Summary of Chapter 5

(When do we have orthogonal eigenfunctions for our boundary value problem?)

Key: A Sturm-Lioville problem has orthogonal eigenfunctions

$$
\begin{align*}
& \text { Sturm-Liouville (eigenvalue) problem: } \\
& \frac{d}{d x}\left[P(x) \frac{d u}{d x}\right]+Q(x) u-\lambda R(x) u=0 \text {, } \tag{1}\\
& \text { for } u(x) \text { defined on } x \in[a, b] \text {, plus homogeneous b.c.'s } \\
& \begin{array}{l}
\mathrm{A} u(a)+\mathrm{B} u^{\prime}(a)=0 \quad\left(\mathrm{u}^{\prime} \equiv d u / d x\right) \\
\mathrm{C} u(b)+\mathrm{D} u^{\prime}(b)=0
\end{array} \tag{I}
\end{align*}
$$

Remarks:
(1) The forms of the ODE and b.c.'s above are general enough that many physical problems can be converted to a standard Sturm-Liouville problem => Orthogonality of eigenfunctions
(2) It is crucial that the b.c.'s are homogeneous. If they are not, there may not be orthogonal eigenfunctions for the system.

Proof of orthogonality...

Step 1: Define the operator L as

$$
\boldsymbol{L}\{u\} \equiv \frac{d}{d x}\left[P(x) \frac{d u}{d x}\right]+Q(x) u
$$

such that the original Eq. (1) in the Sturm-Liouville system can be written as

$$
\begin{equation*}
L\{u\}=\lambda R(x) u \tag{2}
\end{equation*}
$$

Let u and v be two solutions (need not be eigenfunctions at this point) to the Sturm-Liouville problem, then

$$
\begin{align*}
\int_{a}^{b} v \boldsymbol{L}\{u\}-u \boldsymbol{L}\{v\} d x & =\int_{a}^{b} v\left\{\frac{d}{d x}\left[P \frac{d u}{d x}\right]+Q u\right\}-u\left\{\frac{d}{d x}\left[P \frac{d v}{d x}\right]+Q v\right\} d x \\
& =\int_{a}^{b} v \frac{d}{d x}\left[P \frac{d u}{d x}\right]-u \frac{d}{d x}\left[P \frac{d v}{d x}\right] d x \\
& =\int_{a}^{b} \frac{d}{d x}\left[P\left(v \frac{d u}{d x}-u \frac{d v}{d x}\right)\right] d x \\
& =\left[P\left(v \frac{d u}{d x}-u \frac{d v}{d x}\right)\right]_{a}^{b} \\
& =\mathrm{P}(b)\left[v(b) u^{\prime}(b)-u(b) v^{\prime}(b)\right]-\mathrm{P}(a)\left[v(a) u^{\prime}(a)-u(a) v^{\prime}(a)\right] \\
& =0 \tag{3}
\end{align*}
$$

See next page for an explanation why the green-colored expression is identically zero.
(Addendum to the derivation in previous page)
Since u and v are two solutions to the Sturm-Liouville system, they both satisfy the b.c.'s (I) and (II),
$\mathrm{A} u(a)+\mathrm{B} u^{\prime}(a)=0$
$\mathrm{A} v(a)+\mathrm{B} v^{\prime}(a)=0$
(I-v)
$\mathrm{C} u(b)+\mathrm{D} u^{\prime}(b)=0$.
$\mathrm{C} v(b)+\mathrm{D} v^{\prime}(b)=0$.

From (I-u) and (I-v), we have

$$
u(a)=(-\mathrm{B} / \mathrm{A}) u^{\prime}(a), \text { and } v^{\prime}(a)=(-\mathrm{A} / \mathrm{B}) v(a) \Rightarrow v(a) u^{\prime}(a)-u(a) v^{\prime}(a)=0
$$

similarly, from (II-u) and (II-v) we can establish that $v(b) u^{\prime}(b)-u(b) v^{\prime}(b)=0$.
Step 2: Now, consider that u and v are two eigenfunctions, $u=\phi_{\mathrm{m}}, v=\phi_{\mathrm{n}}$, of the Sturm-Liouville problem corresponding to eigenvalues λ_{m} and λ_{n}. Then,

$$
\boldsymbol{L}\left\{\phi_{\mathrm{m}}\right\}=\lambda_{\mathrm{m}} R(x) \phi_{\mathrm{m}} \quad, \quad \boldsymbol{L}\left\{\phi_{\mathrm{n}}\right\}=\lambda_{\mathrm{n}} R(x) \phi_{\mathrm{n}} .
$$

Using Eq. (3), we have

$$
0=\int_{a}^{b} \phi_{n} \boldsymbol{L}\left\{\phi_{m}\right\}-\phi_{m} \boldsymbol{L}\left\{\phi_{n}\right\} d x=\int_{a}^{b}\left(\lambda_{m}-\lambda_{n}\right) \phi_{m} \phi_{n} R(x) d x .
$$

Therefore, as long as $\lambda_{m} \neq \lambda_{n}$, we have the orthogonality relation

$$
\int_{a}^{b} \phi_{m} \phi_{n} R(x) d x=0
$$

Remarks:

In addition to orthogonality of eigenfunctions, it can be shown that

- The eigenvalues of the Sturm-Liouville system are discrete and real, and they have a lower bound (but no upper bound); The eigenvalues can be ordered as $\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots$, with λ_{1} the smallest eigenvalue
- There is a one-to-one correspondence between an eigenvalue and an eigenfunction
- The eigenfunctions form a complete basis for piece-wise continuous functions defined on [a, b], meaning that any function $f(x)$ that is piece-wise continuous can be represented by the eigenfunction expansion,

$$
f(x) \approx \sum_{n} a_{n} \phi_{n} .
$$

See p. 163 in textbook for further detail.

