MAE 502 Homework 6

Prob. 1 (4 points)

Repeat HW2 Prob. 2 but now use numerical method to solve the Laplace equation,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

for $u(x, y)$ defined on $x \in[0,1], y \in[0,1]$, with the boundary conditions,
(I) $u(x, 0)=0, \quad$ (II) $u(x, 1)=P(x), \quad$ (III) $u(0, y)=F(y), \quad$ (IV) $u(1, y)=0$,
where

$$
\begin{aligned}
P(x) & =\sin ^{2}(\pi x), \\
F(y) & =y \quad, 0 \leq y \leq 1 / 2 \\
& =1-y, \quad 1 / 2<y \leq 1 .
\end{aligned}
$$

(a) First, use a coarse resolution with $\Delta x=0.25, \Delta y=0.25$. Compare your solution with the analytic solution from HW2 Prob. 2 for $u(x, t)$ at $(x, t)=(0.25,0.25)$ and $(0.5,0.75)$.
(b) Repeat (a) but refine the resolution to $\Delta x=0.1, \Delta y=0.1$. Make a contour/color plot of your solution in the same fashion as HW2 Prob.2. (If the solution is good it should approach the analytic solution as Δx and Δy decrease.)

Prob 2 (4 points)

(a) Using the method of characteristics, solve the nonlinear (or "quasilinear") PDE,

$$
\frac{\partial u}{\partial t}+2 u \frac{\partial u}{\partial x}=0
$$

for $u(x, t)$ defined on $x \in(-\infty, \infty)$ and $t \in[0, \infty)$, with boundary condition

$$
u(x, 0)=\mathrm{P}(x),
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & =1 & & , x<0 \\
& =1+x^{2} & & , 0 \leq x \leq 1 \\
& =2 & & , x>1
\end{aligned}
$$

Using your solution, evaluate $u(x, t)$ at $(x=1, t=0.05)$ and $(x=0.1, t=0.1)$.
(b) Plot the solution, $u(x, t)$, at $t=0.1$ and $t=0.2$, along with the "initial state", $u(x, 0)=\mathrm{P}(x)$. Briefly discuss the behavior of the solution.

