
                         Example of an end-to-end solution to Laplace equation

Example 1: Solve Laplace equation,
∂2 u
∂ x2 

∂2 u
∂ y 2 = 0 , with the boundary conditions:

(I) u(x, 0) = 0   (II) u(x,1) = 0   (III) u(0,y) = F(y)   (IV) u(1,y) = 0 .

See illustration below.  This describes the equilibrium distribution of temperature in a slab of metal with the 
temperature at the top, bottom, and right sides fixed at u = 0.  At the left side, the temperature is fixed to a 
certain non-zero temperature distribution, F(y), as a function of y.  (This is similar to the problem discussed in 
Sec. 2.5.1, pp. 71-75 in textbook, but note that we will have a more clear explanation of the point between Eq. 
(2.5.24) and Eq. (2.5.25) in p. 74.)



Step 1:  Separation of variables, u(x,y) = G(x)H(y), leads to

           d2G/dx2 = −c G   ,   (iv)  G(1) = 0                                       (1)

           d2H/dy2 = c H   ,     (i)  H(0) = 0  ,  (ii) H(1) = 0  ,              (2) 

with c as a common constant for both equations.  The b.c.'s (iv), (i), and (ii) correspond to 
(IV), (I), and (II) for the original PDE.  The b.c. (III) is not readily separable and will be 
dealt with later.

Step 2: Solve eigenvalue problem in Eq.(2).

If c > 0, write c = k2.  The general solution is H(y) = A sinh(ky) + B cosh(ky). It can be 
readily shown that the b.c.'s (i) and (ii) lead to A = B = 0 or A = k = 0 ⇒ trivial solution.

If c < 0, write c = −k2.  The general solution is H(y) = A sin(ky) + B cos(ky). Boundary 
condition (i) leads to B = 0, while b.c. (ii) leads to sin(k) = 0,

     ⇒ kn = nπ ,n = 1, 2, 3,...     cn = −(kn )2 are the eigenvalues.

The corresponding eigenfunctions are 

           Hn(y) = sin(kn y) = sin(nπy).                                                      (3)



Step 2: Set c = cn = −(kn )2 to solve Eq. (1).  Since −c is positive, the solution must take the 
form of the combination of (sinh, cosh),

          Gn(x) = A sinh(kn x) + B cosh(kn x) 
                   = A sinh(nπx) + B cosh(nπx)                                             (4)     

To satisfy b.c. (iv), we have

         A sinh(nπ) + B cosh(nπ) = 0

    ⇒  B/A = − sinh(nπ)/cosh(nπ).

So, we can rewrite Eq. (4) as

       Gn(x) = A sinh(nπx) − A[sinh(nπ)/cosh(nπ)] cosh(nπx)   .            (5)

Multiply a constant, A−1 cosh(nπ), to Eq. (5) and it remains a solution to Eq. (1). This 
leads to

       Gn(x) = cosh(nπ)sinh(nπx) − sinh(nπ)cosh(nπx)   .                       (6)



          
Using the identity,

          sinh(B−A) = cosh(A)sinh(B) − sinh(A) cosh(B), 

Equation (6) can be rearranged into,

         Gn(x) = sinh(nπ(1−x)) .                                                                (7)

[This explains how the expression, sinh(L−x) is obtained in p. 74, between Eqs. (2.5.24) 
and (2.5.25), in the textbook.]

Step 3: Combine Eqs. (3) and (7) we have 

        un(x,y) = sinh(nπ(1−x))sin(nπy) .                                                  (8)

The most general form of the full solution is 

        u(x, y) = ∑
n=1

∞

an un x , y   .                                                             (9)



Step 4: We can now deal with the inseparable b.c. (III), u(0,y) = F(y).

From Eq. (9) we have 

        u(0, y) = ∑
n=1

∞

an un0, y = ∑
n=1

∞

ansinh nsin n y                       (10)

Therefore, from b.c. (III),

       F(y) = ∑
n=1

∞

ansinh nsin n y  .                                                   (11)

Multiply both sides of Eq. (11) by sin(my), integrate both sides from 0 to 1 and 
incorporate the orthogonality relationship for sin(ny), we obtain

      am =
2

sinh m
∫
0

1

F  ysin m y dy  .                                             (12)

Equations (9) and (12) form our complete solution.



Example 2: Solve the problem in Example 1 but with a specific b.c. :

                   (III) u(0,y) = F(y), where 
                          F(y) = y ,       0 ≤  y ≤  1/2 
                          F(y) = 1 - y ,  1/2 ≤  y ≤  1

(See detail in Slides #6B for a plot of F(y) and related discussions.)

In this case, 

            am =
2

sinh m
∫
0

1

F  y sin m y dy , and

             ∫
0

1

F  y sin m y dy =
2

m2


2 , if  m = 1, 5, 9, 13, ...

                                               =  
−2

m2


2 , if  m = 3, 7, 11, ...

                                               =    0 ,    if  m is even .                                             (13)

Using the results in Eq. (13) and the infinite series in Eq. (9), we have the complete 
solution, as plotted in next page.  (It uses 20 terms in the infinite series. Contour levels 
are 0.05, 0.1, 0.15, ..., 0.4, and 0.45.  Red = hot; Blue = cold.) 



 


