Nonhomogeneous PDE - Heat equation with a forcing term

Example 1 Solve the PDE + boundary conditions

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+Q(x, t) \tag{1}
\end{equation*}
$$

(I) $\mathrm{u}(0, \mathrm{t})=0$
(II) $\mathrm{u}(1, \mathrm{t})=0$
(III) $u(x, 0)=P(x)$

Strategy:
Step 1. Obtain the eigenfunctions in $x, G_{n}(x)$, that satisfy the PDE and boundary conditions (I) and (II)
Step 2. Expand $u(x, t), Q(x, t)$, and $P(x)$ in series of $G_{n}(x)$. This will convert the nonhomogeneous PDE to a set of simple nonhomogeneous ODEs.
Step 3. Solve the nonhomogeneous ODEs, use their solutions to reassemble the complete solution for the PDE

For the current example, our eigenfunctions are $G_{n}(x)=\sin (n \pi x)$, so we should try

$$
\begin{align*}
& \mathrm{u}(\mathrm{x}, \mathrm{t})=\sum_{n=1}^{\infty} u_{n}(t) \sin (n \pi x), \tag{2}\\
& \mathrm{Q}(\mathrm{x}, \mathrm{t})=\sum_{n=1}^{\infty} q_{n}(t) \sin (n \pi x) \quad \Rightarrow \quad q_{n}(t)=2 \int_{0}^{1} Q(x, t) \sin (n \pi x) d x, \tag{3}\\
& \mathrm{P}(\mathrm{x})=\mathrm{u}(\mathrm{x}, 0)=\sum_{n=1}^{\infty} u_{n}(0) \sin (n \pi x) \quad \Rightarrow \quad u_{n}(0)=2 \int_{0}^{1} P(x) \sin (n \pi x) d x, \tag{4}
\end{align*}
$$

From Eqs. (3) and (4), $\mathrm{q}_{\mathrm{n}}(\mathrm{t})$ and $\mathrm{u}_{\mathrm{n}}(0)$ have already been determined. Our task is to solve $\mathrm{u}_{\mathrm{n}}(\mathrm{t})$ and express it in $\mathrm{u}_{\mathrm{n}}(0)$ (the initial condition of $\mathrm{u}_{\mathrm{n}}(\mathrm{t})$) and $\mathrm{q}_{\mathrm{n}}(\mathrm{t})$ (the forcing that acts on $\mathrm{u}_{\mathrm{n}}(\mathrm{t})$).

Plugging Eq. (2) into the original PDE, we have

$$
\begin{aligned}
& \frac{\partial}{\partial t} \sum_{n=1}^{\infty} u_{n}(t) \sin (n \pi x)=\frac{\partial^{2}}{\partial x^{2}} \sum_{n=1}^{\infty} u_{n}(t) \sin (n \pi x)+\sum_{n=1}^{\infty} q_{n}(t) \sin (n \pi x) \\
=> & \sum_{n=1}^{\infty} \frac{d u_{n}(t)}{d t} \sin (n \pi x)=\sum_{n=1}^{\infty}-n^{2} \pi^{2} u_{n}(t) \sin (n \pi x)+\sum_{n=1}^{\infty} q_{n}(t) \sin (n \pi x) \\
=> & \sum_{n=1}^{\infty}\left(\frac{d u_{n}(t)}{d t}+n^{2} \pi^{2} u_{n}(t)-q_{n}(t)\right) \sin (n \pi x)=0 \quad \Rightarrow \quad \frac{d u_{n}(t)}{d t}+n^{2} \pi^{2} u_{n}(t)-q_{n}(t)=0,
\end{aligned}
$$

or,

$$
\begin{equation*}
\frac{d u_{n}(t)}{d t}=-n^{2} \pi^{2} u_{n}(t)+q_{n}(t), \mathrm{n}=1,2,3, \ldots \tag{5}
\end{equation*}
$$

Equation (5) has the standard solution,

$$
\begin{equation*}
u_{n}(t)=u_{n}(0) \mathrm{e}^{-n^{2} \pi^{2} t}+e^{-n^{2} \pi^{2} t} \int_{0}^{t} q_{n}\left(t^{\prime}\right) e^{n^{2} \pi^{2} t^{\prime}} d t^{\prime} \tag{6}
\end{equation*}
$$

Since $\mathrm{u}_{\mathrm{n}}(0)$ and $\mathrm{q}_{\mathrm{n}}(\mathrm{t})$ are known from Eqs. (3) and (4), we have the complete solution once the integral in Eq. (6) is evaluated to obtain $u_{n}(t) ; u(x, t)$ can be evaluated by Eq. (2) once $u_{n}(t)$ is known.

Example 2: In example 1, find the solution for the case with

$$
\mathrm{Q}(\mathrm{x}, \mathrm{t})=\sin (3 \pi \mathrm{x}) \mathrm{S}(\mathrm{t}),
$$

where

$$
\begin{aligned}
S(t) & =1, \text { if } 0 \leq t \leq T \\
& =0, \text { if } t>T,
\end{aligned}
$$

and

$$
\mathrm{P}(\mathrm{x})=5 \sin (2 \pi \mathrm{x})+2 \sin (3 \pi \mathrm{x})
$$

From Eqs. (3) and (4), we immediately obtain

$$
\begin{aligned}
& \mathrm{u}_{2}(0)=5, \mathrm{u}_{3}(0)=2 \text {, and } \mathrm{u}_{\mathrm{n}}(0)=0 \text { for all other } \mathrm{n} \\
& \mathrm{q}_{3}(\mathrm{t})=\mathrm{S}(\mathrm{t}) \text {, and } \mathrm{q}_{\mathrm{n}}(\mathrm{t})=0 \text { for all other } \mathrm{n} .
\end{aligned}
$$

Thus, the expansion in Eq. (2) is reduced to just two terms,

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{u}_{2}(\mathrm{t}) \sin (2 \pi \mathrm{x})+\mathrm{u}_{3}(\mathrm{t}) \sin (3 \pi \mathrm{x}) \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& u_{2}(t)=u_{2}(0) \mathrm{e}^{-2^{2} \pi^{2} t}=5 \mathrm{e}^{-4 \pi^{2} t} \tag{8}\\
& u_{3}(t)=u_{3}(0) \mathrm{e}^{-3^{2} \pi^{2} t}+e^{-3^{2} \pi^{2} t} \int_{0}^{t} q_{3}\left(t^{\prime}\right) e^{3^{2} \pi^{2} t^{\prime}} d t^{\prime} \tag{9}
\end{align*}
$$

Case 1: Solution for $\mathrm{t}>\mathrm{T}$

For t> T, Eq. (9) will become

$$
\begin{aligned}
u_{3}(t) & =u_{3}(0) \mathrm{e}^{-3^{2} \pi^{2} t}+e^{-3^{2} \pi^{2} t} \int_{0}^{T} e^{3^{2} \pi^{2} t^{\prime}} d t^{\prime} \\
& =2 \mathrm{e}^{-9 \pi^{2} t}+e^{-9 \pi^{2} t}\left(\frac{e^{9 \pi^{2} T}-1}{9 \pi^{2}}\right)
\end{aligned}
$$

and the complete solution is

$$
\begin{equation*}
u(x, t)=5 \mathrm{e}^{-4 \pi^{2} t} \sin (2 \pi x)+\left[2 \mathrm{e}^{-9 \pi^{2} t}+e^{-9 \pi^{2} t}\left(\frac{e^{9 \pi^{2} T}-1}{9 \pi^{2}}\right)\right] \sin (3 \pi x) \tag{10}
\end{equation*}
$$

Note \#1: In this case, the solution decays to zero as $t \rightarrow \infty$
Note \#2: In the absence of the forcing (setting $\mathrm{Q}(\mathrm{x}, \mathrm{t})$ to zero), the solution is reduced to the familiar solution for the homogeneous heat equation,

$$
u(x, t)=5 \mathrm{e}^{-4 \pi^{2} t} \sin (2 \pi x)+2 \mathrm{e}^{-9 \pi^{2} t} \sin (3 \pi x)
$$

Note \#3: If the initial state is $\mathrm{P}(\mathrm{x})=0$, the solution is contributed entirely by the forcing:

$$
\begin{equation*}
u(x, t)=e^{-9 \pi^{2} t}\left(\frac{e^{9 \pi^{2} T}-1}{9 \pi^{2}}\right) \sin (3 \pi x) \tag{11}
\end{equation*}
$$

Note \#4: For the case with a very small T (i.e., "impulsive forcing"; the forcing Q is turned on at $\mathrm{t}=0$ then turned off after a very short amount of time), $\exp (\alpha \mathrm{T}) \approx 1+\alpha \mathrm{T}$, so Eq. (11) can be approximated by

$$
u(x, t) \approx e^{-9 \pi^{2} t} T \sin (3 \pi x)
$$

In this case, at the time when the forcing is switched off, i.e., at $\mathrm{t}=\mathrm{T}$, the system reaches an amplitude T . Afterward, it dacays exponentially just like the solution for the unforced heat equation.

Case 2: Solution for $\mathbf{t}<\mathrm{T}$

This is the case when the forcing is kept on for a long time (compared to the time, t, of our interest). If it is kept on forever, the equation might admit a nontrivial steady state solution depending on the forcing. In general, for $\mathrm{t}<\mathrm{T}$, Eq. (9) becomes

$$
\begin{aligned}
u_{3}(t) & =u_{3}(0) \mathrm{e}^{-3^{2} \pi^{2} t}+e^{-3^{2} \pi^{2} t} \int_{0}^{t} e^{3^{2} \pi^{2} t^{\prime}} d t^{\prime} \\
& =2 \mathrm{e}^{-9 \pi^{2} t}+\left(\frac{1-e^{-9 \pi^{2} t}}{9 \pi^{2}}\right)^{\prime}
\end{aligned}
$$

and the complete solution is

$$
\begin{equation*}
u(x, t)=5 \mathrm{e}^{-4 \pi^{2} t} \sin (2 \pi x)+\left[2 \mathrm{e}^{-9 \pi^{2} t}+\left(\frac{1-e^{-9 \pi^{2} t}}{9 \pi^{2}}\right)\right] \sin (3 \pi x) \tag{12}
\end{equation*}
$$

Notably, in this case a nontrivial steady state exists: $u(x, t) \rightarrow \frac{1}{9 \pi^{2}} \sin (3 \pi x)$ as $t \rightarrow \infty$ (and $\mathrm{T} \rightarrow \infty$).

Exercise: In Example 2, what would be the behavior of the solution if the forcing is periodic in time. For example, if $S(t)$ is replaced by $\sin (t)$?

Exercise: Note that the steady state solution in the preceding page can be readily obtained by setting $\partial u / \partial t$ to zero in the original PDE. Work out the detail and show that the result agrees with our conclusion at the bottom of the preceding page.

