Solve the eigenvalue problem

$$G''(x) = c G(x)$$
, with b.c.: (I) $G(0) = 0$, (II) $G(1) = 0$

Observation: In the ODE, the second derivative of G is proportional to G itself. Two types of functions possess this property:

(i) $\{\sin(x), \cos(x)\}$

$$[\sin(x)]' = \cos(x)$$
,
 $[\sin(x)]'' = [\cos(x)]' = -\sin(x)$ \leftarrow Comes back to itself but with a negative sign $\cos(x)$ behaves similarly; $[\cos(x)]'' = -\cos(x)$

- => The combination of $G = A \sin(\alpha x) + B \cos(\alpha x)$ satisfies $G'' = -\alpha^2 G$
- (ii) $\{\exp(x), \exp(-x)\}$

$$[\exp(x)]' = \exp(x)$$
, $[\exp(x)]'' = \exp(x)$ \leftarrow Comes back to itself $[\exp(-x)]' = -\exp(-x)$, $[\exp(-x)]'' = \exp(-x)$ \leftarrow Comes back to itself

=> The combination of $G = A \exp(\alpha x) + B \exp(-\alpha x)$ satisfies $G'' = \alpha^2 G$

For the convenience of discussion, we often replace $\{\exp(x), \exp(-x)\}\$ by the equivalent pair of $\{\sinh(x), \cosh(x)\}$

Recall that $sinh(x) \equiv \{exp(x) - exp(-x)\}/2$, $cosh(x) \equiv \{exp(x) + exp(-x)\}/2$ [sinh(x)]' = cosh(x), [sinh(x)]'' = [cosh(x)]' = sinh(x), etc.

=> The combination of $G = A \sinh(\alpha x) + B \cosh(\alpha x)$ satisfies $G'' = \alpha^2 G$

Let's get back to the eigenvalue problem. From the above observation,

- (1) When c > 0, solution is $G(x) = A \sinh(\alpha x) + B \cosh(\alpha x)$, where $c = \alpha^2$
- (2) When c < 0, solution is $G(x) = A \sin(\alpha x) + B \cos(\alpha x)$, where $c = -\alpha^2$

The situation with c = 0 may also be relevant. Let's delay the discussion for that case.

Case 1: c > 0, $G(x) = A \sinh(\alpha x) + B \cosh(\alpha x)$, where $c = \alpha^2$

from b.c. (I): $A \sinh(0) + B \cosh(0) = 0 \implies B = 0$

from b.c. (II): $A \sinh(\alpha) + B \cosh(\alpha) = 0 \implies A \sinh(\alpha) = 0 \implies A = 0$ or $\alpha = 0$ If A = 0, solution is trivial, $G \equiv 0$ If $\alpha = 0$, G = constant, but b.c. (I) or (II) again leads to $G \equiv 0$

Conclusion: c > 0 only leads to a trivial solution

Case 2: c < 0, $G(x) = A \sin(\alpha x) + B \cos(\alpha x)$, where $c = -\alpha^2$

from b.c. (I): $A \sin(0) + B \cos(0) = 0 \implies B = 0$

from b.c. (II): $A \sin(\alpha) + B \cos(\alpha) = 0 \implies A \sin(\alpha) = 0 \implies A = 0$ or $\sin(\alpha) = 0$ If A = 0, solution is trivial

Conclusion: For c < 0, non-trivial solutions exist when $sin(\alpha) = 0$

The values of α that satisfy $\sin(\alpha) = 0$ are

$$\alpha_0 = 0$$
, $\alpha_1 = \pi$, $\alpha_2 = 2 \pi$, $\alpha_3 = 3 \pi$, ... $\alpha_n = n \pi$, ...

The corresponding **eigenvalues** are $c_n = -\alpha_n^2$, or

$$c_0 = 0$$
, $c_1 = -\pi^2$, $c_2 = -4\pi^2$, $c_3 = -9\pi^2$, ..., $c_n = -n^2\pi^2$,

Plugging this back to the expression of G(x) for the case with c < 0, we obtain the **eigenfunctions**

$$G_0(x) = 0$$
 (trivial), $G_1(x) = \sin(\pi x)$, $G_2(x) = \sin(2\pi x)$, ... $G_n(x) = \sin(n\pi x)$, ...

Lastly, for the case with c = 0, the ODE is reduced to G''(x) = 0, whose general solution is G(x) = A x + B. From b.c. (I), we have B = 0; From b.c (II), we have A = 0, so the solution is trivial.

Beware that for some eigenvalue problems the zero eigenvalue, c = 0, can correspond to a non-trivial solution. Don't dismiss the case outright!

Exercises: Solve the following eigenvalue problems

(i)
$$G''(x) = c G(x)$$
, $G(3) = 0$, $G(5) = 0$

(ii)
$$G''(x) = c G(x)$$
, $G(0) = 0$, $G'(1) = 0$ (G' is dG/dx)

(iii)
$$G''(x) = c G(x)$$
, $G'(0) = 0$, $G(1) = 0$

(iv)
$$G''(x) = c G(x)$$
, $G(0) = G(1)$, $G'(0) = G'(1)$ (periodic boundary condition)