Example 1: Find Fourier Sine series representation of $f(x)$, defined as

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =1, \quad 0 \leq \mathrm{x} \leq 1 / 2 \\
& =0, \quad 1 / 2<\mathrm{x} \leq 1
\end{aligned}
$$

Step 1: Obtain the odd extension of $f(x)$, for the domain of $-1 \leq x \leq 1$, as

$$
\begin{aligned}
\mathrm{F}(\mathrm{x}) & =1 \quad, 0 \leq \mathrm{x} \leq 1 / 2 \\
& =0,1 / 2<\mathrm{x} \leq 1 \\
& =-1,-1 / 2 \leq \mathrm{x}<0 \\
& =0,-1 \leq \mathrm{x}<-1 / 2
\end{aligned}
$$

Step 2: Represent $\mathrm{F}(\mathrm{x})$ by the Fourier Sine series for $-1 \leq \mathrm{x} \leq 1$. (This is the case with $\mathrm{L}=1$ using Eqs. 3.3.1 and 3.3.2 in the textbook)

$$
\begin{equation*}
F(x) \approx \sum_{n=1}^{\infty} b_{n} \sin (n \pi x) \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
b_{n}=\int_{-1}^{1} F(x) \sin (n \pi x) d x . \tag{2}
\end{equation*}
$$

Alternativelt, considering both $\mathrm{F}(\mathrm{x})$ and $\sin (\mathrm{n} \pi \mathrm{x})$ are odd (thus, $\mathrm{F}(\mathrm{x}) \sin (\mathrm{n} \pi \mathrm{x})$ is even), (2) can be rewritten as

$$
\begin{equation*}
b_{n}=2 \int_{0}^{1} F(x) \sin (n \pi x) d x \tag{3}
\end{equation*}
$$

Eq. (3) is Eq. 3.3.6 in textbook. Also see Sec. 2.3.6 for related discussion.
Using (3), we have

$$
\begin{aligned}
b_{n} & =2\left(\int_{0}^{1 / 2} 1 \sin (n \pi x) d x+\int_{1 / 2}^{1} 0 \sin (n \pi x) d x\right) \\
& =2 \int_{0}^{1 / 2} \sin (n \pi x) d x \\
& =\frac{2}{n \pi}\left(1-\cos \left(\frac{n \pi}{2}\right)\right) .
\end{aligned}
$$

so

$$
\begin{aligned}
b_{n} & =\frac{2}{n \pi}, \text { if } \mathrm{n} \text { is odd } \\
& =\frac{4}{n \pi}, \text { if } \bmod (\mathrm{n}, 4)=2 \quad(\mathrm{n} \text { is even, but not divisible by } 4 ; \text { has remainder of } 2) \\
& =0, \quad \text { if } \bmod (\mathrm{n}, 4)=0 \quad(\mathrm{n} \text { is divisible by } 4)
\end{aligned}
$$

Note: $\bmod (p, q)$ is the remainder of p divided by q. For example, $\bmod (10,3)=1$, because $10=3 \times 3+1$. This is an extremely useful function especially for Matlab programming. See Matlab Example \#3.

The plot in the next page shows the result of Fourier Sine series expansion with the series truncated at $\mathrm{n}=5,25$, and 100. The relevant Matlab code can be found in Matlab Example \#3.

Fourier Sine series representation

Example 2: Find Fourier Cosine series representation of the same $f(x)$ in Example 1. This is left to you as an exercise. The results with the series truncated at $\mathrm{n}=5,25$, and 100 are shown below.

Fourier Cosine series representation

