
Introduction to Partial Differential Equation - I. Quick overview

To help explain the correspondence between a PDE and a real world phenomenon, we will use t to denote 
time and (x, y, z) to denote the 3 spatial coordinates

Some "classical" linear PDEs 

Heat (or diffusion) equation:    ∂u
∂ t

= ∂2 u
∂ x2  , describes the diffusion of temperature or the density of a 

chemical constituent from an initially concentrated distribution (e.g., a "hot spot" on a metal rod, or a 
speck of pollutant in the open air)

A typical solution (when the initial distribution of u is a "spike"):  u x , t  = 1
t

exp − x2

4 t
    

(Exercise: Verify that this solution does satisfy the original equation)

The figure in next page shows this solution at a few different times.  As time increases, u(x) becomes 
broader, its maximum decreases, but its "center of mass" does not move. These features characterize a 
"diffusion process". 



                                Solution of the heat equation at different times. The three curves are
                                u(x, 1), u(x, 3), and u(x,10)

           (How this solution is obtained is beyond the scope of this course - not to worry about the detail.)



Linear advection equation:  ∂u
∂ t

= c ∂u
∂ x , describes the constant movement of an initial distribution

of u with a "speed" of − c along the x-axis.  The distribution moves while preserving its shape. 

A typical solution:  u(x, t) = F(ξ) , ξ ≡ x+ct ;  F can be any function that depends only on x+ct. 
(Exercise: Verify that this is indeed a solution of the original equation.)
The following figure illustrate the behavior of the solution with c = 1.  The initial condition, u(x, t = 0), is a 
"top hat" structure. At later times, this structure moves to the left with a "speed" of δx/δt = −1 while 
preserving its shape.  (The δx and δt here are the increments in space and time in the following diagrams.)

                                                      The 3 panels are u(x, 0), u(x, 1), and u(x, 2)



Linear wave equation: ∂2 u
∂ t 2 = c2 ∂2 u

∂ x2 , describes wave motion

For example, a simple traveling sinusoidal structure, u(x, t) = sin(x + ct), as illustrated below, is a solution 
of the equation.  (While at this level the solution is similar to that of the linear advection equation, more 
interesting behavior would emerge when we consider the superposition of different sinusoidal "modes", and 
when we introduce more interesting boundary conditions for the two equations. We will skip this detail.)



                                                                 Boundary conditions (I)

In the three examples discussed above, we have not emphasized the role of boundary conditions. The 
simple solutions of the heat equation and linear advection equation are valid for the unbounded domain in 
x, x ∈ (∞, −∞), and "semi-infinite" domain in t, t ∈ [0, ∞), and under the boundary condition that u is well-
behaved* as x → ∞ and x → −∞.  A PDE that is defined on the semi-infinite domain in time is often called 
an "evolution equation", which is to be solved with a given initial state, u(x, 0) = G(x).  The following 
diagram illustrate the domain for a PDE defined on  x ∈ (∞, −∞) and t ∈ [0, ∞).  Note that the prescribed 
initial state provides the "boundary condition" at the "wall", t = 0, of the domain.

______________________________
*We will skip the complexity as to what qualifies u as "well-behaved" but, as an example, observe that for 
the solution of the advection equation in our example, at any given t, u(x, t) always drops to zero outside a 
large enough interval, [−X, X].  This interval expands with t and with X ∼ ct at large t, but it is finite as long 
as t is finite.   



                                                              Boundary conditions (II)

In real world applications, the heat equation is often defined on a finite interval in x, x ∈[a, b] (consider the 
problem of describing the temperature distribution on a finite metal rod), and a semi-infinite domain in t as 
before.  The following diagram illustrates the domain for the PDE in this case.  In addition to the boundary 
condition at t = 0, u(x,0) = G(x), two more b.c. are needed at x = a and x = b for all t.  They can be written 
as u(a, t) = P(t) and u(b, t) = Q(t).  Note that G(x) itself has to satisfy the boundary conditions of G(a) = 
P(0) and G(b) = Q(0).  The prescription of P(t), Q(t) and G(x) on the three "walls" of the domain is 
necessary for solving the PDE.  



                                             Boundary conditions (III), and Laplace equation

There are yet situations when the PDE may be defined on a closed domain.  A famous example is the 

Laplace equation:  ∂2 u
∂ x2 

∂2 u
∂ y2 = 0 .  (It belongs to the more general class of elliptic equations.)

The closed domain is illustrated in the following.  In this case, boundary conditions need to be specified at 
all of the four walls.

Remark: Different types of PDEs often need to be matched with different types of boundary 
conditions in order for their solutions to exist and be unique.  While we do not have time to go 
through the detail, this is an important notion to remember.



Heat equation in two- and three-dimensions:

               ∂u
∂ t

= ∂2 u
∂ x2 

∂2 u
∂ y2                     (2-D)

                ∂u
∂ t

= ∂2 u
∂ x2 

∂2 u
∂ y2 

∂2 u
∂ z2         (3-D)

The behavior of the solutions of these equations is similar to that of the 1-D heat equation. An initially 
concentrated distribution in u will spread in space and become more smooth as t increases.

For the 2-D case and for a closed domain with u specified on the "walls", the solution may reach 
"equilibrium" as t → ∞ .  At this limit, u ceases to change further so ∂u/∂t ≈ 0. Then, the 2-D heat equation 
is reduced to the 2-D Laplace equation discussed before.  In other words, the Laplace equation describes 
the equiribrium solution (or "steady state solution") of the 2-D heat diffusion problem.


