MAE 502 Partial Differential Equations in Engineering

Spring 2009 Mon/Wed 5:30-6:45 PM SCOB 201

- Instructor: Huei-Ping Huang (hp.huang@asu.edu), ISTB2 Room 219A
- Office hours: Tuesday 3:00-4:30 PM, Wednesday after class (nominally 6:45-8:00 PM), or by appointment
- Course website http://www.public.asu.edu/~hhuang38/MAE502.html

Course Outline

I. Analytic treatment for linear PDE

1. Overview of PDE

Commonly encountered PDEs in engineering and science

- Types of PDEs, the physical phenomena they represent, and relevant boundary conditions
- 2. Some analytical solutions of PDEs; Separation of variables, Method of characteristics, etc.
- 3. Review of boundary value problems with ODE;

Sturm-Liouville Problem and orthogonal functions; Representation using orthogonal basis 4. Fourier Series

- Solution of ODE and PDE by Fourier Series expansion
- 5. Fourier transform and Laplace transform
 - Solution of PDE by Fourier/Laplace transform
- 6. Series expansion and integral transform methods for PDEs with non-Cartesian geometry

II. Numerical methods for PDE

7. Numerical solution of PDE

Overview; Numerical error and stability condition Evolution equations (Heat equation, advection equation, etc.) Elliptic equations with closed boundary (Laplace equation, etc.) Spectral method

III. Additional topics (while time allows)

8. Brief introduction to nonlinear PDE

Examples of nonlinear PDEs for real world phenomena; Behavior of their solutions Conservation laws; Strategies for numerical solutions

9. Miscellanies

Green's function and applications to solutions of ODE and PDE Asymptotic solutions

- Primary textbook: "*Applied Partial Differential Equations*", 4th Edition, by R. Haberman. Prentice Hall. **Required**
- Additional material for numerical methods will be drawn from "*Applied Partial Differential Equations*", by P. DuChateau and D. Zachmann. Dover Publications. **Recommended**
- Lecture notes by instructor

Grade: 50% Homework/projects 20% Midterm (1 exam) 30% Final