
                           Revisit "solution to heat equation" in Slides #8

Recapitulation
Problem: For u(x, t) defined on x ∈ [0, 1] and t ∈ [0 , ∞) , solve ∂u

∂ t
= ∂2 u

∂ x2 , with boundary 

conditions: (I) u(0, t) = 0 ,  (II) u(1, t) = 0  , (III)  u(x, 0) = 4sin(3πx) + 7sin(8πx)

Solution:
Step 1: Separation of variable, u(x, t) = G(x)H(t), leads to

                   1
G

d 2 G
d x2 = c  ,   G(0) = 0, G(1) = 0                                             (1)

                    1
H

d H
d y

= c  .                                                                             (2)

Step 2: Equation (1) is an eigenvalue problem with eigenvalues, cn = − (kn)2, where kn = 
nπ, n = 1, 2, 3..., and corresponding eigenfunctions Gn(x) = sin(kn x). Using c = cn in Eq. 
(2) we obtains Hn(t) = exp(cn t) = exp(− (kn)2 t).  Combining G and H we find

           un(x, t) = Gn(x) Hn(t) = sin(n π x) exp(−n2 π2 t) ,

which satisfies the PDE and b.c.'s (I) and (II).  We are left with b.c. (III) (the "initial 
condition) to deal with.           



Step 3:  Since each un(x, t), n = 1, 2, 3,..., satisfies the PDE + b.c.'s (I) & (II), the linear 
superposition of any combinations of them is also a solution. We therefore write the 
solution in its most general form,

                              u(x, t)  = ∑
n=1

∞

an un x , t   ,                                          (3)

with yet undetermined coefficients, an .

Previous treatment (Slides #8):

At t = 0, Eq. (3) becomes

          u  x ,0 =∑
n=1

∞

an un x , 0 =∑
n=1

∞

an sin n x   .                           (4)

By comparing this expression with b.c. (III), we concluded that 

               a3 = 4,  a8 = 7, and an = 0 for all other n .

The final solution is u(x, t) = 4 sin(3 π x) exp(− 9 π2 t)  + 7 sin(8 π x) exp(− 64 π2 t) .



Discussion:

In the last step (in blue), we got it easy because the initial state in b.c. (III) happens to be 
a simple linear superposition of two of the eigenfunctions.  The "visual comparison" 
approach works as long as the expression in Eq. (4) is unique. (In other words, for a given 
u(x,0), there is a unique set of {an , n = 1, 2, 3...} that satisfies the equation.  This is 
actually true and is the reason that we got away with it.)

For a general initial state that does not resemble a superposition of a small (or even finite) 
number of the eigenfunctions, we need a systematic approach to solve the problem.

Formal derivation:

Consider a general form of the initial state in b.c. (III),

                         u(x, 0) = F(x) .                               (III')  

Plugging it into Eq. (4) we have

                         F  x =∑
n=1

∞

ansin n x             (5)

Our goal is to obtain the unknown coefficients, an , from Eq. (5), for any given F(x).



Step 1:  Multiply an eigenfunction, sin(mπx) to both sides of Eq. (5)

                          sin m x F  x = sin m x∑
n=1

∞

an sin n x 

                                                     =∑
n=1

∞

an sin m xsin n x                     (6)

Step 2: Integrate both sides of the equation from 0 to 1,
                     

                         ∫
0

1

sin m xF  xdx =∫
0

1 [∑n=1

∞

an sin m xsin n x ]dx

                                                           =∑
n=1

∞

an[∫0
1

sin m xsin n xdx]    (7)

Step 3: Use the orthogonality relationship (see Slides #11),

              ∫
0

1

sin m xsin n xdx = 0 , if m≠n , 1
2

, if m=n  ,                   (8)

we found that all terms in the r.h.s. of Eq. (7) are zero except when n = m.  



This leads to the final expression of am ,

                 am = 2 ∫
0

1

sin m xF  xdx  .                                                        (9)

Equation (9), combined with Eq. (3),

                  u(x, t)  = ∑
n=1

∞

an un x , t  ,

are our final solution to the whole problem.

Example 1:  In the original problem in Slides #8, F(x) = 4 sin(3px) + 7 sin(8px),

              ⇒ am = 2 ∫
0

1

sin m x4 sin 3 x 7sin 8 xdx .

Using the orthogonality relationship, Eq. (8), this immediately leads to the conclusion 
that a3 ,= 4, a8 = 7, and am = 0 for all other m.



Example 2:  In the previous problem, consider the following initial state,

                    F(x) = x         for  0 ≤ x ≤ 1/2  , 
                    F(x) = 1−x     for  1/2 ≤ x ≤ 1  .

(This is a triangular-shaped distribution that does not resemble a linear superposition of a small or finite number 
of sinusoidal functions. See diagram below.)

In this case, using Eq. (9), we have

        am = 2 [∫0
1 /2

sin m x x dx  ∫
1 /2

1

sin m x1−x dx]  ,

        ⇒ am =
4

m22  , m = 1, 5, 9, 13, ...

             am =
−4

m22  , m = 3, 7, 11, 15, ...   

             am = 0        , when m is even .
            
See next page for a plot of the solution.



                          Initial state (black);  
                          Solution at t = 0.01 (gray), 0.03 (red), and 0.1 (green)

                              The solution is truncated at n = 10 for Eq. (3)


