$$
\text { Some properties of heat (or "diffusion") equation, } \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

- Solution is "diffusive"; The sharper the temperature gradient is, the faster it is damped => Temperature profile becomes smoother as time increases

Example from Slides \#6: Heat equation for $u(x, t)$ with b.c.'s $(\mathrm{I}) u(0, t)=0$, (II) $u(1, t)=0$, (III) $u(x, 0)=4 \sin (3 \pi x)+7 \sin (8 \pi x)$

Solution: $u(x, t)=4 \sin (3 \pi x) \exp \left(-9 \pi^{2} t\right)+7 \sin (8 \pi x) \exp \left(-64 \pi^{2} t\right)$

$$
u(x, t) \text { at } t=0 \text { (black), } 0.001 \text { (red), and } 0.005 \text { (green) }
$$

We can understand the diffusive property of the heat equation by noting that the r. h. s. of the equation, $\partial^{2} u / \partial x^{2}$, is the curvature (in x) of u for a given t.

Calculus: First derivative $=$ slope Second derivative $=$ curvature
Example: $u(x)=\sin (x)$. For $0<x<\pi$, the profile of u is concave downward \Leftrightarrow negative curvature, $u^{\prime \prime}(x)=-\sin (x)<0$. For $\pi<x<2 \pi$ it's the opposite.

Heat equation, $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$, in words: The tendency of temperature $(\partial u / \partial t)$
is proportional to the local curvature of the temperature profile $\left(\partial^{2} u / \partial x^{2}\right)$

Temperature profile $u(x, t)$ at a given t :
Concave downward (local maximum, hot spot; left diagram below) $\Leftrightarrow \partial^{2} u / \partial x^{2}<0$ (negative curvature) $\Leftrightarrow \partial u / \partial t<0 \Leftrightarrow$ cools down

Concave upward (local minimum, cold spot; right diagram) $\Leftrightarrow \partial^{2} u / \partial x^{2}>0$ (positive curvature) $\Leftrightarrow \partial u / \partial t>0 \Leftrightarrow$ warms up

Concave downward
\Leftrightarrow local maximum (hot spot) negative curvature $\partial 2 u / \partial x^{2}<0$

$$
\Rightarrow \partial u / \partial t=\partial^{2} u / \partial x^{2}<0
$$

temperature goes down

concave upward \leftrightarrow local minimum (cold) positive curvature $\partial \mathcal{U} / \partial x^{2}>0 \Rightarrow \partial u / \partial t>0$

Process governed by heat equation:
Cooling down of hot spots; Warming up of cold spots
\Rightarrow Always a reduction of the contrast in temperature (temperature gradient)
\Rightarrow Temperature profile $u(x, t)$ becomes smoother as t increases

In terms of heat flux, $\phi \equiv-\partial u / \partial x$: Heat flux diverges out of the region with a negative curvature of temperature profile (where there is a temperature maximum; hot region) and diverges into the region with a positive curvature (where there is a temperature minimum; cold region)

Divergence of heat flux $\equiv \partial \phi / \partial x \equiv-\partial^{2} u / \partial x^{2}$
(Recall that we define $\phi>0$ when the flow of heat energy is toward the positive x direction)
Heat flux diverges $\Leftrightarrow \partial \phi / \partial x>0 \Leftrightarrow \partial^{2} u / \partial x^{2}<0 \Rightarrow \partial u / \partial t<0 \Rightarrow$ temperature decreases
Heat flux converges $\Leftrightarrow \partial \phi / \partial x<0 \Leftrightarrow \partial^{2} u / \partial x^{2}>0 \Rightarrow \partial u / \partial t>0 \Rightarrow$ temperature increases

Revisit the solution in the example in p. 1 (detail in Slides \#6):

Initial condition: $u(x, 0)=4 \sin (3 \pi x)+7 \sin (8 \pi x)$

Full solution: $\quad u(x, t)=4 \sin (3 \pi x) \exp \left(-9 \pi^{2} t\right)+7 \sin (8 \pi x) \exp \left(-64 \pi^{2} t\right)$
The smoother component, $\sin (3 \pi x)$, is damped at a slower rate $\left(\propto \exp \left(-9 \pi^{2} t\right)\right.$) compared to the less smooth component, $\sin (8 \pi x)$. Although the initial amplitude of the latter is higher (7 vs. 4), after a while latter is almost entirely damped out.

At a large time, the solution is approximately $u(x, t) \approx 4 \sin (3 \pi x) \exp \left(-9 \pi^{2} t\right)$ This is what we see in the green curve in p .1 of this set of slides.

The behavior of the solution described above is general.
Any solution to the heat equation must become smoother with time. (Save a few pathetic examples when heat flux is continuously pumped into the system though the boundaries, or when there is a persistent internal heat source without proper heat sink.)

