
A quick note on orthogonality relation (supplement of Slides #6)

In Eq. (14) in Slides #6, we have

          ∑
n=1

∞

an sin n x = F  x   ,                   (14) of Slides #6

where F(x) = 4sin(3πx) + 7sin(8πx).  How do we determine the coefficients, an, using the 
given information?  In this simple example, a quick observation suffices for us to 
conclude that

             a3 = 4,  a8 = 7, and an = 0 for all other n .

However, if the F(x) has a more complicated form that does not resemble sin(nπx), we 
will need a more systematic approach to obtain the an.  The standard way to do so is to 
invoke the "orthogonality" property of the eigenfunctions.  For {sin(nπx)}, we have

    Am,n  ≡ ∫
0

1

sin n x sin m x dx = 0    , if m ≠ n

                                                      =   1/2 , if m = n ≠ 0                              (1)
                                                      =    1   , if m = n = 0        
     (Exercise: Verify that this is true.)



How to proceed:

Step 1:  Multiply Eq. (14) in Slides #6 by sin(mπx) 

      sin m x ∑
n=1

∞

an sin n x  = sin m xF x                              (2)

Step 2: Integrate Eq. (2) over the whole domain, in our case from x = 0 to x = 1

       ∑
n=1

∞

an∫
0

1

sin m x sin n xdx=∫
0

1

sin m x F  xdx  ,

or, 

       ∑
n=1

∞

an Am ,n = ∫
0

1

sin m xF  xdx  ,                                          (3)

where the value of  Am,n for given {m, n} can be obtained from Eq. (1).

The fact that Am,n vanishes when m ≠ n (i.e., two distinctive eigenfunctions are 
"orthogonal" to each other - we will explain this later) is critical for our scheme to work.
This leads to our last step,



Step 3:

For any given m, by noting that Am,n vanishes when m ≠ n , the infinite sum in the left 
hand side of Eq. (3) is reduced to a single term

   ∑
n=1

∞

an Am , n = a1 Am , 1a2 Am , 2a3 Am ,3 ...  am Am , m  ...

                       =       0     +     0     +     0     + ... + am Am ,m +   0   + ...
                       =  am Am ,m   
                       =  am /2       (since Am ,m = 1/2,  from Eq. (1))                   (4)

Using (3) and (4), we obtain a useful expression for the coefficients am ,

     am = 2∫
0

1

sin m xF  xdx .                                                              (5)

We are done! This is all we need to evaluate the coefficients from the F(x) in the initial 
condition.
      



Example 1

Let's get back to the example in Slides #6, where F(x) = 4sin(3πx) + 7sin(8πx).
Using Eq. (5), we have

     am = 2∫
0

1

sin m xF  xdx

            =  2∫
0

1

sin m x4sin 3 x7sin 8 xdx

            =   2 ( 4 Am ,3 + 7 Am ,8 )

So,  we have  a3 = 4,  a8 = 7, and an = 0 for all other n.



Example 2

Let's try a more complicated initial condition for the Heat equation in Slides #6:

   (iii)  u(x, 0) = F(x)   , where       F(x) = x ,     0 ≤ x ≤ 1/2  , 
                                                              = 1−x , 1/2 ≤ x ≤ 1  

                                                                  (This is a triangular-shaped distribution. See diagram below.)

In this case, using Eq. (5), we have

        am = 2 [∫0
1 /2

sin m x x dx  ∫
1 /2

1

sin m x1−x dx]  ,

        ⇒ am = 4
m22  , m = 1, 5, 9, 13, ...

             am =
−4

m22  , m = 3, 7, 11, 15, ...   

             am = 0        , when m is even .



Plugging the am back to the solution of the Heat equation in Slides #6, we obtain the 
complete solution under the new initial state.  The following is a plot of the solution u(x,t) 
at selected values of t.            

                          Initial state (black);  
                          Solution at t = 0.01 (gray), 0.03 (red), and 0.1 (green)

                              The solution is truncated at n = 10 


