A quick note on orthogonality relation

In Eq. (14) in Slides \#4, we have

$$
\sum_{n=1}^{\infty} a_{n} \sin (n \pi x)=F(x)
$$

where $F(x)=4 \sin (3 \pi x)+7 \sin (8 \pi x)$. How do we determine the coefficients, a_{n}, using the given information? In this simple example, a quick observation suffices for us to conclude that

$$
a_{3}=4, a_{8}=7 \text {, and } a_{n}=0 \text { for all other } n .
$$

However, if the $F(x)$ has a more complicated form that does not resemble $\sin (n \pi x)$, we will need a more systematic approach to obtain the a_{n}. The standard way to do so is to invoke the "orthogonality" property of the eigenfunctions. For $\{\sin (n \pi x)\}$, we have

$$
\begin{align*}
A_{m, n} \equiv \int_{0}^{1} \sin (n \pi x) \sin (m \pi x) d x & =0, \text { if } m \neq n \\
& =1 / 2, \text { if } m=n \neq 0 \tag{1}\\
& =0, \text { if } m=n=0
\end{align*}
$$

(Exercise: Verify that this is true.)

How to proceed:
Step 1: Multiply Eq. (14) in Slides \#4 by $\sin (m \pi x)$

$$
\begin{equation*}
\sin (m \pi x) \sum_{n=1}^{\infty} a_{n} \sin (n \pi x)=\sin (m \pi x) F(x) \tag{2}
\end{equation*}
$$

Step 2: Integrate Eq. (2) over the whole domain, in our case from $x=0$ to $x=1$

$$
\sum_{n=1}^{\infty} a_{n}\left(\int_{0}^{1} \sin (m \pi x) \sin (n \pi x) d x\right)=\int_{0}^{1} \sin (m \pi x) F(x) d x
$$

or,

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} A_{m, n}=\int_{0}^{1} \sin (m \pi x) F(x) d x \tag{3}
\end{equation*}
$$

where the value of $A_{m, n}$ for given $\{m, n\}$ can be obtained from Eq. (1).
The fact that $A_{m, n}$ vanishes when $m \neq n$ (i.e., two distinctive eigenfunctions are "orthogonal" to each other - we will explain this later) is critical for our scheme to work.
This leads to our last step,

Step 3:

For any given m, by noting that $A_{m, n}$ vanishes when $m \neq n$, the infinite sum in the left hand side of Eq. (3) is reduced to a single term

$$
\begin{align*}
\sum_{n=1}^{\infty} a_{n} A_{m, n} & =a_{1} A_{m, 1}+a_{2} A_{m, 2}+a_{3} A_{m, 3}+\ldots+a_{m} A_{m, m}+\ldots \\
& =0+0+0+\ldots+a_{m} A_{m, m}+0+\ldots \\
& =a_{m} A_{m, m} \\
& =a_{m} / 2 \text { (since } A_{m, m}=1 / 2, \text { from Eq. (1)) } \tag{4}
\end{align*}
$$

Using (3) and (4), we obtain a useful expression for the coefficients a_{m},

$$
\begin{equation*}
a_{m}=2 \int_{0}^{1} \sin (m \pi x) F(x) d x, \text { for a non-zero } m \tag{5}
\end{equation*}
$$

We are done! This is all we need to evaluate the coefficients from the $F(x)$ in the initial condition.

Example 1

Let's get back to the example in Slides \#4, where $F(x)=4 \sin (3 \pi x)+7 \sin (8 \pi x)$. Using Eq. (5), we have

$$
\begin{aligned}
a_{m} & =2 \int_{0}^{1} \sin (m \pi x) F(x) d x \\
& =2 \int_{0}^{1} \sin (m \pi x)(4 \sin (3 \pi x)+7 \sin (8 \pi x)) d x \\
& =2\left(4 A_{m, 3}+7 A_{m, 8}\right)
\end{aligned}
$$

So, we have $a_{3}=4, a_{8}=7$, and $a_{n}=0$ for all other n.

Example 2

Let's try a more complicated initial condition for the Heat equation in Slides \#4:
(iii) $u(x, 0)=F(x)$, where $F(x)=x, 0 \leq x \leq 1 / 2$

$$
=1-x, 1 / 2 \leq x \leq 1
$$

(This is a triangular-shaped distribution. See diagram below.)

In this case, using Eq. (5), we have

$$
\begin{aligned}
a_{m} & =2\left[\int_{0}^{1 / 2} \sin (m \pi x) x d x+\int_{1 / 2}^{1} \sin (m \pi x)(1-x) d x\right], \\
\Rightarrow & a_{m}
\end{aligned}=\frac{4}{m^{2} \pi^{2}}, m=1,5,9,13, \ldots, ~(, m=3,7,11,15, \ldots .
$$

Plugging the a_{m} back to the solution of the Heat equation in Slides \#6, we obtain the complete solution under the new initial state. The following is a plot of the solution $u(x, t)$ at selected values of t.

Initial state (black);
Solution at $t=0.01$ (gray), 0.03 (red), and 0.1 (green)
The solution is truncated at $n=10$

