Revisit "solution to heat equation" in Slides \#8

Recapitulation
Problem: For $u(x, t)$ defined on $x \in[0,1]$ and $t \in[0, \infty)$, solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$, with boundary conditions: (I) $u(0, t)=0$, (II) $u(1, t)=0$, (III) $u(x, 0)=4 \sin (3 \pi x)+7 \sin (8 \pi x)$

Solution:
Step 1: Separation of variable, $u(x, t)=\mathrm{G}(x) \mathrm{H}(t)$, leads to

$$
\begin{align*}
& \frac{1}{G} \frac{d^{2} G}{d x^{2}}=c \quad, \quad \mathrm{G}(0)=0, \mathrm{G}(1)=0 \tag{1}\\
& \frac{1}{H} \frac{d H}{d y}=c . \tag{2}
\end{align*}
$$

Step 2: Equation (1) is an eigenvalue problem with eigenvalues, $\mathrm{c}_{n}=-\left(\mathrm{k}_{n}\right)^{2}$, where $\mathrm{k}_{n}=$ $n \pi, n=1,2,3 \ldots$, and corresponding eigenfunctions $\mathrm{G}_{n}(x)=\sin \left(\mathrm{k}_{n} x\right)$. Using $\mathrm{c}=\mathrm{c}_{n}$ in Eq. (2) we obtains $\mathrm{H}_{n}(t)=\exp \left(\mathrm{c}_{n} t\right)=\exp \left(-\left(\mathrm{k}_{n}\right)^{2} t\right)$. Combining G and H we find

$$
u_{n}(x, t)=\mathrm{G}_{n}(x) \mathrm{H}_{n}(t)=\sin (n \pi x) \exp \left(-n^{2} \pi^{2} t\right),
$$

which satisfies the PDE and b.c.'s (I) and (II). We are left with b.c. (III) (the "initial condition) to deal with.

Step 3: Since each $u_{n}(x, t), \mathrm{n}=1,2,3, \ldots$, satisfies the PDE + b.c.'s (I) \& (II), the linear superposition of any combinations of them is also a solution. We therefore write the solution in its most general form,

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} a_{n} u_{n}(x, t) \tag{3}
\end{equation*}
$$

with yet undetermined coefficients, a_{n}.
Previous treatment (Slides \#8):
At $t=0$, Eq. (3) becomes

$$
\begin{equation*}
u(x, 0)=\sum_{n=1}^{\infty} a_{n} u_{n}(x, 0)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x) \tag{4}
\end{equation*}
$$

By comparing this expression with b.c. (III), we concluded that

$$
a_{3}=4, a_{8}=7, \text { and } a_{n}=0 \text { for all other } n .
$$

The final solution is $u(x, t)=4 \sin (3 \pi x) \exp \left(-9 \pi^{2} t\right)+7 \sin (8 \pi x) \exp \left(-64 \pi^{2} t\right)$.

Discussion:

In the last step (in blue), we got it easy because the initial state in b.c. (III) happens to be a simple linear superposition of two of the eigenfunctions. The "visual comparison" approach works as long as the expression in Eq. (4) is unique. (In other words, for a given $u(x, 0)$, there is a unique set of $\left\{a_{n}, \mathrm{n}=1,2,3 \ldots\right\}$ that satisfies the equation. This is actually true and is the reason that we got away with it.)

For a general initial state that does not resemble a superposition of a small (or even finite) number of the eigenfunctions, we need a systematic approach to solve the problem.

Formal derivation:

Consider a general form of the initial state in b.c. (III),

$$
\begin{equation*}
u(x, 0)=F(x) . \tag{III'}
\end{equation*}
$$

Plugging it into Eq. (4) we have

$$
\begin{equation*}
F(x)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x) \tag{5}
\end{equation*}
$$

Our goal is to obtain the unknown coefficients, a_{n}, from Eq. (5), for any given $F(x)$.

Step 1: Multiply an eigenfunction, $\sin (m \pi x)$ to both sides of Eq. (5)

$$
\begin{align*}
\sin (m \pi x) F(x) & =\sin (m \pi x) \sum_{n=1}^{\infty} a_{n} \sin (n \pi x) \\
& =\sum_{n=1}^{\infty} a_{n} \sin (m \pi x) \sin (n \pi x) \tag{6}
\end{align*}
$$

Step 2: Integrate both sides of the equation from 0 to 1 ,

$$
\begin{align*}
\int_{0}^{1} \sin (m \pi x) F(x) d x & =\int_{0}^{1}\left[\sum_{n=1}^{\infty} a_{n} \sin (m \pi x) \sin (n \pi x)\right] d x \\
& =\sum_{n=1}^{\infty} a_{n}\left[\int_{0}^{1} \sin (m \pi x) \sin (n \pi x) d x\right] \tag{7}
\end{align*}
$$

Step 3: Use the orthogonality relationship (see Slides \#11),

$$
\begin{equation*}
\int_{0}^{1} \sin (m \pi x) \sin (n \pi x) d x=0 \text {, if } m \neq n, \quad \frac{1}{2} \text {, if } m=n \tag{8}
\end{equation*}
$$

we found that all terms in the r.h.s. of Eq. (7) are zero except when $n=m$.

This leads to the final expression of a_{m},

$$
\begin{equation*}
a_{m}=2 \int_{0}^{1} \sin (m \pi x) F(x) d x \tag{9}
\end{equation*}
$$

Equation (9), combined with Eq. (3),

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} u_{n}(x, t)
$$

are our final solution to the whole problem.

Example 1: In the original problem in Slides $\# 8, F(x)=4 \sin (3 p x)+7 \sin (8 p x)$,

$$
\Rightarrow a_{m}=2 \int_{0}^{1} \sin (m \pi x)(4 \sin (3 \pi x)+7 \sin (8 \pi x)) d x
$$

Using the orthogonality relationship, Eq. (8), this immediately leads to the conclusion that $a_{3},=4, a_{8}=7$, and $a_{m}=0$ for all other m.

Example 2: In the previous problem, consider the following initial state,

$$
\begin{array}{ll}
F(x)=x & \text { for } 0 \leq x \leq 1 / 2 \\
F(x)=1-x & \text { for } 1 / 2 \leq x \leq 1
\end{array}
$$

(This is a triangular-shaped distribution that does not resemble a linear superposition of a small or finite number of sinusoidal functions. See diagram below.)

In this case, using Eq. (9), we have

$$
\begin{aligned}
& a_{m}=2\left[\int_{0}^{1 / 2} \sin (m \pi x) x d x+\int_{1 / 2}^{1} \sin (m \pi x)(1-x) d x\right], \\
& \Rightarrow a_{m}=\frac{4}{m^{2} \pi^{2}}, m=1,5,9,13, \ldots \\
& a_{m}=\frac{-4}{m^{2} \pi^{2}}, m=3,7,11,15, \ldots \\
& a_{m}=0 \quad, \text { when } m \text { is even } .
\end{aligned}
$$

See next page for a plot of the solution.

Initial state (black);
Solution at $t=0.01$ (gray), 0.03 (red), and 0.1 (green)
The solution is truncated at $n=10$ for Eq. (3)

