Application of Fourier Transform to PDE (II)

- Fourier Transform (application to PDEs defined on an infinite domain)

The Fourier Transform pair are
F. T. : $\quad U(\omega)=(1 / 2 \pi) \int_{-\infty}^{\infty} u(x) \exp (-i \omega x) d x$, denoted as $U=\mathbf{F}[u]$

Inverse F.T. : $u(x)=\int_{-\infty}^{\infty} U(\omega) \exp (i \omega x) d \omega$, denoted as $u=\mathbf{F}^{-1}[U]$

Note that $u=\mathbf{F}^{-1}[\mathbf{F}[u]]$, i.e., the successive action of Fourier transform and inverse Fourier transform brings the function $u(x)$ back to itself.

Example 1. Solve the 1-D heat equation,

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

for $u(x, t)$ defined on $x \in(-\infty, \infty), t \in[0, \infty)$, with the boundary condition
(I) $u(x, 0)=P(x) \quad(P(x)$ is the initial distribution of temperature $)$.

Note that (I) is the only b.c. we need. (Also, u and all of its derivatives in x vanish as $\mathrm{x} \rightarrow \infty$.)

Step 1: Apply F. T. to the PDE, Eq. (1). Note that if $A(\mathrm{x})=B(\mathrm{x})$, then $\mathbf{F}[A]=\mathbf{F}[B]$. Thus, from Eq. (1),

$$
\begin{equation*}
\mathbf{F}\left[\frac{\partial u}{\partial t}\right]=\mathbf{F}\left[\frac{\partial^{2} u}{\partial x^{2}}\right] . \tag{2}
\end{equation*}
$$

The 1.h.s. of Eq. (2) is simply $\mathbf{F}\left[\frac{\partial u}{\partial t}\right]=\frac{\partial U}{\partial t}, U \equiv U(\omega, t)$. The r.h.s. of Eq. (2) can be rewritten as

$$
\begin{aligned}
\mathbf{F}\left[\frac{\partial^{2} u}{\partial x^{2}}\right] & =(1 / 2 \pi) \int_{-\infty}^{\infty} \frac{\partial^{2} u}{\partial x^{2}} \exp (-i \omega x) d x \\
& =(1 / 2 \pi) \int_{-\infty}^{\infty} \exp (-i \omega x) d\left(\frac{\partial u}{\partial x}\right) \\
& =(1 / 2 \pi) \llbracket\left[\exp (-i \omega x) \frac{\partial u}{\partial x}\right]_{-\infty}^{\infty}-\int_{-\infty}^{\infty} \frac{\partial u}{\partial x} d(\exp (-i \omega x)) \rrbracket \quad(1 \text { st term in [] vanishes }) \\
& =(i \omega / 2 \pi) \int_{-\infty}^{\infty} \exp (-i \omega x)\left(\frac{\partial u}{\partial x}\right) d x \\
& =(i \omega / 2 \pi) \int_{-\infty}^{\infty} \exp (-i \omega x) d u \\
& =(i \omega / 2 \pi) \llbracket[\exp (-i \omega x) u]_{-\infty}^{\infty}-\int_{-\infty}^{\infty} u d(\exp (-i \omega x)) \rrbracket \quad(1 \text { st term in [] vanishes }) \\
& =-\left(\omega^{2} / 2 \pi\right) \int_{-\infty}^{\infty} u \exp (-i \omega x) d x \\
& =-\omega^{2} U(\omega, t) .
\end{aligned}
$$

Thus, we obtain the equation for $U(\omega, \mathrm{t})$ as

$$
\begin{equation*}
\frac{\partial U(\omega, t)}{\partial t}=-\omega^{2} U(\omega, t) \tag{3}
\end{equation*}
$$

Equation (3) has a simple solution,

$$
\begin{equation*}
U(\omega, t)=U(\omega, 0) \exp \left(-\omega^{2} t\right) . \tag{4}
\end{equation*}
$$

[Exercise: Find the Fourier transform of the equation, $\partial \mathrm{u} / \partial \mathrm{t}=A \partial^{4} \mathrm{u} / \partial \mathrm{x}^{4}$, and discuss the qualitative behavior of the solution for positive and negative A.]

Step 2b: Complete the solution of $U(\omega, \mathrm{t})$ with $U(\omega, 0)$ determined from the initial state, $\mathrm{u}(\mathrm{x}, 0)$. Note that $U(\omega, 0)$ is the Fourier transform of the initial state in physical space, $\mathrm{u}(\mathrm{x}, 0)$,

$$
\begin{align*}
U(\omega, 0) & =(1 / 2 \pi) \int_{-\infty}^{\infty} u(x, 0) \exp (-i \omega x) d x \\
& =(1 / 2 \pi) \int_{-\infty}^{\infty} P(x) \exp (-i \omega x) d x . \tag{5}
\end{align*}
$$

Step 3: Inverse F. T. of $U(\omega, \mathrm{t})$ gives the complete solution, $\mathrm{u}(\mathrm{x}, \mathrm{t})$;

$$
\begin{equation*}
u(x, t)=\mathbf{F}^{-1}[U(\omega, t)]=\int_{-\infty}^{\infty} U(\omega, t) \exp (i \omega x) d \omega \tag{6}
\end{equation*}
$$

See relevant remarks below Eq. (12) in slides\# 14.

Example 1A. In Example 1, find the solution if the initial temperature distribution (in b.c. (I)) is given by

$$
\begin{align*}
\mathrm{P}(\mathrm{x}) & =1, \quad-1 \leq \mathrm{x} \leq 1 \tag{7}\\
& =0, \quad \text { otherwise. }
\end{align*}
$$

First, from Eq. (5) we have

$$
\begin{aligned}
U(\omega, 0) & =(1 / 2 \pi) \int_{-\infty}^{\infty} P(x) \exp (-i \omega x) d x \\
& =\sin (\omega) /(\omega \pi) .
\end{aligned}
$$

The, from Eq. (4) we obtain

$$
\begin{equation*}
U(\omega, t)=[\sin (\omega) /(\omega \pi)] \exp \left(-\omega^{2} t\right) . \tag{8}
\end{equation*}
$$

From Eq. (6), the complete solution is

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{\infty}(\sin (\omega) / \omega \pi) \exp \left(-\omega^{2} t\right) \exp (i \omega x) d \omega \tag{9}
\end{equation*}
$$

We may need numerical integration to evaluate $u(x, t)$ using Eq. (9), but in its form (unless further simplication is possible) Eq. (9) can be regarded as the final solution.
[Exercise: Evaluate Eq. (9) numerically to obtain $u(x, t)$ at selected t and plot them.]

