2 (4 points)

(a) Given the following function defined on the semi-infinite interval, $x \in [0, \infty)$,

$$f(x) = 1$$
, $0 \le x \le 1$,
= 0, $x > 1$,
Eq. (1)

determine the Fourier Sine transform of f(x), $F(\omega)$, that satisfies

$$f(x) = \int_{0}^{\infty} F(\omega) \sin(\omega x) d\omega$$

Plot $F(\omega)$ as a function of ω for the range $0 \le \omega \le 30$.

(b) If the f(x) in Eq. (1) is instead defined on a finite interval, $x \in [0, L]$, L > 1 (but otherwise retains its definition in Eq. (1)), find the coefficients, a_n , for the Fourier Sine series of f(x),

$$f(x) = \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi x}{L}\right) \quad .$$

Plot a_n as a function of *n* for the following cases: (i) For L = 2, plot a_n for the range $1 \le n < 60/\pi$. (ii) For L = 5, plot a_n for $1 \le n < 150/\pi$. (iii) For L = 100, plot a_n for $1 \le n < 3000/\pi$. Compare these plots with the plot of $F(\omega)$ in (a). Discuss your results. (*Note: This homework illustrates the correspondence between Fourier series and Fourier integral.*)