Boundary conditions - general remarks

$\mathrm{ODE} / \mathrm{PDE}+$ boundary condition(s) \Rightarrow complete solution (ODE/PDE alone without b.c. \Rightarrow General solution, not always useful)

Example 1: The ODE, $\mathrm{d} u / \mathrm{d} x=2$, has the general solution $u(x)=2 x+C$, where C is an arbitrary constant. This describes a family of lines in $x-u$ plane with a slope of 2 (see figure below). A boundary condition, $u(0)=1$, will add the constraint that the line must pass the point $(x, u)=(0,1)$ $\Rightarrow C=1 \Rightarrow$ unique solution $u(x)=2 x+1$ (solid line in the figure)

For more complicated problems, picking the right curve/surface that fits the b.c. is often more difficult than determining the general solution. Boundary condition is important. An ODE or PDE combined with a wrong type of boundary condition(s) may lead to no solution at all.

Examples of "healthy" and "unhealthy" boundary conditions

First order ODE

For the ODE in Example 1,
(i) Imposing two b.c.'s at two different x, e.g., $u(0)=1$ and $u(1)=2$, would lead to contradiction \Rightarrow No solution. (Special cases such as $u(0)=1, u(1)=3$, would lead to a solution, but in this case the second b.c. is redundant.)
(ii) Imposing a single b.c. for u^{\prime} (the first derivative) instead of u, e.g., $u^{\prime}(0)=3$, will also lead to contradiction \Rightarrow No solution.

A healthy b.c. for this ODE must be of the form, $u(a)=A$., i.e., an "initial condition" for u given at a single point of x.

Second order ODE

Example 2: The ODE, $\mathrm{d}^{2} u / \mathrm{d} x^{2}=2$, has the general solution, $u(x)=x^{2}+C x+D$, where C and D are arbitrary constants. Consider the following types of b.c.'s:
(i) $u(a)=A, u^{\prime}(a)=B$. For example, $u(0)=1, u^{\prime}(0)=1 \Rightarrow D=1, C=1 \Rightarrow$ unique solution $u(x)=x^{2}+x+1$.
(ii) $u(a)=A, u(b)=B, a \neq b$. For example, $u(0)=1, u(1)=0 \Rightarrow D=1, C=-2 \Rightarrow$ unique solution $u(x)=x^{2}-2 x+1$.
(iii) $u(a)=A, u^{\prime}(b)=B, a \neq b$. For example, $u(0)=1, u^{\prime}(1)=2 \Rightarrow D=1, C=0 \Rightarrow$ unique solution $u(x)=x^{2}+1$.
(iv) $u^{\prime}(a)=A, u^{\prime}(b)=B$. For example, $u^{\prime}(0)=1, u^{\prime}(1)=2 \Rightarrow " 1=0 "$, contradiction; solution does not exist. (Special cases such as $u^{\prime}(0)=1, u^{\prime}(1)=3$ would avoid contradiction. Yet, they do not lead to a useful solution since D remains undetermined.)

Types (i)-(iii) are the healthy b. c.'s for this ODE. (The conclusion is specific to this ODE. For a different ODE the situation may be different.)

The figure in next page shows the solutions from the examples in (i)-(iii). Note that all three curves satisfy the same ODE but different b. c.'s.

(i) black solid
(ii) red
(iii) black dashed

