General remarks

1. General strategy for solving a complicated mathematical equation: Transform it to a set of simpler equations that we already know how to solve

$$
\mathrm{PDE} \Rightarrow \mathrm{ODE} \Rightarrow \text { Algebraic equation }
$$

Example 1: Solve the ODE, $\frac{d^{2} u}{d x^{2}}-3 \frac{d u}{d x}+2 u=0$

Assume that $u \propto \exp (\alpha x)$ (This is an insight that mathematicians gave us - let's take it) the ODE is transformed into an algebraic equation,

$$
\alpha^{2}-3 \alpha+2=0
$$

$\Rightarrow \alpha=1,2 \Rightarrow$ two solutions : $u=\exp (x), u=\exp (2 x)$
The general solution is $u(x)=A \exp (x)+B \exp (2 x)$
(A and B are constants that can be determined by boundary conditions)

2. What's in a solution?

In the preceding example, the solution, $u=A \exp (x)+B \exp (2 x)$, is useful because we can readily use it to evaluate \boldsymbol{u} for a given \boldsymbol{x}. After all, this is our purpose of solving the equation.

The solution, expressed in terms of $\exp (x)$, is considered satisfactory because the exponential function is well understood and easy to evaluate, e.g., by using the power series representation, $\exp (x)=1+x+x^{2} / 2!+x^{3} / 3!+x^{4} / 4!+\ldots$ We do not have to worry about this detail as our calculator or mathematical software always has a built-in routine for it.
[For example, $\exp (0.2)=1+0.2+0.04 / 2+0.008 / 6+0.0016 / 24+\ldots \rightarrow 1.221402 \ldots$]

Example 2. Speaking of exponential function ...

Note that $\exp (x)$ is itself the solution of the ODE, $\mathrm{d} u / \mathrm{d} x=u$ (This may serve as a definiton of the exponential function.). We should see how the power series expression of $\exp (x)$ is obtained from this ODE.

Step 1: A well-behaved* function $u(x)$ can be expressed in power series (where the coefficients $a_{0}, a_{1}, a_{2}, \ldots$, are yet unknown)

$$
\begin{equation*}
u(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots \tag{1}
\end{equation*}
$$

Step 2: Term-by-term differentiation of Eq. (1) yields

$$
\begin{equation*}
u^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\ldots \tag{2}
\end{equation*}
$$

Step 3: Plugging Eqs. (1) and (2) into the original ODE, $u^{\prime}=u$, we obtain

$$
\begin{equation*}
\left(a_{1}-a_{0}\right)+\left(2 a_{2}-a_{1}\right) x+\left(3 a_{3}-a_{2}\right) x^{2}+\left(4 a_{4}-a_{3}\right) x^{3}+\ldots=0 \tag{3}
\end{equation*}
$$

For Eq. (3) to hold for all x, we must have
(continued)
*See a typical textbook of calculus for detail.
(continued)

$$
\begin{gather*}
a_{1}-a_{0}=0, \tag{i}\\
2 a_{2}-a_{1}=0, \tag{ii}\\
3 a_{3}-a_{2}=0, \tag{iii}\\
4 a_{4}-a_{3}=0, \tag{iv}
\end{gather*}
$$

and so on.

From (i) $\Rightarrow a_{1}=a_{0}$
From (ii) $\Rightarrow a_{2}=a_{1} / 2=a_{0} / 2=a_{0} / 2$!
From (iii) $\Rightarrow a_{3}=a_{2} / 3=a_{0} /(3 \times 2)=a_{0} / 3$!
From (iv) $\Rightarrow a_{4}=a_{3} / 4=a_{0} /(4 \times 3 \times 2)=a_{0} / 4$!

$$
\ldots \quad \Rightarrow a_{\mathrm{N}}=a_{0} / \mathrm{N}!
$$

Step 4: Inserting the above a_{1}, a_{2}, \ldots, to Eq. (1), one obtains the solution to the ODE,

$$
u(x)=a_{0}\left(1+x+x^{2} / 2!+x^{3} / 3!+x^{4} / 4!+\ldots\right),
$$

which is exactly the exponential function.
(Here, a_{0} can be determined by the initial condition. For example, with $u(0)=1$ we have $a_{0}=1$.)

Observations:
In Example 2, a set of simple algebraic functions, x, x^{2}, x^{3}, \ldots, are used as the building blocks for the solution of the ODE, $u^{\prime}=u$. We call the solution the exponential function, $\exp (x)$.

The exponential function, in turn, is used in Example 1 as the building block for the solution of a more complicated ODE, $u^{\prime \prime}-3 u^{\prime}+2=0$.

In Example 2, the power series representation is useful because we know the basic properties of the algebraic functions (x, x^{2}, x^{3}, \ldots) very well. Specifically, we know their first derivatives as $\mathrm{d}\left(x^{\mathrm{N}}\right) / \mathrm{d} x=\mathrm{N} x^{\mathrm{N}-1}$. Using this knowledge and term-by-term differentiation, the original ODE is converted to a set of algebraic equations.

A useful method of solving an ODE/PDE of u is to express u in Fourier series. In this case, we use a set of sinusoidal functions (e.g., $\sin (x), \sin (2 x), \sin (3 x), \ldots$) as the building blocks for the solution of the equation. Just like x^{N} in the power series, term-by-term differentiation of $\sin (n x)$ is straightforward. We will return to this theme later.

Exercise: Use the method of power series expansion in Example 2 to solve the equation in Example 1. Your power series solution should turn out to be identical to $u=A \exp (x)+B \exp (2 x)$.

