Solve the eigenvalue problem

$G^{\prime}(x)=c G(x)$, with b.c. : (I) $G(0)=0, \quad(I I) G(1)=0$
Observation: In the ODE, the second derivative of G is proportional to G itself. Two types of functions possess this property:
(i) $\{\sin (\mathrm{x}), \cos (\mathrm{x})\}$

$$
[\sin (x)]^{\prime}=\cos (x),
$$

$[\sin (x)]^{\prime \prime}=[\cos (x)]^{\prime}=-\sin (x) \leftarrow$ Comes back to itself but with a negative sign
$\cos (\mathrm{x})$ behaves similarly; $[\cos (\mathrm{x})]^{\prime \prime}=-\cos (\mathrm{x})$
$=>$ The combination of $G=A \sin (\alpha x)+B \cos (\alpha x)$ satisfies $G^{\prime \prime}=-\alpha^{2} G$
(ii) $\{\exp (\mathrm{x}), \exp (-\mathrm{x})\}$
$[\exp (x)]^{\prime}=\exp (x),[\exp (x)]^{\prime \prime}=\exp (x) \leftarrow$ Comes back to itself
$[\exp (-\mathrm{x})]^{\prime}=-\exp (-\mathrm{x}),[\exp (-\mathrm{x})]^{\prime \prime}=\exp (-\mathrm{x}) \leftarrow$ Comes back to itself
$=>$ The combination of $G=A \exp (\alpha x)+B \exp (-\alpha x)$ satisfies $G^{\prime \prime}=\alpha^{2} G$

For the convenience of discussion, we often replace $\{\exp (x), \exp (-x)\}$ by the equivalent pair of $\{\sinh (\mathrm{x}), \cosh (\mathrm{x})\}$

Recall that $\sinh (x) \equiv\{\exp (x)-\exp (-x)\} / 2, \quad \cosh (x) \equiv\{\exp (x)+\exp (-x)\} / 2$

$$
[\sinh (\mathrm{x})]^{\prime}=\cosh (\mathrm{x}),[\sinh (\mathrm{x})]^{\prime \prime}=[\cosh (\mathrm{x})]^{\prime}=\sinh (\mathrm{x}), \text { etc. }
$$

$=>$ The combination of $G=A \sinh (\alpha x)+B \cosh (\alpha x)$ satisfies $G^{\prime \prime}=\alpha^{2} G$

Let's get back to the eigenvalue problem. From the above observation,
(1) When $\mathrm{c}>0$, solution is $\mathrm{G}(\mathrm{x})=A \sinh (\alpha \mathrm{x})+B \cosh (\alpha \mathrm{x})$, where $\mathrm{c}=\alpha^{2}$
(2) When $\mathrm{c}<0$, solution is $\mathrm{G}(\mathrm{x})=A \sin (\alpha \mathrm{x})+B \cos (\alpha \mathrm{x})$, where $\mathrm{c}=-\alpha^{2}$

The situation with c = 0 may also be relevant. Let's delay the discussion for that case.

Case 1: $\mathrm{c}>0, \mathrm{G}(\mathrm{x})=A \sinh (\alpha \mathrm{x})+B \cosh (\alpha \mathrm{x})$, where $\mathrm{c}=\alpha^{2}$
from b.c. (I): $A \sinh (0)+B \cosh (0)=0 \Rightarrow B=0$
from b.c. (II): $A \sinh (\alpha)+B \cosh (\alpha)=0 \Rightarrow A \sinh (\alpha)=0 \Rightarrow A=0$ or $\alpha=0$ If $A=0$, solution is trivial, $\mathrm{G} \equiv 0$
If $\alpha=0, G=$ constant, but b.c. (I) or (II) again leads to $G \equiv 0$

Conclusion: c > 0 only leads to a trivial solution

Case 2: $\mathrm{c}<0, \mathrm{G}(\mathrm{x})=A \sin (\alpha \mathrm{x})+B \cos (\alpha \mathrm{x})$, where $\mathrm{c}=-\alpha^{2}$
from b.c. (I): $A \sin (0)+B \cos (0)=0 \Rightarrow B=0$
from b.c. (II): $A \sin (\alpha)+B \cos (\alpha)=0 \Rightarrow A \sin (\alpha)=0 \Rightarrow A=0$ or $\sin (\alpha)=0$ If $A=0$, solution is trivial

Conclusion: For $\mathbf{c}<\mathbf{0}$, non-trivial solutions exist when $\sin (\alpha)=0$

The values of α that satisfy $\sin (\alpha)=0$ are

$$
\alpha_{0}=0, \alpha_{1}=\pi, \alpha_{2}=2 \pi, \alpha_{3}=3 \pi, \ldots \alpha_{n}=n \pi, \ldots
$$

The corresponding eigenvalues are $c_{n}=-\alpha_{n}^{2}$, or

$$
\mathrm{c}_{0}=0, \mathrm{c}_{1}=-\pi^{2}, \mathrm{c}_{2}=-4 \pi^{2}, \mathrm{c}_{3}=-9 \pi^{2}, \ldots, \mathrm{c}_{\mathrm{n}}=-\mathrm{n}^{2} \pi^{2},
$$

Plugging this back to the expression of $G(x)$ for the case with $c<0$, we obtain the eigenfunctions

$$
\mathrm{G}_{0}(\mathrm{x})=0(\text { trivial }), \mathrm{G}_{1}(\mathrm{x})=\sin (\pi \mathrm{x}), \mathrm{G}_{2}(\mathrm{x})=\sin (2 \pi \mathrm{x}), \ldots \mathrm{G}_{\mathrm{n}}(\mathrm{x})=\sin (\mathrm{n} \pi \mathrm{x}), \ldots
$$

Lastly, for the case with $\mathrm{c}=0$, the ODE is reduced to $\mathrm{G}^{\prime \prime}(\mathrm{x})=0$, whose general solution is $\mathrm{G}(\mathrm{x})=A \mathrm{x}+B$. From b.c. (I), we have $B=0$; From b.c (II), we have $A=0$, so the solution is trivial.

Beware that for some eigenvalue problems the zero eigenvalue, $\mathbf{c}=\mathbf{0}$, can correspond to a non-trivial solution. Don't dismiss the case outright!

Exercises: Solve the following eigenvalue problems
(i) $G^{\prime \prime}(x)=c G(x), G(3)=0, G(5)=0$
(ii) $\mathrm{G}^{\prime \prime}(\mathrm{x})=\mathrm{c} G(\mathrm{x}), \mathrm{G}(0)=0, \mathrm{G}^{\prime}(1)=0 \quad\left(\mathrm{G}^{\prime}\right.$ is $\left.\mathrm{dG} / \mathrm{dx}\right)$
(iii) $\mathrm{G}^{\prime \prime}(\mathrm{x})=\mathrm{c} G(\mathrm{x}), \mathrm{G}^{\prime}(0)=0, G(1)=0$
(iv) $\mathrm{G}^{\prime \prime}(\mathrm{x})=\mathrm{c} \mathrm{G}(\mathrm{x}), \mathrm{G}(0)=\mathrm{G}(1), \mathrm{G}^{\prime}(0)=\mathrm{G}^{\prime}(1)$ (periodic boundary condition)

