
                                                    Summary of Chapter 5 
        (When do we have orthogonal eigenfunctions for our boundary value problem?)

Key: A Sturm-Lioville problem has orthogonal eigenfunctions 

Remarks:

 (1) The forms of the ODE and b.c.'s above are general enough that many physical problems can be 
      converted to a standard Sturm-Liouville problem => Orthogonality of eigenfunctions 

 (2) It is crucial that the b.c.'s are homogeneous. If they are not, there may not be orthogonal 
      eigenfunctions for the system.

       Sturm-Liouville (eigenvalue) problem:

         
d
dx [Px 

du
d x ] Q x u− R x u=0 ,           (1)

for u(x) defined on x [a, b], plus homogeneous b.c.'s   

            A u(a) + B u'(a) = 0    (u'  du/dx)       (I)
            C u(b) + D u'(b) = 0 .                           (II)



Proof of orthogonality...

Step 1: Define the operator L as

            L{u}  
d
dx [Px 

du
d x ] Q x u ,

such that the original Eq. (1) in the Sturm-Liouville system can be written as

             L{u} = R(x) u                                                                                                       (2)

Let u and v be two solutions (need not be eigenfunctions at this point) to the Sturm-Liouville  problem, then
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                                             =   P(b)[v(b)u'(b)  u(b)v'(b)]   P(a)[v(a)u'(a)  u(a)v'(a)]
                                             =   0                                                                                           (3)

            See next page for an explanation why the green-colored expression is identically zero.



(Addendum to the derivation in previous page)

Since u and v are two solutions to the Sturm-Liouville system, they both satisfy 
the b.c.'s (I) and (II),

         A u(a) + B u'(a) = 0        (I-u)                          A v(a) + B v'(a) = 0        (I-v)
         C u(b) + D u'(b) = 0 .      (II-u)                         C v(b) + D v'(b) = 0 .      (II-v)

From (I-u) and (I-v), we have

             u(a) = (B/A) u'(a) ,  and   v'(a) = (A/B) v(a)     v(a)u'(a)  u(a)v'(a) = 0

similarly, from (II-u) and (II-v) we can establish that v(b)u'(b)  u(b)v'(b) = 0 .

Step 2: Now, consider that u and v are two eigenfunctions, u = m, v = n, of the Sturm-Liouville problem 
corresponding to eigenvalues m and n.  Then,

             L{m} = mR(x) m   ,     L{n} = nR(x) n  .

Using Eq. (3), we have

             0=∫
a

b

n L {m}−mL {n}dx =∫
a

b

m−nmn Rx dx .

Therefore, as long as  m  n , we have the orthogonality relation 

              ∫
a

b

mn R xdx = 0 .    



Remarks:

In addition to orthogonality of eigenfunctions, it can be shown that 

 The eigenvalues of the Sturm-Liouville system are discrete and real, and they have a lower bound 
   (but no upper bound);  The eigenvalues can be ordered as 1 < 2 < 3  ... , with 1 the 
   smallest eigenvalue

 There is a one-to-one correspondence between an eigenvalue and an eigenfunction

  The eigenfunctions form a complete basis for piece-wise continuous functions defined 
    on [a, b], meaning that any function f(x) that is piece-wise continuous can be 
    represented by the eigenfunction expansion,

                   f x ≈∑
n

ann .

See p. 163 in textbook for further detail.

                
  

                       


