
Nonhomogeneous PDE - Heat equation with a forcing term

Example 1 Solve the PDE + boundary conditions

∂u
∂ t

=
∂

2 u

∂ x2 Q  x ,t   ,                                                           Eq. (1)

 (I)   u(0,t) = 0
(II)   u(1,t) = 0
(III) u(x,0) = P(x)

Strategy: 
Step 1. Obtain the eigenfunctions in x, Gn(x), that satisfy the PDE and boundary conditions (I) and (II)
Step 2. Expand u(x,t), Q(x,t), and P(x) in series of Gn(x). This will convert the nonhomogeneous 
            PDE to a set of simple nonhomogeneous ODEs.
Step 3. Solve the nonhomogeneous ODEs, use their solutions to reassemble the complete solution 
            for the PDE

For the current example, our eigenfunctions are Gn(x) = sin(nπx), so we should try

   u(x,t) = ∑
n=1

∞

unt sin n x  ,                                                                      Eq. (2)

   Q(x,t) = ∑
n=1

∞

qn t sin n x   =>  qn t =2∫
0

1

Q x , t sin n x dx ,             Eq. (3)

   P(x) = u(x,0) = ∑
n=1

∞

un 0sin n x   =>  un 0=2∫
0

1

P x sin n xdx ,    Eq. (4)



From Eqs. (3) and (4), qn(t) and un(0) have already been determined. Our task is to solve un(t) and express it in 
un(0) (the initial condition of un(t)) and qn(t) (the forcing that acts on un(t)).

Plugging Eq. (2) into the original PDE, we have

     ∂
∂ t∑n=1

∞

u nt sin n x = ∂
2

∂ x 2∑
n=1

∞

unt sin n x ∑
n=1

∞

qnt  sin n x  ,

=>   ∑
n=1

∞ d un t 

dt
sin n x =∑

n=1

∞

−n22unt sin n x ∑
n=1

∞

qnt  sin n x

=>   ∑
n=1

∞

 d unt dt
n22u nt −qnt  sin n x = 0    =>   

d un t 

dt
n22unt −qnt  = 0 ,

or,

        
d un t 

dt
=−n22unt qnt  ,  n = 1, 2, 3, ...                                                  Eq. (5)

Equation (5) has the standard solution,

        unt =un0e
−n2


2 t  e−n

2


2 t∫
0

t

qnt '  e
n2


2 t ' d t ' .                                        Eq. (6)

Since un(0) and qn(t) are known from Eqs. (3) and (4), we have the complete solution once the integral in Eq. (6) 
is evaluated to obtain un(t) ;  u(x,t) can be evaluated by Eq. (2) once un(t) is known.



Example 2:  In example 1, find the solution for the case with 

                                       Q(x,t) = sin(3πx) S(t), 
where
                                       S(t) = 1  ,  if  0 ≤  t ≤  T
                                              = 0  ,  if  t > T  ,
and
                                       P(x) = 5 sin(2πx) + 2 sin(3πx).

From Eqs. (3) and (4), we immediately obtain

           u2(0) = 5,  u3(0) = 2, and un(0) = 0 for all other n

           q3(t) = S(t) , and  qn(t) = 0 for all other n .

Thus, the expansion in Eq. (2) is reduced to just two terms,

     u(x,t) = u2(t) sin(2πx) + u3(t) sin(3πx) ,                                               Eq. (7)

where

    u2t =u20e
−222 t

=5e−42 t  ,                                                           Eq. (8)                  

     u3t =u30e
−32


2 t  e−32


2 t∫

0

t

q3t '  e
32


2 t ' d t ' .                              Eq. (9)



Case 1: Solution for t > T

For t > T, Eq. (9) will become

      u3t =u30e
−32


2 t  e−32


2 t∫

0

T

e32


2 t ' d t '

              =2 e−92 t
 e−92 t e

92T
−1

92  ,

and the complete solution is
    

     u  x ,t  = 5e−42 t sin 2 x   [ 2 e−92 t  e−92 t e
92T

−1

92  ] sin 3 x .      Eq. (10)

Note #1: In this case, the solution decays to zero as t → ∞

Note #2: In the absence of the forcing (setting Q(x,t) to zero), the solution is reduced to the 
              familiar solution for the homogeneous heat equation,

             u  x ,t  = 5e−42 tsin 2 x   2e−92 t sin3 x   .

Note #3: If the initial state is P(x) = 0, the solution is contributed entirely by the forcing:

             u  x ,t  = e−92 t e
92 T

−1

92  sin 3 x .                                                  Eq. (11)



Note #4: For the case with a very small T (i.e., "impulsive forcing"; the forcing Q is turned on at t = 0 then 
turned off after a very short amount of time), exp(αT) ≈  1 + αT, so Eq. (11) can be approximated by
            
             u  x ,t ≈ e−92 tT sin 3 x  .

In this case, at the time when the forcing is switched off, i.e., at t = T, the system reaches an amplitude T. 
Afterward, it dacays exponentially just like the solution for the unforced heat equation.

Case 2: Solution for t < T

This is the case when the forcing is kept on for a long time (compared to the time, t, of our interest). If it is kept 
on forever, the equation might admit a nontrivial steady state solution depending on the forcing.  In general, for 
t < T, Eq. (9) becomes

      u3t =u30e
−32


2 t  e−32


2 t∫

0

t

e32


2 t ' d t '

              =2 e−92 t
  1−e−92 t

92  ,

and the complete solution is
    

     u  x ,t  = 5e−42 t sin 2 x   [ 2 e−92 t   1−e−92 t

92  ] sin 3 x  .           Eq. (12)

Notably, in this case a nontrivial steady state exists: u x , t  
1

92 sin 3 x  as t → ∞ (and T → ∞). 



Exercise: In Example 2, what would be the behavior of the solution if the forcing is periodic in time. For 
example, if S(t) is replaced by sin(t) ?

Exercise: Note that the steady state solution in the preceding page can be readily obtained by setting 
u/t to zero in the original PDE.  Work out the detail and show that the result agrees with our 
conclusion at the bottom of the preceding page.


