MAE 502 Homework \#4

Prob 1 (5 points)

(a) Solve the nonhomogeneous PDE (heat equation with internal heat source/sink),

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+Q(x, t),
$$

for $u(x, t)$ defined on $x \in[0,1], t \in[0, \infty)$, with the boundary conditions
(I) $u(0, t)=0$,
(II) $u(1, t)=0$,
(III) $u(x, 0)=2 \sin (\pi x)+5 \sin (2 \pi x)$,
and with $Q(x, t)$ given as

$$
Q(x, t)=\sin (\pi x) \exp (-2 t)+\sin (3 \pi x) \exp (-t) .
$$

(b) Using the solution in (a), find the values of $u(x, t)$ at $(x, t)=(0.75,0.1)$ and $(0.75,0.3)$.

Prob 2 (4 points)

(a) Given the following function defined on the semi-infinite interval, $x \in[0, \infty)$,

$$
\begin{align*}
f(x) & =1,0 \leq x \leq 1 \tag{1}\\
& =0, x>1
\end{align*}
$$

determine the Fourier Sine transform of $f(x), F(\omega)$, that satisfies

$$
f(x)=\int_{0}^{\infty} F(\omega) \sin (\omega x) d \omega
$$

Plot $F(\omega)$ as a function of ω for the range $0 \leq \omega \leq 30$.
(b) If the $f(x)$ in Eq. (1) is instead defined on a finite interval, $x \in[0, L], L>1$ (but otherwise retains its definition in Eq. (1)), find the coefficients, a_{n}, for the Fourier Sine series of $f(x)$,

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Plot a_{n} as a function of n for the following cases: (i) For $L=2$, plot a_{n} for the range $1 \leq n<60 / \pi$. (ii) For $L=5$, plot a_{n} for $1 \leq n<150 / \pi$. (iii) For $L=100$, plot a_{n} for $1 \leq n<3000 / \pi$. Compare these plots with the plot of $F(\omega)$ in (a). Discuss your results. (Note: This homework illustrates the correspondence between Fourier series and Fourier integral.)

