Revisit "solution to heat equation" in Slides #8

Recapitulation
2
Problem: For u(x, f) defined on x (1[0, 1] and ¢ L1 [0, ) , solve g—L; = % , with boundary

conditions: (I) u(0, £)=0, () u(1,)=0 , (III) u(x, 0) = 4sin(371x) + 7sin(8TTx)

Solution:
Step 1: Separation of variable, u(x, r) = G(x)H(?), leads to

1 d°G _ _ _
Go%=c . G(0)=0,G(1)=0 (1)
1l dH _
Hdy ¢ - (2)
Step 2: Equation (1) is an eigenvalue problem with eigenvalues, ¢, = — (k,)*, where k, =

nt, n =1, 2, 3..., and corresponding eigenfunctions G,(x) = sin(k,x). Using ¢ = ¢, in Eq.
(2) we obtains H,(f) = exp(c.?) = exp(— (k,)* f). Combining G and H we find

ua(x, 1) = Gu(x) Hu(f) = sin(n Tt x) exp(—n°TC 1) ,

which satisfies the PDE and b.c.'s (I) and (I). We are left with b.c. (III) (the "initial
condition) to deal with.



Step 3: Since each u,(x, 1), n =1, 2, 3,..., satisfies the PDE + b.c.'s (I) & (II), the linear
superposition of any combinations of them is also a solution. We therefore write the
solution 1n its most general form,

w ) = Y a,u(x.1) | 3)

with yet undetermined coefficients, a,.
Previous treatment (Slides #8):

At t= 0, Eq. (3) becomes

u(x,O)ZZan un(x,O)ZZansin(nnx) . 4)
n=1 n=1
By comparing this expression with b.c. (III), we concluded that

as;=4, ag="7,and a, = 0 for all other n .

The final solution is u(x, £) = 4 sin(3 Ttx) exp(— 9 T #) + 7 sin(8 Tix) exp(— 64 1T 7).



Discussion:

In the last step (in blue), we got it easy because the initial state in b.c. (III) happens to be
a simple linear superposition of two of the eigenfunctions. The "visual comparison"
approach works as long as the expression in Eq. (4) is unique. (In other words, for a given
u(x,0), there is a unique set of {a,,n=1, 2, 3...} that satisfies the equation. This is
actually true and 1s the reason that we got away with it.)

For a general initial state that does not resemble a superposition of a small (or even finite)
number of the eigenfunctions, we need a systematic approach to solve the problem.

Formal derivation:

Consider a general form of the initial state in b.c. (III),
u(x, 0)=F(x) . (11T")

Plugging it into Eq. (4) we have

F(x)= i a,sin(nx) (5)

n=1

Our goal is to obtain the unknown coefficients, a,, from Eq. (5), for any given F(x).



Step 1: Multiply an eigenfunction, sin(mTtx) to both sides of Eq. (5)

sin(mmx)F(x)= sin(mnx)Z a,sin(ntx)

n=1
o0

a,sin(mx)sin(nx) (6)

n=1

Step 2: Integrate both sides of the equation from 0 to 1,

dx

0 0| n=1

fsin(mrrx)F(x)a’x f[z a, sin(mrx)sin(nTx)

00 1
= Zan[fsin(mnx)sin(nnx)dx (7)
n=1 0
Step 3: Use the orthogonality relationship (see Slides #11),
1 1
fsin(mnx)sin(nnx)deO, if m#n, E,ifmzn : (8)

0

we found that all terms in the r.h.s. of Eq. (7) are zero except when n = m.



This leads to the final expression of a,, ,

m

1

a =2fsin(mrrx)F(x)dx . (9)
0

Equation (9), combined with Eq. (3),

u(x, f) = D a,u,(x,t),
n=1

are our final solution to the whole problem.

Example 1: In the original problem in Slides #8, F(x) = 4 sin(3px) + 7 sin(8px),

1

O a,=2 fsin(mnx)(4sin(3nx)—|—7sin(8nx))dx .

0

Using the orthogonality relationship, Eq. (8), this immediately leads to the conclusion
that a; .= 4, ag = 7, and a,, = 0 for all other m.



Example 2: In the previous problem, consider the following initial state,

Fx)=x for 0sx<1/2 ,
Fx)=1-x for 12<x<1 .

(This 1s a triangular-shaped distribution that does not resemble a linear superposition of a small or finite number
of sinusoidal functions. See diagram below.)

In this case, using Eq. (9), we have

1/2 1

a, =2 fsin(mrrx)xdx—l—fsin(mrrx)(l—x)dx :
0 1/2

4
1 a,= 2 2 ,m=1,5,9,13,...

m Tt

=4
a, — D) ,m:3,7,11,15,..

m Tt
a, =0 , when m 1s even .

See next page for a plot of the solution.



Initial state (black);
Solution at # = 0.01 (gray), 0.03 (red), and 0.1 (green)

The solution is truncated at n = 10 for Eq. (3)



