
               Some properties of heat (or "diffusion") equation , 
∂u
∂ t

=
∂2 u
∂ x2  

• Solution is "diffusive"; The sharper the temperature gradient is, the faster it is
   damped  => Temperature profile becomes smoother as time increases

 

Example from Slides #4: Heat equation for u(x, t) with b.c.'s (I) u(0, t) = 0, 
(II) u(1, t) = 0 , (III) u(x, 0) = 4sin(3x) + 7sin(8x)

Solution:  u(x, t) = 4 sin(3x) exp( t) +7 sin(8x) exp( t) 

              u(x,t) at t = 0 (black), 0.001 (red), and 0.005 (green)



We can understand the diffusive property of the heat equation by noting that the
r. h. s. of the equation, ∂2u/∂x2, is the curvature (in x) of u for a given t.

Calculus:  First derivative = slope   Second derivative = curvature
Example: u(x) = sin(x).  For 0 < x < π, the profile of u is concave downward
                ⇔ negative curvature, u''(x) = −sin(x) < 0.  For π < x < 2π it's the opposite.



Heat equation,
∂u
∂ t

=
∂

2 u
∂ x2 , in words:  The tendency of temperature (∂u/∂ t) 

is proportional to the local curvature of the temperature profile (∂ 2u/∂x2)



Temperature profile u(x, t) at a given t: 

Concave downward (local maximum, hot spot; left diagram below) 
⇔ ∂2u/∂x2 < 0 (negative curvature) ⇔ ∂u/∂t < 0 ⇔ cools down

Concave upward (local minimum, cold spot; right diagram) 
⇔ ∂2u/∂x2 > 0 (positive curvature) ⇔ ∂u/∂t > 0 ⇔ warms up



               Process governed by heat equation:

               Cooling down of hot spots; Warming up of cold spots 
       ⇒ Always a reduction of the contrast in temperature (temperature gradient)
               ⇒ Temperature profile u(x,t) becomes smoother as t increases



In terms of heat flux,  ≡   ∂u/∂x :  Heat flux diverges out of the region with a negative 
curvature of temperature profile (where there is a temperature maximum; hot region) and 
diverges into the region with a positive curvature (where there is a temperature minimum; 
cold region) 

   Divergence of heat flux ≡  ∂/∂x ≡   ∂2u/∂x2  

     (Recall that we define φ  > 0 when the flow of heat energy is toward the positive x direction)

Heat flux diverges ⇔ ∂/∂x > 0  ⇔ ∂2u/∂x2 < 0 ⇒ ∂u/∂t < 0 ⇒ temperature decreases

Heat flux converges ⇔ ∂/∂x < 0  ⇔ ∂2u/∂x2 > 0 ⇒ ∂u/∂t > 0 ⇒ temperature increases



 

Revisit the solution in the example in p.1 (detail in Slides #4):

    Initial condition:   u(x, 0) = 4 sin(3 x) +7 sin(8 x)  
   
     Full solution:       u(x, t) = 4 sin(3 x) exp( t) +7 sin(8 x) exp( t) 

The smoother component, sin(3x), is damped at a slower rate ( ∝ exp( t) )
compared to the less smooth component, sin(8x).  Although the initial amplitude
of the latter is higher (7 vs. 4), after a while latter is almost entirely damped out.

At a large time, the solution is approximately u(x, t) ≈  4 sin(3 x) exp( t)
This is what we see in the green curve in p. 1 of this set of slides.

The behavior of the solution described above is general.

Any solution to the heat equation must become smoother with time.  (Save a few pathetic 
examples when heat flux is continuously pumped into the system though the boundaries, 
or when there is a persistent internal heat source without proper heat sink.)


