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Some properties of heat (or "diffusion") equation,

e Solution is "diffusive"; The sharper the temperature gradient is, the faster it is
damped => Temperature profile becomes smoother as time increases

Example from Slides #4: Heat equation for u(x, t) with b.c.'s (I) u(0, t) = 0,
(1) u(1, t) = 0, (II) u(x, 0) = 4sin(37x) + 7sin(8mx)
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Solution: u(x, t) = 4 sin(37x) exp(—97* t) +7 sin(87x) exp(—647° 1)
u(x,t) at t = 0 (black), 0.001 (red), and 0.005 (green)




We can understand the diffusive property of the heat equation by noting that the
r. h. s. of the equation, 0°u/0x?, is the curvature (in x) of u for a given t.

Calculus: First derivative = slope Second derivative = curvature
Example: u(x) = sin(x). For 0 < x < 11, the profile of u is concave downward
< negative curvature, u"(x) = -sin(x) < 0. For Tt < x < 2T1tit's the opposite.
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o’u .
, al;l = axlé , in words: The tendency of temperature (0u/dt)

is proportional to the local curvature of the temperature profile (0°u/0 x%)

Heat equation




Temperature profile u(x, t) at a given t:

Concave downward (local maximum, hot spot; left diagram below)
= 0°u/0x* < 0 (negative curvature) < 0u/0t < 0 = cools down

Concave upward (local minimum, cold spot; right diagram)
< 0°u/0x* > 0 (positive curvature) < du/dt > 0 < warms up
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Process governed by heat equation:

Cooling down of hot spots; Warming up of cold spots
[J Always a reduction of the contrast in temperature (temperature gradient)
[1 Temperature profile u(x,t) becomes smoother as t increases
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In terms of heat flux, ¢ = — du/0x : Heat flux diverges out of the region with a negative
curvature of temperature profile (where there is a temperature maximum; hot region) and
diverges into the region with a positive curvature (where there is a temperature minimum,;
cold region)

Divergence of heat flux = 00/0x = — 0°u/0x’

(Recall that we define ¢ > 0 when the flow of heat energy is toward the positive x direction)
Heat flux diverges = 00/0x > 0 < 0°u/0x” <0 [ du/0t <0 [ temperature decreases

Heat flux converges < 0¢/0x <0 « 0°u/dx*> 0 O du/0t > 0 [J temperature increases
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Revisit the solution in the example in p.1 (detail in Slides #4):
Initial condition: u(x, 0) =4 sin(3® x) +7 sin(87 x)
Full solution:  u(x, t) = 4 sin(3n x) exp(=97* t) +7 sin(87 x) exp(—647" t)

The smoother component, sin(37x), is damped at a slower rate ( [ exp(-97* ¢) )

compared to the less smooth component, sin(87x). Although the initial amplitude
of the latter is higher (7 vs. 4), after a while latter is almost entirely damped out.

At a large time, the solution is approximately u(x, t) = 4 sin(31 x) exp(-97* )
This is what we see in the green curve in p. 1 of this set of slides.

The behavior of the solution described above is general.

Any solution to the heat equation must become smoother with time. (Save a few pathetic
examples when heat flux is continuously pumped into the system though the boundaries,
or when there is a persistent internal heat source without proper heat sink.)



