## Some properties of heat (or "diffusion") equation, $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$

• Solution is "diffusive"; The sharper the temperature gradient is, the faster it is damped => Temperature profile becomes smoother as time increases

Example from Slides #6: Heat equation for u(x, t) with b.c.'s (I) u(0, t) = 0, (II) u(1, t) = 0, (III)  $u(x, 0) = 4\sin(3\pi x) + 7\sin(8\pi x)$ Solution:  $u(x, t) = 4 \sin(3\pi x) \exp(-9\pi^2 t) + 7 \sin(8\pi x) \exp(-64\pi^2 t)$ u(x,t) at t = 0 (black), 0.001 (red), and 0.005 (green)

We can understand the diffusive property of the heat equation by noting that the r. h. s. of the equation,  $\frac{\partial^2 u}{\partial x^2}$ , is the curvature (in x) of u for a given t.

Calculus: First derivative = slope Second derivative = curvature

Example:  $u(x) = \sin(x)$ . For  $0 < x < \pi$ , the profile of u is concave downward  $\Leftrightarrow$  negative curvature,  $u''(x) = -\sin(x) < 0$ . For  $\pi < x < 2\pi$  it's the opposite.



Heat equation,  $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ , in words: **The tendency of temperature**  $(\partial u/\partial t)$ 

is proportional to the local curvature of the temperature profile  $(\partial^2 u/\partial x^2)$ 

Temperature profile u(x, t) at a given t:

Concave downward (local maximum, hot spot; left diagram below)  $\Leftrightarrow \partial^2 u/\partial x^2 < 0$  (negative curvature)  $\Leftrightarrow \partial u/\partial t < 0 \Leftrightarrow$  cools down

Concave upward (local minimum, cold spot; right diagram)  $\Leftrightarrow \partial^2 u/\partial x^2 > 0$  (positive curvature)  $\Leftrightarrow \partial u/\partial t > 0 \Leftrightarrow \text{warms up}$ 





## Process governed by heat equation:

Cooling down of hot spots; Warming up of cold spots

- ⇒Always a reduction of the contrast in temperature (temperature gradient)
- $\Rightarrow$ Temperature profile u(x,t) becomes smoother as t increases



In terms of heat flux,  $\phi = -\frac{\partial u}{\partial x}$ : Heat flux diverges out of the region with a negative curvature of temperature profile (where there is a temperature maximum; hot region) and diverges into the region with a positive curvature (where there is a temperature minimum; cold region)

Divergence of heat flux  $\equiv \partial \phi / \partial x \equiv -\partial^2 u / \partial x^2$ (Recall that we define  $\phi > 0$  when the flow of heat energy is toward the positive *x* direction)

Heat flux diverges  $\Leftrightarrow \partial \phi / \partial x > 0 \Leftrightarrow \partial^2 u / \partial x^2 < 0 \Rightarrow \partial u / \partial t < 0 \Rightarrow$  temperature decreases

Heat flux converges  $\Leftrightarrow \partial \phi / \partial x < 0 \iff \partial^2 u / \partial x^2 > 0 \implies \partial u / \partial t > 0 \implies$  temperature increases



Revisit the solution in the example in p.1 (detail in Slides #6):

Initial condition:  $u(x, 0) = 4 \sin(3\pi x) + 7 \sin(8\pi x)$ 

Full solution:  $u(x, t) = 4 \sin(3\pi x) \exp(-9\pi^2 t) + 7 \sin(8\pi x) \exp(-64\pi^2 t)$ 

The smoother component,  $\sin(3\pi x)$ , is damped at a slower rate ( $\propto \exp(-9\pi^2 t)$ ) compared to the less smooth component,  $\sin(8\pi x)$ . Although the initial amplitude of the latter is higher (7 vs. 4), after a while latter is almost entirely damped out.

At a large time, the solution is approximately  $u(x, t) \approx 4 \sin(3\pi x) \exp(-9\pi^2 t)$  This is what we see in the green curve in p. 1 of this set of slides.

The behavior of the solution described above is general.

Any solution to the heat equation must become smoother with time. (Save a few pathetic examples when heat flux is continuously pumped into the system though the boundaries, or when there is a persistent internal heat source without proper heat sink.)