
Examples of numerical solutions for boundary value problems (for ODE)

Example 1

                d 2u/dx2 = 1  ,   u(0) = 0, u(1) = 0

Analytic solution is u(x) = x2/2 − x/2.  To obtain a numerical solution, the equation is first discretized on the 
grid, [x0, x1, x2, ..., xN], where x0 = 0, xN = 1, and xi = i ∆x.   We will use ∆x = 0.2 (N = 5) through the 
discussion.  The second derivative can be approximated by the three-point central difference scheme  (this 
is but one of many possible choices), which leads to

                 (u i−1 − 2 u i + u i+1)/(∆x)2 = 1   for  i = 1 , 2, 3, 4                               (1)

Note that these equations are only for the interior points, x = x1, x2, x3, and x4 (i.e., x = 0.2, 0.4, 0.6, and 0.8). 
The values of u at the boundary points, x0 and x5, are given by the boundary conditions, u0 = 0 and u5 = 0. 
System (1) admits a unique solution since it has 4 unknowns (u1, u2, u3, u4) and 4 equations. Without the 
boundary conditions, one would have 6 unknowns but only 4 equations.  The 4 equations in (1) are

                             u0 − 2 u1 +   u2                                = (∆x)2

                                       u1 − 2 u2 +    u3                     = (∆x)2                            (2)                             
                                                 u2 − 2 u3 +    u4           = (∆x)2                          
                                                            u3 − 2 u4 + u5   = (∆x)2     ,

where (∆x)2 = 0.04.  The two red elements are associated with the boundary conditions and, in this case, can 
be readily eliminated. This leads to



(Ex. 1 continued)

                             −2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

u1

u2

u3

u4
= 0.04

0.04
0.04
0.04                                                            (3)

Solving (3) for (u1, u2, u3, u4), one obtains the complete solution,  (u0, u1, u2, u3, u4, u5) = (0, −0.08, −0.12, 
−0.12, −0.08, 0).  This is plotted in the figure in next page (numerical solution in circles, analytic solution 
in solid curve).  As it turns out, in this case the numerical solution is exact (no error) at all xi.  This is 
possible because the analytic solution itself is only a 2nd order polynomial.

The matrix in (3) is an example of a tridiagonal matrix.  While one can always solve the system by Gauss 
elimination and other standard procedures, the fact that most of the off-diagonal elements are zero makes 
the solution particularly easy to obtain.  We should next demonstrate a useful procedure to solve a 
tridiagonal system.



                               Result for Ex. 1 (blue is numerical solution, green is analytic solution)



Trick: Solving a system of linear equations with a tridiagonal matrix.   To illustrate the procedure, we 
will use the matrix from previous example but a more general r.h.s. vector:

           −2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

u1

u2

u3

u4
= b1

b2

b3

b4
 .

We will work from top row to the bottom.  From the top equation,

                 −2 u1 + u2 = b1   ==>  u2 = b1+2 u1           (i)

Using the 2nd equation and (i), 

                 u3 = b2 − u1 + 2 u2 =  b2 + 2 b1 + 3 u1      (ii)

(The key is that we are writing all the ui as a function of u1.)  From the 3rd equation plus (i) and (ii), 

                 u4 = b3 − u2 + 2 u3 = b3 + 2 b2 + 3 b1 + 4 u1     (iii)

Finally, at the bottom, we combine u3 − 2 u4 = b4 with (ii) and (iii) to solve u1 as

                 u1 = (−4 b1 −3b2 −2 b3 − b4)/5     

Once u1 is solved, u2, u3, and u4 can be determined by back substituting u1 into (i), (ii), and (iii).
(Exercise: Try to use this procedure to solve Eq. (3) in Example 1.)



Example 2

            d 2u/dx2 = 1  ,   u(0) = 1, u(1) = 2

This is a slight modification of Ex. 1.  Let's use ∆x = 0.2 as before.  Following Ex. 1, here one simply 
substitutes u0 and u5 by their non-zero values, 1 and 2 respectively, at the boundaries, 

                              1 − 2 u1 +   u2                                = (∆x)2

                                       u1 − 2 u2 +    u3                     = (∆x)2                                                
                                                 u2 − 2 u3 +    u4           = (∆x)2                          
                                                            u3 − 2 u4 + 2    = (∆x)2     ,
which leads to

                    −2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

u1

u2

u3

u4
= −0.96

0.04
0.04
−1.96 .

The rest of the procedure is the same as Ex. 1.  



Example 3

          d 2u/dx2 = sin(x)       u(0) = 0 , u(π) = 0  

The analytic solution is u(x) = −sin(x).  For convenience of discussion, let's discretize the system with ∆x = 
0.2π. (Thus, N = 5 as before.) The procedure of discretization for this problem is similar to Ex. 1, except 
that the elements in the vector in the r.h.s. are replaced with non-constant values of sin(x1), sin(x2), etc.  We 
now have

          −2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

u1

u2

u3

u4
= 0.22sin 0.2

sin 0.4
sin 0.6
sin 0.8

 ,

which can be readily solved to obtain the final numerical solution.



Example 4 

            d 2u/dx2  = u  ,    u(0) = 0 ,  u(1) = 1 − exp(−2)

The analytic solution is  u(x) = exp(x−1) − exp(−x−1).  Using ∆x = 0.2, the discretized system is

               (u i−1 − 2 u i + u i+1)/(∆x)2 − ui = 0    for  i = 1 , 2, 3, 4                               (4) ,

along with the boundary conditions u0 = 0 and u5 = 1 − exp(−2).  Equation (4) can be re-organized into

                 P u i−1 + Q u i + R u i+1 = 0    for  i = 1 , 2, 3, 4 ,  where P = 1  , Q = −2 − (∆x)2  , R = 1.

For ∆x = 0.2, Q = −2.04.  This leads to 

              −2.04 1 0 0
1 −2.04 1 0
0 1 −2.04 1
0 0 1 −2.04

u1

u2

u3

u4
=  0

0
0

e−2−1
      .                                   (5)

          
A comparison of the numerical solution from (5) and the analytic solution is shown in the plot in next page.



                                                                        Result of Example 4



What if a boundary condition involves the first derivative of u?

Example 5

       d 2u/dx2  = 1 ,    u'(0) = 0.5 , u(1) = 2

The analytic solution is u(x) = x2/2 + x/2 + 1.   Choosing ∆x = 0.2 and following the same first step for 
Example 1, we obtain

                             u0 − 2 u1 +   u2                                = (∆x)2

                                       u1 − 2 u2 +    u3                     = (∆x)2                                                        
                                                 u2 − 2 u3 +    u4           = (∆x)2                          
                                                            u3 − 2 u4 + u5   = (∆x)2     ,

The second boundary condition is just u5 = 2.  To incorporate the first boundary condition, at x = 0 we 
approximate the first derivative by u'(xi) ≈  (ui+1 − ui)/∆x (the forward difference scheme), which leads to

                          u1 − u0 = 0.5 ∆x    ==>    u0 = u1 − 0.5 ∆x  .

Then, the discrete system becomes

              u1 − 0.5 ∆x − 2 u1 +    u2                               = (∆x)2

                                       u1 − 2 u2 +    u3                     = (∆x)2                                        (6)                      
                                                 u2 − 2 u3 +    u4           = (∆x)2                          
                                                            u3 − 2 u4 +  2   = (∆x)2     .

With a slight rearrangement and using (∆x)2 = 0.04, Eq. (6) becomes



(Ex. 5 continued)

               −1 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

u1

u2

u3

u4
=  0.14

0.04
0.04
−1.96 ,

which can be readily solved. 
(Exercise: Finish the solution of the above matrix equation and compare the numerical solution with 
analytic solution.)


