Boundary conditions and eigenvalue problem

Example 1: Eigenvalue problem. Consider the equation, $\mathrm{d}^{2} u / \mathrm{d} x^{2}=\lambda u$, where λ is yet undetermined. In this case, three different types of b.c.'s are generally valid: (i) $u(a)=A, u(b)=B$, (ii) $u(a)=A, u^{\prime}(b)=B$, and (iii) $u^{\prime}(a)=A, u^{\prime}(b)=B$ They lead to different eigenvalues that would ensure a non-trivial solution for u.

Example 1A: Solve the eigenvalue problem, $\mathrm{d}^{2} u / \mathrm{d} x^{2}=\lambda u, u(0)=0, u(1)=0$.
(i) If $\lambda>0$, write $\lambda=\mathrm{k}^{2}, \mathrm{k}>0$; the general solution of the ODE is
$u(x)=C \sinh (\mathrm{k} x)+D \cosh (\mathrm{k} x) \quad\left[\right.$ Note: $\left.\sinh (x) \equiv\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right) / 2, \cosh (\mathrm{x}) \equiv\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right) / 2\right]$
It can be shown that, to satisfy the b.c.'s, we can only have $D=0$ and $C=0$ (or $k=0$) \Rightarrow trivial solution $u(x)=0$
(ii) If $\lambda<0$, write $\lambda=-\mathrm{k}^{2}, \mathrm{k}>0$; the general solution of the ODE is

$$
u(x)=C \sin (\mathrm{k} x)+D \cos (\mathrm{k} x)
$$

(continue to next slide)

From the 1 st b.c., $u(0)=0 \Rightarrow C \sin (0)+D \cos (0)=0 \Rightarrow D=0$
From the 2 nd b.c., $u(1)=0 \Rightarrow C \sin (\mathrm{k})+D \cos (\mathrm{k})=0 \Rightarrow C \sin (\mathrm{k})=0$
This means $C=0$ or $\sin (\mathrm{k})=0$, the former leads to a trivial solution. Thus, to obtain non-trivial solution(s) we must have

$$
\sin (k)=0 \Rightarrow k= \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots \text { are the only allowed values of } k
$$

that lead to non-trivial solutions. ($\mathrm{k}=0$ is excluded since it leads to trivial solution.)
Recall that $\lambda=-\mathrm{k}^{2}$, we obtain the eigenvalues,

$$
\lambda=\lambda_{\mathrm{n}}=-(\mathrm{n} \pi)^{2}, \mathrm{n}=1,2,3, \ldots, \text { (The } \lambda_{\mathrm{n}} \text { with } \mathrm{n}=-1,-2, \ldots \text { are redundant and can be ignored) }
$$

and their corresponding eigenfunctions,
$u_{\mathrm{n}}(x)=\sin \left(\mathrm{k}_{\mathrm{n}} x\right)=\sin (\mathrm{n} \pi x), \mathrm{n}=1,2,3, \ldots$
Any pair of $\left(\lambda=\lambda_{n}, u=u_{n}(x)\right)$ are a solution of the ODE + b.c.'s.
(continue to next slide - one more step to go)
(continued)
The linear superposition of any combination of the eigenfunctions is also the solution of the ODE+b.c.'s. \Rightarrow The most general form of the solution is

$$
\begin{aligned}
u(x) & =a_{1} u_{1}(x)+a_{2} u_{2}(x)+a_{3} u_{3}(x)+\ldots \\
& =\sum_{n=1}^{\infty} a_{n} u_{n}(x)
\end{aligned}
$$

The following figure shows the first 4 eigenfunctions (they are just sinusoidal functions)

Exercise: Solve the eigenvalue problem with the same ODE as Example 1A but with the boundary conditions $u^{\prime}(0)=0, u^{\prime}(1)=0$.

