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Dynami Business Share Alloation in a Supply Chain withCompeting SuppliersHongmin Li1, Hao Zhang2, and Charles H. Fine3
This paper studies a repeated game between a manufaturer and two ompeting suppliers withimperfet monitoring. We present a prinipal-agent model for managing long-term supplier relation-ships using a unique form of measurement and inentive sheme. We measure a supplier's overallperformane with a rating equivalent to its ontinuation utility (the expeted total disounted util-ity of its future payo�s), and inentivize supplier e�ort with larger alloations of future business.We obtain the vetor of the two suppliers' ratings as the state of a Markov deision proess, andsolve an in�nite horizon ontrating problem in whih the manufaturer alloates business volumebetween the two suppliers and updates their ratings dynamially based on their urrent ratings andthe urrent performane outome.Our ontributions are both theoretial and managerial: We propose a repeated prinipal-agentmodel with a novel inentive sheme to takle a ommon, but hallenging inentive problem in amulti-period supply hain setting. Assuming binary e�ort hoies and performane outomes by thesuppliers, we haraterize the struture of the optimal ontrat through a novel �xed-point analysis.Our results provide a theoretial foundation for the emergene of �business-as-usual� (low e�ort)trapping states and tournament ompetition (high e�ort) reurrent states as the long-run inentivedrivers for motivating ritial suppliers.Keywords: Asymmetri Information, Performane-Based Contrat, Volume Inentive, RepeatedMoral Hazard, Prinipal-Agent Model, Supply Chain Contrating
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1 IntrodutionWe model and analyze the use of business share (or volume) to motivate performane improvementsfrom ritial suppliers. Throughout the last few deades, many ompanies have redued the numberof suppliers they use, and foused on improving the quality of the relationships they have with thoseremaining (Giunipero, 1990). In onsumer eletronis, information tehnology, and other industries,dual-souring (or multi-souring from a few suppliers) has beome a ommon pratie. For example,Apple In. often soures ritial parts from two suppliers: Solid State Drives for MaBook Air fromToshiba and Samsung (O'Grady, 2011); DRAM for iPhone 4S from Samsung and Elpida (Shimpiand Klug, 2011); and assembly manufaturing for iPhone 4S from Foxonn and Pegatron (Whitney,2012). Supply base redution allows a �rm to fous on long-term ties with suppliers but maypotentially redue the power of the buying �rm. How an the manufaturer prevent a supplierfrom getting �too omfortable� to improve? Krause et al. (2000) surveyed 527 purhasing exeutivesand found that supplier assessment and supplier inentives are the two most important enablers ofsupplier development e�orts. The inentives identi�ed in their researh are (1) promise of higherorder volume for urrent business, and (2) promise of preferred status for future business. Thatis, performane-based business share alloation is used to drive ompetition among suppliers andkeep the suppliers on their toes. In a Japanese vertial, Keiretsu-style supply hain, a lead �rmoften multi-soures to a few suppliers and uses business share inentives to drive supplier e�ienyimprovements (Tezuka, 1997). A supplier that fails to meet the ompetitive standard over someextended period of time will lose business share and its preferred status.In this paper, we fous on the inentive issues arised when a manufaturer annot diretlyobserve or verify its suppliers' e�ort deisions that a�et the delivered value to the manufaturer.For example, in eah ontrat period, a supplier may boost its quality-ontrol e�ort to redue thedefet rate, optimize the equipment maintenane shedule to derease mahine down time, or assignthe most e�etive aount manager to manage the prodution and delivery for this manufaturer.The level of these e�orts is not easily veri�able by the manufaturer, but an a�et the supplier'sperformane and thus the delivered value to the manufaturer greatly. We explore via a prinipal-agent model how a manufaturer an indue the desired supplier behavior through business sharealloation based on supplier performane. We examine this in the ontext of a ost-plus ontratin whih the transfer prie between eah supplier and the manufaturer is the unit ost of theomponent plus a margin.We make both tehnial and managerial ontributions to the supply hain management and1



ontrat design literature. On the tehnial side, we propose a novel prinipal-agent model forperformane-based supplier inentive shemes in a dual-soured supply hain. Our model is an(in�nitely) repeated moral hazard model with imperfet monitoring, whih is known for its theoret-ial hallenge: �Generally speaking, the design of an optimal ompensation sheme in the dynamiprinipal-agent ontext is onsidered an intratable problem. In fat, even in the simpler repeatedprinipal-agent setting, the analysis of optimal shemes is formidable and involves omplex andsubtle eonomi reasoning� (Plambek and Zenios, 2000). We are among the very few to taklea two-agent repeated moral hazard model. We haraterize the optimal ontrat through a novel�xed-point analysis. Extending the dynami programming approah of Spear and Srivastava (1987)for a single-agent model, we formulate the two-agent problem in a reursive fashion and onstrutthe �xed point (funtion) diretly, whih allows us to obtain interesting strutural results.Managerially, our study provides theoretial explanations to popular business praties. In thestudy by Giunipero (1990), 46% of the �rms studied use formal quantitative rating systems to mon-itor and motivate suppliers. Empirial researh has doumented many instanes of rating/soringsystems for suppliers. For example, Nike regularly rates its subontrators for environmental andlabor performane (Sabel et al., 2000). High sorers often garner more lurative orders and low sor-ers risk losing ontrats. Intel traks a supplier's ost, availability, servie, support responsivenessand quality, and rewards suppliers who have the best ratings with more business (Datta, 2004). De-spite the apparent prevalene in pratie, there are no published theoretial results addressing thesewidely used supplier management praties. Our results �ll this gap and explain the relationshipbetween a quantitative supplier assessment system and the manufaturer's deisions on suppliers'business shares.A entral managerial �nding in this paper relates to the longitudinal behaviors of the supplyhain under the optimal ontrat. In our model, the state of the system is given by the vetorof the two suppliers' ratings (quanti�ed as their sustainable ontinuation values, or values-to-go).Under the optimal ontrat, three types of states emerge. (i) A set of �trapping� states in whihthe suppliers hoose low e�ort forever. Eah trapping state represents a �business-as-usual� senariowith a state-dependent but �xed volume alloation for all future periods, whih is reahed after bothor at least one supplier over-perform for some extended time. Sine eah supplier prefers a trappingstate that yields a higher volume for itself, this reates inentive for suppliers to ontinually exerthigh e�ort in order to in�uene the diretion of the state transition. (ii) A �reurrent� lass of states,in whih suppliers engage in a tournament-like ompetition and both hoose high e�ort forever inan e�ort to win a preferential status for future business. This represents an ideal situation for the2



manufaturer but a punishing situation for the suppliers, and is usually reahed after both suppliersrepeatedly under-perform. (iii) �Transient� states, from whih the system eventually evolves intoeither a business-as-usual senario or a tournament ompetition situation. Therefore, ases (i) and(ii) form the long-run inentive drivers, as the �arrot� or �stik�, for the suppliers to work hard.The rest of the paper is organized as follows: Setion 2 reviews the relevant literature in eo-nomis and operations. Setion 3 provides the problem desription and assumptions. We presentthe solution of the history-dependent dynami ontrat problem in Setion 4. In Setion 5, wefurther explore properties of the optimal ontrat numerially. Setion 6 disusses extensions of thebasi model and Setion 7 onludes. The proofs of the results are given in Appendix A, and moredetails of the extensions are given in Appendix B.2 Related LiteratureMoral Hazard (Hidden Ation). In this paper, we onsider an inentive problem with moralhazard where a manufaturer (the buyer) does not diretly observe its suppliers' e�ort deisionsand needs to design inentive mehanisms to indue desired supplier behavior. Single-period moralhazard problems have been extensively studied in eonomis; see La�ont and Martimort (2002),Bolton and Dewatripont (2005), and referenes therein. Moral hazard problems have frequentlyemerged in operations management (supply hain management in partiular) in reent years, in-volving various operational and managerial deisions aross the supply hain, suh as managers'manufaturing and marketing e�orts, suppliers' apaity investment and ost redution deisions,manufaturers' quality improvement e�orts, and buyer's proessing and testing e�orts; we refer thereader to Porteus and Whang (1991), Baiman et al. (2001), Corbett et al. (2005), Kaya and Özer(2009), Kim et al. (2007), and Kim et al. (2011). In ontrast to these papers, whih fous on singleperiod settings or steady state analysis that redues to a stati setting, we solve a moral hazardproblem with repeated interations.Beause a multi-period ontrat an use both immediate ompensation and future promises asinentives to indue desired behaviors, it is potentially more powerful than a stati ontrat. Themain obstale to �nding an optimal multi-period ontrat is history dependeny. In theory, theoptimal ontrat ould ompensate a supplier based on its entire performane history and that ofompeting suppliers (if any). As more performane data beomes available, the information setexpands and the omputational omplexity grows exponentially.Using formal ontrats, Plambek and Zenios (2000) solve a dynami moral hazard problem3



in operations management. They assume that the agent has an exponential utility funtion andan borrow and lend freely from a bank, whih leads to a memoryless optimal ontrat. Buildingupon this paper, also assuming the agent's exponential utility and free aess to banking, Fuloriaand Zenios (2001) study dynami outome-adjusted reimbursement for a health-are provider whoprivately hooses the intensity of treatment in every period, and Plambek and Zenios (2003) studya make-to-stok queueing system in whih the prodution rate of the server is privately ontrolled bythe agent. Our paper however, presents an inentive struture based on suppliers' full performanehistory, without the aforementioned assumptions. Abreu et al. (1986, 1990) introdue a reursiverepresentation of the dynami ontrat using the agent's expeted future utility as the state variable,whih is then extended by Spear and Srivastava (1987) to the Prinipal-Agent framework. We use asimilar approah to solve a two-agent problem with ommon business/resoure onstraint, whereasthe above papers all solve a single-agent problem.The literature on relational ontrats examines informal ontratual agreements between players.In the presene of moral hazard, a relational ontrat an indue desired ations from the players bythe threat of termination of the business relationship or the worst payo�s thereafter if a deviationis aught (the so alled �trigger strategies;� see Friedman 1971). Levin (2003) shows that underertain assumptions (risk neutral players, su�iently high disount fator, et.), there exists ahistory-independent, stationary optimal ontrat, whih an be solved as a one-period problem.This result has sine been extended to supply hain management by Plambek and Taylor (2006)and Taylor and Plambek (2007a,b). In ontrast to this approah, we solve a repeated moral hazardproblem with risk averse agents and formal ontrats, without any restrition on the disount fator.Relational ontrats an also be history dependent, when the players adopt �review strategies�(Radner 1985). Ren et al. (2010) examine a supply hain in whih a supplier reviews a demandforeast from a buyer in every period before investing in apaity. If the buyer does not pass thetruth-telling test, a limited-time punishment phase follows. They show that truthful informationsharing is indued under large disount fators. In omparison, we onsider hidden e�orts, utilizethe entire performane history, and allow any level of disount fator.Lastly, we note some additional work in supply hain management on multi-period games withhidden information. Zhang et al. (2010) investigate the optimal wholesale ontrat for a supplierin fae of a retailer who arries inventory privately. Oh and Özer (2012) study a supplier's hoiebetween making its own demand foreasts and sreening the information from a downstream man-ufaturer before a apaity investment. The work by Li and Debo (2009a,b) examines the optionvalue of future supplier-swithing or seond-souring of a manufaturer faing unertain demand4



when suppliers have private ost information.Volume Alloation. Many papers on reverse aution or dual souring address volume alloa-tions, whih is an important aspet of the problem we are studying. Anton and Yao (1989) omparethe split-award aution with a winner-take-all aution in a single-stage Nash equilibrium. Klotzand Chatterjee (1995) onsider a two-period dual-souring model where the buyer reserves a �xedvolume share for eah supplier and leaves the rest to a ompetitive bidding in whih the lower-ostprovider takes all. Seshadri (1995) studies a dual-souring model with a ost-plus ontest thatawards eah supplier its atual audited ost plus a fration of the �xed inentive money. Benjaa-far et al. (2007) onsider a performane-based proportional alloation mehanism in a single-periodmodel. Cahon and Zhang (2007) ompare several performane-based alloation poliies that assigninoming jobs to two servers who ontrol their own servie rate. They analyze open-loop strategiesin steady state and e�etively solve a stati problem. We extend this researh stream by onsideringdynami volume alloation in an in�nite-horizon problem.A few reent papers examine volume alloation in dynami environments. Lu and Lariviere(2011) onsider a dynami stohasti game in whih a ar manufaturer alloates its sare apaityto its retailers through a �xed (equal) or �turn-and-earn� alloation sheme (whih alloates a highervolume to the retailer with more sales). In ontrast, we do not assume a partiular mathematialform of the alloation poliy. Belavina and Girotra (2012) model souring deisions with an in-termediary and onsider business alloations between two suppliers in an in�nitely repeated game.They examine ooperative behavior of the suppliers under relational governane whereas we studyformal ontrats for induing e�orts from ompeting suppliers.3 Problem Desription and Model FormulationIn this setion, we formulate the volume alloation problem for a manufaturer faing two substi-tutable suppliers.3.1 Problem Desription and AssumptionsWe onsider a single manufaturer souring a ritial omponent from two hosen suppliers: Supplier1 and Supplier 2. Both suppliers are able to meet the minimum ost and quality requirement forthe manufaturer. However, the total ost of ownership to the manufaturer ould di�er betweenthe two suppliers on a number of key measures suh as the defet rate, tehnology innovation,perentage of on-time delivery, et. The manufaturer onstantly evaluates eah supplier using thesemeasures and generates an overall rating for the supplier, whih serves as a basis for determining5



business alloations in future time periods. Eah supplier, in order to earn more business, has aninentive to expend additional resoures to improve the performane outome (or measure). Suhan ation an be ostly, and does not always work � it only inreases the performane outomeprobabilistially. From the manufaturer's perspetive, additional supplier e�ort is desirable andideally the manufaturer would like its suppliers to engage in ontinuous improvement over thelong run. However, the manufaturer needs to provide enough inentive so that a supplier wouldvoluntarily engage in suh ativities. These inentives ould ome at a ost to the manufaturer.Therefore, it is not neessarily optimal or feasible to always indue high e�ort from the suppliers.In this paper, we strive to �nd the optimal ontrat that generates the maximal long-run payo�sfor the manufaturer.We make the following assumptions regarding the manufaturer and its suppliers.(1) The manufaturer is risk neutral and the suppliers are risk averse, whih approximates atypial situation with a large buyer and relatively small suppliers.(2) The transfer prie between eah supplier and the manufaturer is determined through aost-plus model. That is, the manufaturer promises to pay eah supplier the ost of the omponentplus a margin r for eah unit of the omponent for an agreed quantity qi, i = 1, 2. In this paper,we fous on the ase where the manufaturer uses volume alloation as an inentive lever and thuswe treat r as a onstant and for simpliity, assume that the two suppliers reeive the same margin
r. We later relax this assumption and show how the optimal ontrat may hange if the marginsare asymmetri (Setion 6.1) and how the problem of alloating a total volume is similar to theproblem of alloating a total payment (Setion 6.2).(3) In the base model, the total volume to be alloated between the two suppliers is �xed, as theorder quantity of a ritial part is typially determined by the prodution plan for the �nal produt.In Setion 6.3, we will allow the total volume to deviate from a target level and show that the maininsights from the optimal ontrat stay true with this generalization.(4) The suppliers are idential with regard to their e�ort hoie options, utility funtions, andost funtions, whih allows us to fous on the performane di�erenes aused solely by suppliers'e�orts. A supplier's utility from the one-period margin rqi is φ(rqi), whih is an inreasing andonave funtion and, without loss of generality, satis�es φ(0) = 0. In addition, the supplier's utilityis additively separable aross time, as is standard in the dynami ontrat literature.(5) The suppliers have two e�ort hoies, �high� and �low,� from the set A = {H,L}, and theirdisutility of e�ort hoie a ∈ A is ψ(a) (or ψa), with ∆ψ = ψH − ψL > 0. Treating the disutility ofe�ort a separately from the utility of margin rqi is standard in the literature, beause the ost-of-6



e�ort might not easily translate to a monetary ost. For the performane-enhaning e�orts that thesuppliers engage in, ativities are often proess based and therefore only inur �xed osts.4 We willrelax the assumption of binary e�ort hoies in Setion 6.4 and demonstrate that the main resultsremain true.(6) The suppliers' prodution funtions are independent and the set of possible performaneoutomes is X = {0, 1}, representing �poor� and �good� outomes, respetively.5 We assume thatthe performane outomes are publi information to the manufaturer and the two suppliers.6The probability for outome x ∈ X after a supplier hooses e�ort a ∈ A is pa(x), whih satis�es
pH(1) > pL(1), i.e., a good outome is more likely to result from the high e�ort. We assume that thee�ort hoie in eah period diretly a�ets the performane in the urrent period only. This is oftenthe ase with management, maintenane, or operational type of e�ort, and is arguably the moreinteresting situation for induing supplier e�orts beause inentive must be provided onstantly andsuppliers annot sit bak and enjoy the lasting e�ets of their previous e�orts.(7) The value of a supplier's performane outome x ∈ X to the manufaturer is q · π(x), where
q is the quantity provided by that supplier and π(1) > π(0). That is, the performane outome islinked to a per unit dollar value π(x).7(8) The manufaturer and the suppliers have the same disount fator δ ∈ (0, 1).3.2 Model FormulationNow, we formulate the model. In eah period t, the manufaturer assigns a quantity qit to supplier
i and the supplier privately hooses an e�ort level ait ∈ A. The supplier's performane xit ∈ Xdepends on ait through the probabilities pait(xit). Let ht = {(x11, x21), . . . , (x1t, x2t)} denote thesuppliers' performane history up to the end of period t, and Ht = (X × X )t denote the set ofpossible ht's. Supplier i's utility from the quantity qit is φ(rqit) and disutility from the e�ort is4A general disutility funtion may also inlude a variable element whih depends on the business volume qialloated to a supplier. If the variable element of the disutility funtion has a linear form cqi, it an be viewedas part of the variable ost and diretly ompensated by the manufaturer (see Swinney and Netessine 2009 for asimilar argument). Assuming ψ(a) independent of qi failitates our analysis and allows us to onentrate on the keytrade-o�s in motivating suppliers to make high e�orts.5It is known that a manufaturer an �lter out ommon industry noise by observing the performane from multiplesuppliers (see Holmstrom, 1982; Swinney and Netessine, 2009; and Chen et al., 2011). In this paper, we treatperformane outomes as the outomes after ommon noise �ltration.6In pratie, this is key for inspiring the suppliers and induing ompetition. For example, Sun Mirosystems In.gave eah supplier its soreard results, along with the highest sores of other suppliers in the same ommodity area(Farlow et al., 1995); Waste Management In. publishes sores of all its suppliers (without dislosing names) to letsuppliers see how they performed relative to other vendors (Du�y, 2005).7For example, at Sun Mirosystems, if a supplier reeives a total sore of 86 from the soreard evaluation, theommodity manager may alulate the Total Cost of Ownership (TCO) for Sun using the formula (100-sore)/100+1and inform the supplier that every dollar Sun spends with the supplier atually osts Sun $1.14 (Farlow et al., 1995).7



ψ(ait). Therefore, a dynami ontrat an be represented by σ = {qit(ht−1), ait(h
t−1)}i=1,2;t=1,··· ,∞,whih de�nes the strategy pro�le for the manufaturer and two suppliers. Beause suppliers' e�ortsannot be observed by the manufaturer, {ait(ht−1)}t=1,··· ,∞ an be viewed as the manufaturer'ssuggested e�ort plan to supplier i. Notie that qit and ait depend on ht−1, the performane outomesobserved before period t, beause the purhase volumes from the suppliers in period t must bedetermined before entering period t and the suppliers must exert e�orts before the outomes arerealized. By default, h0 = Ø, representing no initial information. We denote the vetors (q1t, q2t),

(a1t, a2t), and (x1t, x2t) by qt, at, and xt, respetively.The manufaturer maximizes its total disounted value through the following problem:
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t−1) = Q, q1t(h

t−1) ≥ 0, q2t(h
t−1) ≥ 0, ht−1 ∈ Ht−1, t = 1, . . . ,∞. (3.4)Inequality (3.3) for i ∈ {1, 2} (and j 6= i) is supplier i's inentive ompatibility (IC) onstraint,whih implies that the supplier would voluntarily follow the manufaturer's suggested e�ort plan,from any period t onward and after any performane history ht−1. Note that the deviated e�ortplan {âiτ (·)}∞τ=t would alter the performane path stohastially, and we denote a deviated pathafter history ht−1 by {ĥτ}∞τ=t (assuming ĥt−1 = ht−1). Inequality (3.2) for i ∈ {1, 2} is the par-tiipation onstraint for supplier i, whih ensures that the supplier would voluntarily partiipatein the ontrat, after any performane history ht−1, given its reservation utility ui. Expression(3.4) represents a volume onstraint whih requires the total business volume to be �xed and ismathematially akin to the �budget onstraint� in the literature. In this in�nite-horizon problem,the information set Ht−1 (i.e., performane history set) grows with t and eventually beomes toolarge to allow omputation of the equilibrium strategy.8



3.3 Model TransformationAbreu et al. (1986, 1990) and Spear and Srivastava (1987) address the omputational omplexityissue in a repeated game between a prinipal and a single agent by a reursive formulation, whihan be extended to the two-agent setting of (3.1)-(3.4). In what follows, we desribe the basi ideaof this extended approah. Beause the future looks exatly the same from any period onward, thesubgame following every publi history is oneptually idential. It an be easily shown that eahagent (supplier)'s expeted future utility ui following any publi history an be deomposed into animmediate utility φ(rqi) − ψ(ai) in the urrent period and a ontinuation utility Ui from the nextperiod onward, ontingent on the random outome of the urrent period:8
ui = φ(rqi) − ψ(ai) + δE[Ui(x)| a], i = 1, 2. (3.5)Beause of the in�nite future, the set of feasible ontinuation utility vetors from any period onwardshould be idential. That is, the vetors (u1, u2) and (U1, U2)(x) should all belong to the sameontinuation utility set. The vetor u = (u1, u2) an be interpreted as the state of an (indued)Markov deision proess, sine the transition from state u to state U is determined by the urrent-period e�orts a stohastially (through the urrent-period outomes x).The reursive formulation redues the history-dependent ontrat problem to a dynami pro-gramming problem with a state variable u. Consequently, the problem of searhing for the optimalvolume alloation ontrat σ = {qt(ht−1),at(h

t−1)}t=1,··· ,∞ is redued to one of �nding the optimalvariables {a,q,U(x)} for eah feasible u.9 The state variable u in this stationary representationhas dual interpretations. On the one hand, it is a proxy of the suppliers' performane history asfrom any given initial state, the value of u at time t is determined by the sequene of performaneoutomes ht−1 = {x1,x2, . . . ,xt−1}. On the other hand, ui represents supplier i's expeted future(or ontinuation) utility. The manufaturer may simply treat it as an equivalent of the supplier'spreferential status, and update it in eah period with new performane data. Thus, we shall referto it as the supplier's �rating.�8Let hτt denote the performane history from the beginning of period t to the end of period τ , for τ ≥ t,i.e., hτt = {xt, . . . ,xτ}; by default, hτt = Ø if τ < t. Then, hτ is equivalent to (ht−1, hτt ), for τ ≥
t. Based on the formulation (3.1)-(3.4), at the beginning of period t after any performane history ht−1,de�ne ui(h
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}. In the bakward indu-tion, the past information ht−1 plays no expliit role and an be suppressed without loss of generality. Hene, notiing
ht = (ht−1,xt), we arrive at the equation ui = φ(rqit) − ψ(ait) + δE[Ui(xt)|at].9The vetors q, a, and U(x) depend on the suppliers' urrent ontinuation utility vetor u impliitly, but fornotational simpliity, this dependene is suppressed. 9



Figure 1 shows the sequene of events in the reursive framework. At the beginning of period
t, the suppliers' ratings are given by u. The manufaturer announes the volume alloation for theurrent period and ratings U(x) for the next period, ontingent on the outomes of the urrentperiod. Then the suppliers privately hoose e�ort levels. After delivery, the manufaturer observesthe suppliers' performane outomes and updates their ratings. The game enters the next period.

Beginning of period t

Suppliers’ ratings are 

u=(u1,u2)

Performance

outcomes

x=(x1 , x2)

observed by all

Beginning of 

period t+1

Suppliers’ ratings 

become U(x)

=(U1(x), U2 (x) )

Buyer realizes 

payoff  (x,q);

pays each 

supplier rqi

Each supplier 

chooses effort 

ai privately

Buyer announces

period-t volumes q=(q1, q2)

and next-period ratings

{U(x)=(U1(x), U2(x))}

Each supplier 

realizes utility 

 (rqi)  (ai)

Figure 1: Sequene of Events in Period t under a Dynami Volume Contrat.Let V (u) be the expeted future payo� for the manufaturer given the suppliers' expeted futureutilities u = (u1, u2). For eah feasible u, the manufaturer hooses volumes q = (q1, q2), e�orts
a = (a1, a2), as well as the suppliers' ontinuation utilities U(x) = (U1(x), U2(x)) to maximize itsexpeted future payo�, provided that the suppliers voluntarily hoose a:
V (u) = max

a,q,{U(x)}
E[π(x1)q1 + π(x2)q2 + δV (U1(x), U2(x))| a] − rQ (3.6)s.t. φ(rqi) − ψai + δE[Ui(x)| a] = ui, i ∈ {1, 2} (3.7)

φ(rqi) − ψai + δE[Ui(x)| a] ≥ φ(rqi) − ψâi + δE[Ui(x)| âi, aj ], âi 6= ai, j 6= i ∈ {1, 2} (3.8)
q1 + q2 = Q, q1, q2 ≥ 0. (3.9)Equation (3.7) is the promise keeping (PK) onstraint, the same as (3.5). Constraints (3.8) and(3.9) are again the inentive ompatibility (IC) onstraint and the volume onstraint, respetively.This problem is parameterized by u. Both the parameter u and the deision variables {U(x)} aredrawn from the same feasible ontinuation utility set, say S ⊂ R

2, and the manufaturer's optimalvalue funtion V (·) is determined reursively through the above problem. Our goal is to haraterizethis funtion V : S → R. Note that the original partiipation onstraint (3.2) is equivalent to u ≥ u,for a reservation utility vetor u; we will later normalize u to 0 (without loss of generality) andrequire u and U(x) ≥ 0, or, S ⊂ R
2
+. 10



In general, the optimal value funtion V (·) may not be onave. However, when randomizedontrats are allowed, V (·) must be onave with a onvex domain. To see this, suppose that theoptimal solutions to the problem given any feasible u′ and u′′ are {a′,q′,U′(x)} and {a′′,q′′,U′′(x)},respetively. Then the randomized ontrat that exeutes {a′,q′,U′(x)} with probability λ and
{a′′,q′′,U′′(x)} with probability 1 − λ would generate ontinuation utility vetor λu′ + (1 − λ)u′′for the suppliers and ontinuation value λV (u′) + (1 − λ)V (u′′) for the manufaturer. Therefore,the suppliers' ontinuation utility vetor λu′ + (1− λ)u′′ is feasible and the manufaturer's optimalontinuation value at λu′+(1−λ)u′′ is at least λV (u′)+(1−λ)V (u′′), whih implies the onavity of
V (·). Randomization is ommonly assumed in the repeated game/dynami ontrat literature (e.g.,Fudenberg and Tirole 1991, Phelan and Stahetti 2001, Judd et al. 2003, Doepke and Townsend2006) and is permitted in this paper as well. In essene, the manufaturer may randomly hooseamong a set of deterministi ontrats aording to a publi lottery (with probabilities dependent onthe suppliers' ratings u), whih allows the manufaturer to potentially improve its value funtion.4 Solving the Dynami Volume Alloation ProblemThe manufaturer's volume alloation problem ouples the two suppliers together through the vol-ume onstraint (3.9). The manufaturer wishes to reate inentives for the suppliers to exert highe�ort. However, to maintain the total volume, the manufaturer annot penalize the suppliers simul-taneously when their performane outomes are both poor or reward them at the same time whenthe outomes are both good. The manufaturer thus faes an intriate problem of providing theright inentives for the suppliers through dynami volume alloation. In the following, we disussstep-by-step how to solve for the dynami ontrat. Spei�ally, The problem an be failitated byfour subproblems, given the intended e�ort pair (H,H), (H,L), (L,H), and (L,L), respetively.We �rst analyze eah subproblem and obtain useful properties of the solution (Setion 4.1) and thenderive the optimal ontrat from these subproblems (Setion 4.2). For the ease of representation,let πL = E(π(xi)| ai = L) and πH = E(π(xi)| ai = H).4.1 Induing a Given E�ort PairGiven an e�ort pair (a1, a2) to implement, the manufaturer's problem (3.6)-(3.9) redues to

11



(Γa1a2V )(u) = max
q∈R2,{U(x)∈S}

x∈{0,1}2

E[π(x1)q1 + π(x2)q2 + δV (U(x))| a1, a2] − rQ (4.1)s.t. u1 = δE[U1(x)| a1, a2] + φ(rq1) − ψa1 (4.2)
u2 = δE[U2(x)| a1, a2] + φ(rq2) − ψa2 (4.3)
u1 ≥ δE[U1(x)| â1, a2] + φ(rq1) − ψâ1 , â1 6= a1 (4.4)
u2 ≥ δE[U2(x)| a1, â2] + φ(rq2) − ψâ2 , â2 6= a2 (4.5)
q1 + q2 = Q, q1, q2 ≥ 0. (4.6)This problem impliitly de�nes a funtional operator Γa1a2 , mapping a value funtion V : S → Rto another value funtion Γa1a2V : Sa1a2 → R. Using this operator, the manufaturer's volumealloation problem (3.6)-(3.9) an be suintly written as

V ∗(u) = max
(a1,a2)∈{H,L}2

(Γa1a2V
∗)(u) (4.7)(the supersript �∗� represents �optimum� throughout this paper). Problem (4.1)-(4.6), given

(a1, a2), an be simpli�ed by the following results:Lemma 1. Given any onave funtion V (·) and feasible ontinuation utility vetor u, there existsan optimal solution to problem (4.1)-(4.6) suh that: (1) if (a1, a2) = (L,L), the IC onstraints (4.4)and (4.5) do not bind and Ui(x) ≡ U∗
i for i ∈ {1, 2}; (2) if (a1, a2) = (H,L), (4.4) binds, (4.5) doesnot, and Ui(x1, 0) = Ui(x1, 1) = U∗
i (x1), for i ∈ {1, 2} and x1 ∈ {0, 1}; (3) if (a1, a2) = (L,H),(4.5) binds, (4.4) does not, and Ui(0, x2) = Ui(1, x2) = U∗

i (x2), for i ∈ {1, 2} and x2 ∈ {0, 1}; (4)if (a1, a2) = (H,H), both (4.4) and (4.5) bind.The lemma on�rms the intuition that to indue high e�ort from a supplier, the supplier'sfuture utility must be ontingent on (in fat, inrease with) its performane outome xi and its IConstraint should be ative.4.1.1 Induing E�ort Pair (L,L)By Lemma 1, if (a1, a2) = (L,L), problem (4.1)-(4.6) beomes
(ΓLLV )(u) = δ max

q∈R2,U∈S
V (U) + (πL − r)Q (4.8)s.t. u1 = δU1 + φ(rq1) − ψL (4.9)

u2 = δU2 + φ(rq2) − ψL (4.10)
q1 + q2 = Q, q1, q2 ≥ 0. (4.11)12



This problem is relatively straightforward and an be solved diretly given any input funtion V (·).4.1.2 Induing E�ort Pair (H,L) or (L,H)We fous on the (H,L) problem below; the (L,H) problem is symmetri and an be analyzedsimilarly. For (a1, a2) = (H,L), problem (4.1)-(4.6) beomes:
(ΓHLV )(u) = max

q∈R2,{U(x1)∈S}x1∈{0,1}

{πHq1 + πLq2 + δE[V (U(x1))| a1 = H]} − rQ (4.12)s.t. u1 = δE[U1(x1)| a1 = H] + φ(rq1) − ψH (4.13)
u2 = δE[U2(x1)| a1 = H] + φ(rq2) − ψL (4.14)
u1 = δE[U1(x1)| a1 = L] + φ(rq1) − ψL (4.15)
q1 + q2 = Q, q1, q2 ≥ 0. (4.16)Notie that the variables U(x1) do not depend on a2, as shown in Lemma 1. This problem an bedeomposed as follows:Proposition 1. Problem (4.12)-(4.16) an be solved in two steps: At the lower level, given anexpeted ontinuation utility vetor Û and an input value funtion V : S → R, solve

V̂HL(Û) = max
{U(x1)∈S}x1∈{0,1}

E[V (U(x1))| a1 = H] (4.17)s.t. U1(0) = Û1 − pH(1)µ, (4.18)
U1(1) = Û1 + pH(0)µ, (4.19)
pH(0)U2(0) + pH(1)U2(1) = Û2, (4.20)where µ = δ−1∆ψ/(pH(1)−pL(1)) > 0. Let ŜHL be the feasible parameter set of this problem. At theupper level, given the promised ontinuation utility vetor u and the above funtion V̂HL : ŜHL → R,solve

(ΓHLV )(u) = max
q∈R2,Û∈ŜHL

{πHq1 + πLq2 + δV̂HL(Û)} − rQ (4.21)s.t. u1 = δÛ1 + φ(rq1) − ψH (4.22)
u2 = δÛ2 + φ(rq2) − ψL (4.23)
q1 + q2 = Q, q1, q2 ≥ 0. (4.24)The upper level problem fouses on the optimal hoie of volume alloation q and the expetedontinuation utility vetor Û (from the next period onward) that render the ontinuation utility13
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Figure 2: Positions of U(0) and U(1) given Û.vetor u; while the lower level problem fouses on the optimal hoie of the ontinuation utilityvetors {U(x1)} that yield the expeted utility Û, subjet to supplier 1's inentive ompatibilitywith the high e�ort. The proposition suggests that in order to motivate supplier 1 to exert high e�ort,its future ompensation must di�er substantially based on its performane x1, i.e., U1(1)−U1(0) = µ.Geometrially, as shown in Figure 2, the future utility points U(0) and U(1) must lie on the vertiallines with horizontal oordinates Û1 − pH(1)µ and Û1 + pH(0)µ, respetively, and their expetation
pH(0)U(0) + pH(1)U(1) is exatly Û.The lower level problem for any given Û has essentially one free deision variable (U2(0) or
U2(1)) and the upper level problem given u has also one free deision variable (q1 or q2). Thehallenge omes from the fat that these problems are parameterized and must be solved for allpossible Û and u, for a given input funtion V (·).4.1.3 Induing E�ort Pair (H,H)When (a1, a2) = (H,H), aording to Lemma 1, problem (4.1)-(4.6) beomes

(ΓHHV )(u) = δ max
q∈R2,{U(x)∈S}

x∈{0,1}2

E[V (U(x))| a1 = H,a2 = H] + (πH − r)Q (4.25)s.t. u1 = δE[U1(x)| a1 = H,a2 = H] + φ(rq1) − ψH (4.26)
u2 = δE[U2(x)| a1 = H,a2 = H] + φ(rq2) − ψH (4.27)
u1 = δE[U1(x)| a1 = L, a2 = H] + φ(rq1) − ψL (4.28)
u2 = δE[U2(x)| a1 = H,a2 = L] + φ(rq2) − ψL (4.29)
q1 + q2 = Q, q1, q2 ≥ 0. (4.30)This problem an be deomposed as follows. 14



Proposition 2. Problem (4.25)-(4.30) an be solved in two steps: At the lower level, given anexpeted ontinuation utility vetor Û and an input value funtion V : S → R, solve
V̂HH(Û) = max

{U(x)∈S}
x∈{0,1}2

E[V (U(x))| a1 = H,a2 = H] (4.31)s.t. pH(0)U1(0, 0) + pH(1)U1(0, 1) = Û1 − pH(1)µ, (4.32)
pH(0)U1(1, 0) + pH(1)U1(1, 1) = Û1 + pH(0)µ, (4.33)
pH(0)U2(0, 0) + pH(1)U2(1, 0) = Û2 − pH(1)µ, (4.34)
pH(0)U2(0, 1) + pH(1)U2(1, 1) = Û2 + pH(0)µ, (4.35)where µ = δ−1∆ψ/(pH(1)−pL(1)) > 0. Let ŜHH be the feasible parameter set of this problem. At theupper level, given the promised ontinuation utility vetor u and the above funtion V̂HH : ŜHH → R,solve

(ΓHHV )(u) = δ max
q∈R2,Û∈ŜHH

V̂HH(Û) + (πH − r)Q (4.36)s.t. u1 = δÛ1 + φ(rq1) − ψH (4.37)
u2 = δÛ2 + φ(rq2) − ψH (4.38)
q1 + q2 = Q, q1, q2 ≥ 0. (4.39)With four free deision variables, the lower level problem in this ase is onsiderably harder thanits ounterpart in the (H,L) or (L,H) ase. Notie that E[U1(1, x2)| a2 = H] − E[U1(0, x2)| a2 =

H] = E[U2(x1, 1)| a1 = H] − E[U2(x1, 0)| a1 = H] = µ. One again, to motivate the suppliersto hoose high e�ort, their future ompensation must inrease with their individual performane,and the gap between the two senarios must be su�iently large. The resulting ontinuation utilitypoints {U(x)}x∈{0,1}2 also possess strong geometri properties, as summarized below and illustratedin Figure 3(a). Let l(N1N2) denote the length of a line segment N1N2.Proposition 3. Given Û, (1) the points (onvex ombinations)M1(x1) = pH(0)U(x1, 0)+pH(1)U(x1, 1),
x1 ∈ {0, 1}, lie on the vertial lines with horizontal oordinates Û1 − pH(1)µ and Û1 + pH(0)µ,respetively; (2) the points M2(x2) = pH(0)U(0, x2) + pH(1)U(1, x2), x2 ∈ {0, 1}, lie on the hori-zontal lines with vertial oordinates Û2 − pH(1)µ and Û2 + pH(0)µ, respetively; (3) the line seg-ments M1(0)M1(1) and M2(0)M2(1) interset at Û; and (4) the line segments M1(0)M2(0) and
M2(1)M1(1) are parallel to U(0, 1)U(1, 0), with lengths l(M1(0)M2(0)) = pH(1) · l(U(0, 1)U(1, 0))and l(M2(1)M1(1)) = pH(0) · l(U(0, 1)U(1, 0)).1010Proposition 3 suggests a geometri method to determine points {U(x)} from Û: �rst, freely hoose U(0, 1) and
U(1, 0); then the points M1(0), M2(0), M1(1), and M2(1) are uniquely determined aording to part (4); �nally,
U(0, 0) and U(1, 1) are uniquely determined by the expressions of {Mi(xi)} in part (1) or (2).15
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(b) A ommon patternFigure 3: Positions of U(0, 0), U(0, 1), U(1, 0) and U(1, 1) given Û.The geometri properties reveal a ommon pattern of the suppliers' ontinuation utilities, asillustrated in Figure 3(b), and are useful for retrieving strutural properties of the optimal ontratlater.4.2 Finding Optimal ContratNow we return to the volume alloation problem (3.6)-(3.9), or equivalently, (4.7).4.2.1 Suppliers' Continuation Utility Set and Randomized Volume AlloationThe domain of the manufaturer's optimal value funtion V ∗(·) is a subset of R
2. To derive thisset, we introdue a set operation. The Minkowski sum of two sets Y and Z in an Eulidean spae

R
n is the set

Y ⊕ Z = {y + z : y ∈ Y, z ∈ Z}.Consider problem (4.8)-(4.11) of induing e�orts (L,L). Let S ⊂ R
2 be the domain of the inputfuntion V (·) and SLL ⊂ R

2 be that of the output funtion (ΓLLV )(·). De�ne the set
T = {(φ(rq1), φ(rq2)) : q1 + q2 = Q, q1, q2 ∈ [0, Q]}

= {(t1, t2) : φ−1(t1) + φ−1(t2) = rQ, t1, t2 ∈ [φ(0), φ(rQ)]}. (4.40)Every vetor t in T represents the suppliers' utilities from a ertain volume alloation q. Using theMinkowski sum operation, onstraints (4.9)-(4.11) an be ondensed to
SLL = (δS) ⊕ T − (ψL, ψL). (4.41)16



The output set SLL so de�ned may not be onvex even if the input set S is onvex, beause Tis a urve in R
2 and is a non-onvex set for risk-averse suppliers. However, by the argument at theend of Setion 3, when randomization is permitted, problem (4.8)-(4.11) an be modi�ed so that theoutput domain is onvex (and the output funtion is onave). When the input domain S is onvex(and the input funtion V (·) is onave), whih is true under our model, it su�es to randomizeover the utility set T beause the Minkowski sum of two onvex sets is also onvex. To that end,denote the onvex hull of T by

conv(T ) = {λt′ + (1 − λ)t′′ : t′, t′′ ∈ T, λ ∈ [0, 1]}. (4.42)Every t ∈ conv(T )\T gives the suppliers' expeted utilities from a randomized volume alloation thatrandomizes between two deterministi alloations q′ and q′′. After inorporating randomization,equation (4.41) beomes
SLL = (δS) ⊕ conv(T ) − (ψL, ψL). (4.43)Similarly, randomized ontrats are allowed in problems (4.12)-(4.16) and (4.25)-(4.30).4.2.2 Benhmark Contrat: Induing (L,L) ForeverTo always indue e�ort pair (L,L) is a feasible strategy for the manufaturer and provides a usefulbenhmark solution to the dynami volume alloation problem although it may not be optimal. Let

V∞
LL(·) be the manufaturer's value funtion in this solution. It is the �xed point of the operator

ΓLL de�ned in (4.8)-(4.11), i.e., satisfying (ΓLLV
∞
LL)(·) = V∞

LL(·).This �xed point property has two impliations. First, the domain of V∞
LL, denoted by S∞

LL, isself-generated through (4.8)-(4.11) and hene, by (4.43), satis�es
S∞
LL = (δS∞

LL) ⊕ conv(T ) − (ψL, ψL). (4.44)This equation an be solved through the properties of the Minkowski sum (Gritzmann and Sturmfels,1993; Zhang, 2010). Seond, if we an show that V∞
LL(u) ≡ V∞

LL, it follows immediately that
V∞
LL = δV∞

LL + (πL − r)Q. Along these lines, we obtain the following result:Theorem 1. Suppose without loss of generality that both suppliers' reservation utility is 0. To induee�orts (L,L) forever, the set of suppliers' ontinuation utility vetors is S∞
LL = (1− δ)−1[conv(T )−

(ψL, ψL)] ∩ R
2
+, and the manufaturer's value funtion is V∞

LL(u) = (1 − δ)−1(πL − r)Q, for any
u ∈ S∞

LL. At any u ∈ S∞
LL, an optimal hoie of U is u. When u lies on the upper boundaryof S∞

LL, denoted by S∞
LL, this optimal U is unique and the optimal volume alloation q satis�es

φ(rq1)/φ(rq2) = u1/u2. 17



The set S∞
LL is illustrated by the shaded areas in Figure 4 for ψL = 0 and ψL > 0, realling that

φ(0) = 0. The theorem implies that every point (u, V∞
LL(u)) an be self-generated or self-sustained:On the upper boundary of S∞

LL, i.e., for u ∈ S∞
LL, the manufaturer provides the suppliers withthe same business volume alloation q in every period whih satis�es φ(rq1)/φ(rq2) = u1/u2, andthe suppliers' ratings are the same u forever; If u /∈ S∞

LL, eah point an still be self-generated,but through a randomized volume alloation. Therefore, every point (u, V∞
LL(u)), for u ∈ S∞

LL,is a �trapping� state and represents a �business as usual� situation: eah supplier maintains itsstatus quo (i.e., does not undertake additional e�ort to improve performane) and the manufaturersimply ompensates them aording to this status quo and maintains the same volume alloationfrom period to period. Although good performane an still be observed in this senario (unless
pL(1) is zero), it is not interpreted as an indiation of high e�ort and the manufaturer does notdi�erentiate good and bad performane observations. As we explain in the following setions, thisbenhmark senario serves as an e�etive long-run inentive, whih seems ounterintuitive but anbe well explained one the longitudinal behavior of the optimal ontrat is revealed.4.2.3 Properties of the Optimal SolutionLet S∗ denote the domain of the manufaturer's optimal value funtion V ∗(·) and S∗

a1a2
denote thefeasible domain of the subproblem of induing e�orts (a1, a2) given the input funtion V ∗(·). Afterinorporating randomized ontrats, the volume alloation problem (4.7) implies that

S∗ = conv(S∗
LL ∪ S∗

HL ∪ S∗
LH ∪ S∗

HH), (4.45)where
S∗
LL = (δS∗) ⊕ conv(T ) − (ψL, ψL) (4.46)by equation (4.43), and the other S∗

a1a2
an be derived from the upper and lower level problemsde�ned in Propositions 1 and 2.We haraterize the optimal solution along the upper and lower boundaries of S∗ by examiningthe sets {S∗

a1a2
}. A representative S∗ is illustrated in Figure 4, for ψL = 0 and ψL > 0. The sets

S∗
LL, S∗

HL, S∗
LH , and S∗

HH are illustrated in Figure 5, for the numerial example disussed in Setion5 (see Table 1 for the parameters). We denote the upper (lower) boundary of a set S by S (S).Theorem 2. The upper boundary of S∗ oinides with the upper boundaries of S∗
LL and S∞

LL, and themanufaturer's optimal value V ∗(u) = (1− δ)−1(πL− r)Q for any u ∈ S∗. The optimal solution atany u ∈ S∗, inluding the volume alloation and next period ratings, is idential to that in Theorem1. 18
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HH .The theorem identi�es a set of self-generated points along the upper boundary of S∗. That is,if the suppliers' ontinuation utility vetor u enters S∗, it will be �trapped� there forever. Next, weexamine the lower boundary of S∗.Theorem 3. (1) If ψL

ψH
≤ pL(1)

pH(1) and φ(rQ) ≥ 2(1 − δpH(0))µ, the enter of the lower boundaryof S∗ is a −45◦ line segment self-generated under the (H,H) e�ort pair, with end points ul =

(1 − δ)−1(δpH(1)µ − ψH ,−δpH(1)µ + φ(rQ) − ψH) and ur = (1 − δ)−1(−δpH(1)µ + φ(rQ) −
ψH , δpH (1)µ− ψH).(2) If ψL

ψH
> pL(1)

pH(1) and φ(rQ) ≥ 2((1 − δ)µ + ψH), the lower boundary of S∗ is a −45◦ linesegment self-generated under the (H,H) e�ort pair, with end points ul = (1− δ)−1(0, φ(rQ)− 2ψH )and ur = (1 − δ)−1(φ(rQ) − 2ψH , 0). 19



(3) In the above ases, for any u ∈ ulur or ulur, the manufaturer's optimal value V ∗(u) =

(1 − δ)−1(πH − r)Q and the optimal volume alloation q is randomized between (0, Q) and (Q, 0).Part (3) implies that the manufaturer an ahieve the highest possible (�rst-best) expetedvalue (1 − δ)−1(πH − r)Q by keeping the suppliers' ratings in the line segment ulur (or ulur)and induing both of them to exert high e�ort; the line segment ulur is labeled in Figure 4. Theonditions in parts (1) and (2) of the theorem are su�ient but not neessary. They enable su�ientvariations in the suppliers' future utilities for inentive provision 11 and an be easily met when the(possible) reward is su�iently high (e.g., high Q, r, or δ) and/or the ost of the high e�ort (ψH)is su�iently low. 12Although the lower boundary of S∗ is also generated from points on the lower boundary, noindividual point on S∗ an be a trapping point as those on the upper boundary, beause, to provideinentive for e�orts (a1, a2) 6= (L,L), a utility vetor u ∈ S∗ must be generated from at least twodistint points in the feasible domain to reward a good outome and punish a bad one. However,as shown below and illustrated in Figure 6, the suppliers' ontinuation utilities an still be �loallytrapped� on the lower boundary, i.e., on�ned to a losed line segment whih forms a �reurrent�lass of the indued Markov proess.Proposition 4. Let ũl = ul + (µ,−µ) and ũr = ur + (−µ, µ). In the �rst ase of Theorem 3,there exists an optimal solution suh that (1) for any u ∈ ũlũr, U(0, 0) = U(1, 1) = u, U(0, 1) =

u+(−µ, µ), and U(1, 0) = u+(µ,−µ); (2) for any u ∈ ulũl, U(0, 0) = U(0, 1) = ul, U(1, 1) = ul+

pH(1)−pH(0)
pH(1) (µ,−µ), and U(1, 0) = ul+(2µ,−2µ); and (3) for any u ∈ ũrur, U(0, 0) = U(1, 0) = ur,

U(1, 1) = ur + pH(1)−pH(0)
pH(1) (−µ, µ), and U(0, 1) = ur + (−2µ, 2µ). In the seond ase of Theorem3, there exists an optimal solution similar to the above, with ul, ur, ũl, and ũr replaed by ul, ur,

ũ
l = ul + (µ,−µ), and ũ

r = ur + (−µ, µ), respetively.The proposition reveals an interesting and intuitive solution for the manufaturer. One thesuppliers' ratings fall into the middle setion of the trapping segment ulur on the lower boundary,the manufaturer an keep the suppliers on their toes through the following �tournament�: when11In ase (1), the distane between the two end points ul and ur is given by (1 − δ)−1(φ(rQ) − 2δpH(1)µ) alongboth axes. Thus the ondition φ(rQ) ≥ 2(1− δpH(0))µ implies that these two points are at least 2µ apart along bothaxes. The assumption ψL

ψH

≤ pL(1)
pH(1)

is equivalent to δpH(1)µ ≥ ψH and thus ul1 = ur2 ≥ 0. In ase (2), the line segment
ulur is trunated by the two axes to ulur. Sine the distane between ul and ur is given by (1− δ)−1(φ(rQ)−2ψH),the assumption φ(rQ) ≥ 2((1 − δ)µ+ ψH) similarly ensures that ulur is long enough for inentive provision.12For example, when δ is lose to 1, the main assumption in ase (2), φ(rQ) ≥ 2((1 − δ)µ+ ψH), is approximately
φ(rQ) ≥ 2ψH , whih is neessary to just over the disutility of high e�ort for the two suppliers (under randomizedvolume alloation). 20
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Figure 6: Loal Trapping on the Lower Boundary.one supplier performs better than the other (i.e., the outome vetor is either (0, 1) or (1, 0)),promote the former supplier and demote the latter; if they perform equally well or equally poor(with outome vetor (0, 0) or (1, 1)), keep their ratings unhanged. This strategy highlights therole of ompetition in motivating suppliers. When the suppliers' ratings move too lose to one endof the trapping segment, i.e., into ulũl or ũrur, the above tournament beomes non-sustainable andthe manufaturer's strategy needs to be modi�ed: for example, the manufaturer should punishpoor performane by the lower-rated supplier even if the ompeting supplier performs equally poor.4.2.4 State Evolution under the Optimal ContratOur solution approah to the repeated moral hazard problem rests upon the idea that the suppliers'rating vetor evolves as a Markov deision proess. Now, we examine the longitudinal behavior ofthis proess, as summarized in Figure 7. Theorems 1, 2, and 3 reveal that trapping and reurrentlass of states may exist in this Markov deision proess. From Theorems 1 and 2, there are in�nitelymany individual �trapping� states on the upper boundary of S∗. Eah trapping state represents a�business-as-usual� (low e�ort) senario with a harateristi volume alloation determined by theratio of the two suppliers' ratings. Theorem 3 identi�es a �reurrent� lass on the lower boundaryof S∗ under ertain onditions. This subset is haraterized by high e�ort from both suppliers andhighest value ahieved for the manufaturer. From the manufaturer's perspetive, this is the mostdesirable situation. The suppliers however, experiene the most intense ompetition in these states.Any point from whih S∗ an be reahed with a positive probability is a �transient� state.Similarly, when the reurrent lass exists on the lower boundary, any point from whih a reurrent21
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u1 : u2. Ideally, a supplier prefers the trapping to our at a loation that yields a higher volume foritself (sine that volume alloation will persist in all future periods), whih provides inentive forthe supplier to ontinually exert high e�ort in order to in�uene the diretion of the state transition.22



In summary, the trapping states on the upper boundary of S∗ and the reurrent states on the lowerboundary are long-run inentive drivers, as the �arrot� or �stik�, for the suppliers to work hard.The results resonate with some known results in the repeated game literature. The �trapping�states on the upper boundary are reminisent of the Nash equilibria in a stati game in whihthe manufaturer alloates volume between two suppliers to math eah supplier's promised utility.The �reurrent� states on the lower boundary bear some resemblane to the punishment threat in a�trigger strategy� in repeated games (Friedman 1971, Levin 2003, Plambek and Taylor 2006). Whilepunishment often involves termination of the ooperation and is thus the worst equilibrium for allplayers, under the optimal ontrat in our model, the reurrent states impose intense ompetitionand low payo� for the suppliers but result in high e�ort input and the �rst-best value to themanufaturer, i.e., they are �punishment� to the suppliers but not to the manufaturer.5 Numerial AnalysisTo further haraterize the optimal ontrat, we resort to numerial analysis. For simpliity, we as-sume the utility funtion φ(w) =
√
w, for w ≥ 0, but the results an be generalized to other onaveutility funtions. We examine the optimal solution for a representative example, inluding the sup-pliers' ontinuation utility set, e�ort hoies, and alloated volumes, as well as the manufaturer'svalue funtion. We also study the longitudinal evolution of the suppliers' ratings.Sine we have already provided analytial haraterizations of the optimal ontrat under theonditions given in Theorem 3, in the numerial analysis, we explore the ase when suh onditionsare not met. In partiular, we onsider the example given in Table 1 (the total volume Q isnormalized to 1). The results are presented in Figures 8 and 9.13 We have also onduted aomparative statis analysis, by varying the parameters pH(1), pL(1), ψH , ψL, π̄H , π̄L, r, and δ, toverify that the numerial �ndings are robust; due to spae limitation, those results are omitted herebut are available from the authors.Parameter Q r δ pH(1) pL(1) ψH ψL πH πLValue 1 0.5 0.9 0.7 0.3 0.3 0 1 0.1Table 1: Parameter Values for the ExampleManufaturer's Optimal Value Funtion. The domain S∗ and funtion V ∗(·) are illustrated13We �rst identify the minimum and maximum values of eah supplier's rating ui using the results in Theorem2. We then disretize this interval into 50 points and iteratively searh for the two-dimensional self-generatingdomain S∗, whose upper boundary is spei�ed exatly in Theorem 2 but the lower boundary has to be identi�edomputationally. Next, based on the obtained domain S∗ and the benhmark value V∞

LL identi�ed in Theorem 1, weiteratively onstrut the value funtion V ∗(·) through the deomposed problems de�ned in Propositions 1 and 2.23
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LL) orresponds to a spei� volume alloation, whih hanges ontinuously with theratio u1/u2 (suh that φ(rq1)/φ(rq2) = u1/u2). Figure 9(a) shows supplier 1's volume alloationunder the optimal ontrat over the entire domain S∗ (supplier 2's volume is symmetri).14 Clearly,higher value of u1 results in higher business volume for supplier 1. The volume drops markedly as14Noise along the upper boundary is due to the omputation preision and the fat that the lower-level optimizationproblems have an objetive funtion that is rather �at near the optimal point.24
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upper boundary
lower boundary(b) On the BoundariesFigure 9: Volume Alloated to Supplier 1.the state moves from the area where supplier 1 is stronger (i.e., with a higher rating) to the areawhere supplier 2 is stronger. We observe that the trend of the volume alloation is interrelated withthe optimal e�ort hoies (a1, a2). For instane, the alloation along the upper boundary where

(L,L) dominates behaves quite di�erently from the lower boundary where (H,H), (H,L) or (L,H)dominates. Although on both the upper and lower boundaries, the optimal volume alloation forsupplier 1 follows a upward trend and hanges from 0 to 1 as u1 inreases from its minimum valueto its maximum (Figure 9(b)), the hange is muh more drasti on the lower boundary, where atleast one supplier hooses high e�ort.State Evolution. The suppliers' ratings form a set of Markov states and evolve over time.We simulate the state path from di�erent starting states, whih helps shed light on the behaviorsof the transient states between the upper and lower boundaries. We observe in this example thattrapping is inevitable and it always ours on the upper boundary, whih is reasonable sine theonditions for the reurrent lass identi�ed in Theorem 3 are not met. As disussed in Setion4.2, being trapped at a partiular point (on the upper boundary) implies that the future �businessnorm� is represented by a harateristi volume alloation, whih serves as the ultimate long-runinentive/disinentive for ontinuous supplier improvement. Our simulation reveals that the time ittakes to reah a trapping state varies with the starting state and so does the exat loation wheretrapping ours. In partiular, when the initial state is farther away from the upper boundary, ittakes longer to reah trapping and the initial state (or, the initial ratings of the suppliers) has aweaker impat on the �nal trapping loation. 25



6 ExtensionsIn the base model studied in previous setions, we have made some assumptions that simplify ouranalysis. In this setion, we demonstrate that our main results still hold if some of these assumptionsare relaxed or altered. We highlight the main �ndings here and defer the details to Appendix B.6.1 Asymmetri SuppliersThe basi model (3.6)-(3.9) assumes that the two suppliers are symmetri, with regard to theirutility funtions, ost funtions, unit margins, value ontributions, et. This assumption allowsus to onentrate on the most valuable irumstanes for dynami volume alloation. Suppose, forexample, the suppliers' unit margins are unequal. Then the manufaturer would tend to alloate lessvolume to the supplier demanding the higher margin, diminishing the power of volume inentive.Nevertheless, as disussed below, the main results of this paper an be extended to the setting ofunequal supplier margins (asymmetries in utility and ost funtions an be aommodated similarly).Suppose supplier i's unit margin is ri, i = 1, 2. The manufaturer's problem (4.1)-(4.6) needsslight modi�ations � replaing the term rQ in the objetive funtion by r1q1 + r2q2, and replaingthe terms rq1 and rq2 in the onstraints by r1q1 and r2q2, respetively. It is straightforward toverify that Lemma 1 is still valid and results in Setion 4.1 are slightly modi�ed as above.The set T of one-period utility vetors from deterministi volume alloations, de�ned in expres-sion (4.40), hanges to:
T = {(φ(r1q1), φ(r2q2)) : q1 + q2 = Q, q1, q2 ∈ [0, Q]}

= {(t1, t2) :
φ−1(t1)

r1
+
φ−1(t2)

r2
= Q, t1 ∈ [φ(0), φ(r1Q)], t2 ∈ [φ(0), φ(r2Q)]}. (6.1)As an example, if the utility funtion is φ(w) =

√
w, i.e., φ−1(t) = t2, the new set T would bethe north-east quarter of an ellipse with radiuses √
r1Q and √

r2Q, as opposed to the irle withradius √
rQ in the equal margin ase. Equations (4.41) to (4.46) still hold true, and Theorems1 and 2 only inur minor modi�ations. The upper boundary of S∞

LL or S∗ is still given by (1 −
δ)−1[conv(T )− (ψL, ψL)]∩R

2
+, and the optimal volume alloation q on this boundary is still unique(satisfying φ(r1q1)/φ(r2q2) = u1/u2), but the manufaturer's expeted value funtion, now givenby V∞

LL(u) = (1 − δ)−1(πLQ− r1q1 − r2q2), is not �at any more beause the total margin payment
r1q1 + r2q2 is not onstant. The properties of the optimal solution along the lower boundary of
S∗, haraterized by Theorem 3 and Proposition 4, an also be generalized exept that the slope ofthe line segment ulur (or ulur), is no longer −45◦ when the margins di�er and the manufaturer's26



expeted value along that line segment now varies linearly between V ∗(ul) and V ∗(ur). Lastly, thelongitudinal behavior on the upper and lower boundaries stays unhanged.6.2 Fixed Total PaymentIn the base model of the paper, the unit margin for eah supplier is a onstant r, and the manu-faturer alloates a �xed total volume Q between the suppliers in every period. In this extension,we onsider the �opposite� problem, in whih the business volume alloated to eah supplier is on-stant at q, and the manufaturer has a �xed total payment W to alloate in eah period. The keydi�erene between the two problems lies in the timing of the ritial events. Business volumes areusually determined at the beginning of a period, while the payments are often made at the end andthus an be ontingent on the performane outome of that period. Nevertheless, a areful hoieof the referene point an suppress this ontingeny and streamline the latter problem.We all the time point (in eah period) at whih the performane outomes and the manu-faturer's payo� have been realized but the payments to the suppliers are yet to be made theompensation point . Let u = (u1, u2) be the ontinuation utility vetor promised to the suppliersfrom the ompensation point of the urrent period onward and V (u) be the manufaturer's or-responding ontinuation payo� from the ompensation point onward (without the urrent-periodpayo�). Given u, the manufaturer hooses the urrent-period payments w = (w1, w2), next-periode�orts a = (a1, a2), as well as the suppliers' ontinuation utilities U(x) = (U1(x), U2(x)) (ontingenton the next-period performane outomes x) to maximize its expeted value, subjet to promisekeeping, inentive ompatibility, and total payment onstraints:
V (u) = max

w,a,{U(x)}
E[δπ(x1)q + δπ(x2)q + δV (U1(x), U2(x))| a] −W (6.2)s.t. φ(qwi) − δψai + δE[Ui(x)| a] = ui, i ∈ {1, 2} (6.3)

φ(qwi) − δψai + δE[Ui(x)| a] ≥ φ(qwi) − δψâi + δE[Ui(x)| âi, aj ], âi 6= ai, j 6= i ∈ {1, 2}(6.4)
w1 + w2 = W/q, w1, w2 ≥ 0. (6.5)The problem is similar to the volume alloation problem (3.6)-(3.9); so the funtion V (u) andthe orresponding optimal ontrat possess similar properties. The only additional task is to deidefor period 1 the optimal e�ort vetor a and ontinuation utility vetors {U(x)} (ontingent onperiod 1's outomes), given an initial state u0 = (u0

1, u
0
2); it is a simple one-shot problem and doesnot a�et the long-term properties of the optimal ontrat governed by the reursive problem above.27



6.3 Flexible Total VolumeIn the base model, the manufaturer's total business volume is a onstant Q in every period. In thisextension, we allow the total volume to vary in an interval, [Qm, QM ]. We assume that the manufa-turer has a target volume Q0 ∈ [Qm, QM ] and inurs over and under-order penalties. The manufa-turer's total ost of prouring Q units is given by g(Q) =

{
rQ+ βm(Q0 −Q), if Q ∈ [Qm, Q0),
rQ+ βM (Q−Q0), if Q ∈ [Q0, QM ],for some nonnegative oe�ients βm and βM . When βm = βM = ∞, the model redues to thebase model with a �xed total volume Q0; when βm = βM = 0, the model redues to one withouta target volume. To avoid trivial ases, we assume πL < r + βM , i.e., inreasing the total volumebeyond Q0 is not pro�table for the manufaturer at least in the low e�ort senario; otherwise, themanufaturer would be tempted to push the total volume all the way to QM .The manufaturer's problem (4.1)-(4.6) of induing a given e�ort pair (a1, a2) only undergoesminor modi�ations: the manufaturer's total payment rQ in the objetive funtion is replaed by

g(q1 + q2), and the volume onstraint q1 + q2 = Q is replaed by q1 + q2 ∈ [Qm, QM ]. It an beveri�ed that Lemma 1 is intat. Thus, the problems of induing (L,L), (H,L), (L,H), and (H,H)e�ort pairs are all similar as before exept the above modi�ations. As a result, the deomposition ofthese problems is still valid, i.e., Propositions 1 and 2 are still true exept for the neessary hangesin the objetive funtions and volume onstraints in the upper level problems. Propositions 3 and 4arry over without any modi�ation. The robustness of these results reveals that the fundamentalinentive driver in the problem is unhanged under this generalization.The �exibility in Q broadens the manufaturer's hoies, whih enlarges the feasible set ofthe suppliers' ontinuation utilities and improves the manufaturer's value funtion. Due to suhhanges, Theorems 1, 2, and 3 need to be modi�ed; most notably, the trapping region near the upperboundary of the feasible set S∗ and the reurrent set near the lower boundary are both enlargedas a result of the �exibility in Q. Being able to dynamially alloate a larger (as well as smaller)volume makes it easier for the manufaturer to indue high e�ort from the suppliers. A rigorousanalysis an be found in Appendix B.6.4 Multiple E�ort LevelsIn the base model, the suppliers' e�ort level an be either H or L. In this extension, we add anintermediate level, M . More e�ort levels an be treated similarly.As in the two-e�ort-level ase, assume that the disutilities of the e�ort levels and orrespondingprobabilities of the good outome are ordered suh that ψH > ψM > ψL and pH(1) > pM (1) >28



pL(1). De�ne the e�etive marginal osts of e�ort as µHM = δ−1(ψH − ψM )/(pH(1) − pM(1)),
µML = δ−1(ψM − ψL)/(pM (1) − pL(1)), and µHL = δ−1(ψH − ψL)/(pH(1) − pL(1)). We assume
µHM > µML; otherwise e�ort M will never be hosen by the suppliers and the problem beomestrivial. Eliminating symmetri ases, we have six subproblems to solve, whih are for e�ort pairs
(H,H), (H,M), (H,L), (M,M), (M,L), and (L,L). For eah e�ort pair (a1, a2), the subproblemis largely the same as given in (4.1)-(4.6), with the IC onstraints (4.4) and (4.5) eah replaed bytwo IC onstraints to prevent eah supplier from deviating to other e�ort levels.Similar to Lemma 1, it an be shown that the IC onstraints for supplier i do not bind if ai = Land only one of them binds if ai = M (or H). Consequently, the (L,L) subproblem is the same as inthe base model and the results about the (L,L)-forever benhmark and the upper boundary of S∗ inTheorems 1 and 2 ontinue to hold. The (H,L) and (M,L) subproblems are similar to the original
(H,L) subproblem (with one IC onstraint binding for supplier 1); and the (H,H), (H,M), and
(M,M) subproblems are similar to the original (H,H) subproblem (with one IC onstraint bindingfor eah supplier). Sine the the reurrent segment on the lower boundary of S∗ is driven by the
(H,H) subproblem, Theorem 3 and Proposition 4 hold with minor modi�ations � replaing theonstant µ with µHM , and the e�ort L with M in the onditions of Theorem 3. Therefore, the mainresults in the paper withstand the inlusion of more e�ort levels.7 ConlusionWe have presented a dynami ontrat problem for managing ritial suppliers using business vol-ume inentives. Beause the manufaturer annot diretly observe or verify eah supplier's e�ortdevoted to supplying goods or servies that the manufaturer buys from them, a performane-based ontrat is neessary. In this paper, we solve the repeated moral hazard problem with twoagents and haraterize the main properties of the optimal ontrat. We formulate the problemas a Markov deision proess, treating the suppliers' ontinuation utility vetor as the state of thesystem. We have shown that the proess omprises of three types of states, eah representing uniquetransition harateristi and longitudinal behavior. The disovery of these states leads to a learunderstanding of the dynami inentive struture embedded in the optimal solution. In partiular,we �nd that individual trapping states with harateristi volume alloations, as well as a trappingregion formed by a reurrent lass of the Markov states, are the ultimate long-run inentive leversfor the manufaturer. Compared to existing literature on dynami ontrats, we are among thevery few to give well-haraterized solution. In addition, our paper is �rst to exploit the transition29
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Dynami Business Share Alloation in a Supply Chain withCompeting SuppliersHongmin Li1, Hao Zhang2, and Charles H. Fine3A Appendix: ProofsA.1 Proof of Lemma 1Proof. (1) Assume (a1, a2) = (L,L). Consider any feasible solution {q1, q2, U1(x), U2(x)}. Let
U∗

1 = E[U1(x)|L,L] and U∗
2 = E[U2(x)|L,L]. Clearly, U∗

1 and U∗
2 satisfy (4.2) and (4.3). Theyalso satisfy (4.4) and (4.5) stritly beause ψL < ψH . Further, beause V (u1, u2) is onave,

V (U∗
1 , U

∗
2 ) = V (E[U1(x), U2(x)|L,L]) ≥ E[V (U1(x), U2(x))|L,L], by Jensen's inequality. Thus,the set of variables {q1, q2, U∗

1 , U
∗
2 } is feasible to (4.1)-(4.6) and yields weakly higher expetedvalue for the manufaturer than {q1, q2, U1(x), U2(x)} does. Therefore, the problem (4.1)-(4.6)for (a1, a2) = (L,L) must have an optimal solution that satis�es U1(x) ≡ U∗

1 , U2(x) ≡ U∗
2 , and theIC onstraints (4.4) and (4.5) stritly.(2) Assume (a1, a2) = (H,L). Consider any feasible solution {q1, q2, U1(x), U2(x)}. Let U ′

i(x1) =

E[Ui(x1, x2)| a2 = L] =
∑

x2∈{0,1}

pL(x2)Ui(x1, x2), for i = 1, 2, as illustrated in Figure 10(a). We have
E[Ui(x)|H,L] =

∑

x1∈{0,1}

∑

x2∈{0,1}

pH(x1)pL(x2)Ui(x1, x2)

=
∑

x1∈{0,1}

pH(x1)[
∑

x2∈{0,1}

pL(x2)Ui(x1, x2)]

= E[U ′
i(x1)

∣∣ a1 = H].Thus, the menu {U ′
1(x1), U

′
2(x1)}x1∈{0,1} satis�es the PK onstraints (4.2) and (4.3). Beause

E[U1(x)|L,L] = E[U ′
1(x1)| â1 = L], the IC onstraint (4.4) implies u1 ≥ δE[U1(x)|L,L]+φ(rq1)−

ψL = δE[U ′
1(x1)| â1 = L]+φ(rq1)−ψL, and hene (4.4) is satis�ed by {U ′

1(x1), U
′
2(x1)}x1∈{0,1}. Be-ause E[U ′

2(x1)|H,H] = E[U ′
2(x1)|H,L], from (4.3) and ψH > ψL we obtain u2 = δE[U ′

2(x1)|H,L]+

φ(rq2) − ψL > δE[U ′
2(x1)|H,H] + φ(rq2) − ψH , and hene the IC onstraint (4.5) is also satis�ed1W.P. Carey Shool of Business, Arizona State University, Tempe, AZ 85287. Email: hongmin.li�asu.edu.2Sauder Shool of Business, University of British Columbia, Vanouver, BC, V6T 1Z2, Canada. Email:hao.zhang�sauder.ub.a.3Sloan Shool of Management, Massahusetts Institute of Tehnology, Cambridge, MA 02139. Email:harley�mit.edu.
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(stritly). Beause V (·) is onave,
E[V (U′(x1))

∣∣ a1 = H] =
∑

x1∈{0,1}

pH(x1)V (
∑

x2∈{0,1}

pL(x2)U(x))

≥
∑

x1∈{0,1}

pH(x1)
∑

x2∈{0,1}

pL(x2)V (U(x))

= E[V (U(x))|H,L]by Jensen's inequality. Thus, the set of variables {q1, q2, U ′
1(x1), U

′
2(x1)} is feasible to the problem(4.1)-(4.6) and yields weakly higher expeted value for the manufaturer than {q1, q2, U1(x), U2(x)}does. Therefore, the problem (4.1)-(4.6) for (a1, a2) = (H,L) must have an optimal solution suhthat U1(x1, x2) ≡ U ′

1(x1), U2(x1, x2) ≡ U ′
2(x1), and the IC onstraint (4.5) is stritly satis�ed.If the onstraint (4.4) does not bind at {U′(x1)}x1∈{0,1}, we an �nd two points U′′(0) and

U′′(1) on the line segment U′(0)U′(1) suh that E[U′′(x1)|H] = E[U′(x1)|H] and (4.4) binds,as illustrated in Figure 10(a). We show below that U′′(0) and U′′(1) must lie between U′(0) and
U′(1), and hene by the onavity of V (·), E[V (U′′(x1))|H] ≥ E[V (U′(x1))|H].By the above non-binding assumption,

u1 > δE[U ′
1(x1)

∣∣L] + φ(rq1) − ψL. (A.1)Beause u1 = δE[U ′
1(x1)|H] + φ(rq1) − ψH and ψH > ψL, we have

u1 < δE[U ′
1(x1)

∣∣H] + φ(rq1) − ψL, (A.2)i.e., (4.4) is violated at the expeted point E[U′(x1)|H]. Inequalities (A.1) and (A.2) imply
pL(0)U ′

1(0) + pL(1)U ′
1(1) < pH(0)U ′

1(0) + pH(1)U ′
1(1). Beause pL(0)− pH(0) = pH(1)− pL(1) > 0,we obtain U ′

1(0) < U ′
1(1). For any U ′′

1 (0) and U ′′
1 (1) suh that U ′

1(0) < U ′′
1 (0) < E[U ′

1(x1)|H] <

U ′′
1 (1) < U ′

1(1) and E[U ′′
1 (x1)|H] = E[U ′

1(x1)|H], we have
pH(0)[U ′′

1 (0) − U ′
1(0)] = pH(1)[U ′

1(1) − U ′′
1 (1)]and

[pL(0)U ′′
1 (0) + pL(1)U ′′

1 (1)] − [pL(0)U ′
1(0) + pL(1)U ′

1(1)]

=pL(0)[U ′′
1 (0) − U ′

1(0)] − pL(1)[U ′
1(1) − U ′′

1 (1)]

=[pL(0) − pL(1)
pH(0)

pH(1)
][U ′′

1 (0) − U ′
1(0)] > 0,beause pL(0)pH(1) − pL(1)pH(0) = pL(0)pH(1) − (1 − pL(0))(1 − pH(1)) = pL(0) + pH(1) − 1 =

pH(1) − pL(1) > 0. Further,
[pL(0)U ′′

1 (0) + pL(1)U ′′
1 (1)] − [pH(0)U ′′

1 (0) + pH(1)U ′′
1 (1)]

=[pL(0) − pH(0)]U ′′
1 (0) + [pL(1) − pH(1)]U ′′

1 (1)

=[pH(1) − pL(1)][U ′′
1 (0) − U ′′

1 (1)] < 0.2
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(b) The ase with e�ort pair (H,H)Figure 10: Making IC Constraints Binding.Thus, we obtain E[U ′
1(x1)|L] < E[U ′′

1 (x1)|L] < E[U ′′
1 (x1)|H] = E[U ′

1(x1)|H]. By varyingthe gap between U ′′
1 (0) and U ′′

1 (1) while maintaining U ′
1(0) < U ′′

1 (0) < U ′′
1 (1) < U ′

1(1) and
E[U ′′

1 (x1)|H] = E[U ′
1(x1)|H], we an have E[U ′′

1 (x1)|L] anywhere between E[U ′
1(x1)|L] and

E[U ′
1(x1)|H]. Then by inequalities (A.1) and (A.2), there must exist a pair of U ′′

1 (0) and U ′′
1 (1)suh that u1 = δE[U ′′

1 (x1)|L] + φ(rq1) − ψL, i.e., the IC onstraint (4.4) is satis�ed with equality.(3) The ase (a1, a2) = (L,H) is symmetri to the ase (H,L) above and an be proved similarly.(4) Assume (a1, a2) = (H,H). Consider any feasible solution {q,U(x)} and suppose thatthe onstraint (4.5) does not bind. As illustrated in Figure 10(b), there must exist {U′(x)} suhthat (i) for any x1 ∈ {0, 1}, U′(x1, 0) and U′(x1, 1) lie on the line segment U(x1, 0)U(x1, 1) and
Ex2 [U

′(x1, x2)| a2 = H] = Ex2 [U(x1, x2)| a2 = H], and (ii) the onstraint (4.5) binds (by the sameargument as in part 2). Then, we have
Ex1,x2[U

′(x)
∣∣ a2 = H,a1] = Ex1{Ex2 [U

′(x1, x2)
∣∣ a2 = H]

∣∣ a1}
= Ex1{Ex2 [U(x1, x2)| a2 = H]| a1}
= Ex1,x2[U(x)| a2 = H,a1], a1 ∈ {H,L}.Consequently, the PK onstraints (4.2), (4.3), and the IC onstraint (4.4) are unhanged, butthe IC onstraint (4.5) is now binding (by the assumption about {U′(x)}). By the onavity of

V (·), for any x1 ∈ {0, 1}, Ex2 [V (U′(x1, x2))| a2 = H] ≥ Ex2 [V (U(x1, x2))| a2 = H], and hene
E[V (U′(x))|H,H] ≥ E[V (U(x))|H,H].If the IC onstraint (4.4) binds at {U′(x)}, the proof is ompleted. Suppose (4.4) does notbind. As illustrated in Figure 10(b), there must exist {U′′(x)} suh that (i) for any x2 ∈ {0, 1},
U′′(0, x2) and U′′(1, x2) lie on the line segment U′(0, x2)U′(1, x2) and Ex1[U

′′(x1, x2)| a1 = H] =

Ex1 [U
′(x1, x2)| a1 = H], and (ii) the onstraint (4.4) binds. By the same argument as above, we3



an show that the PK onstraints (4.2), (4.3), and the IC onstraint (4.5) are all unhanged, and
E[V (U′′(x))|H,H] ≥ E[V ′(U(x))|H,H]. Notie that both IC onstraints bind at {U′′(x)}, andthe proof is ompleted.A.2 Proof of Proposition 1Proof. De�ne Ûi = E(Ui(x1)| a1 = H), i = 1, 2. Then onstraints (4.13), (4.14), and (4.16) beome(4.22), (4.23), and (4.24). Problem (4.12)-(4.16) is transformed into the upper level problem (4.21)-(4.24) as long as Û is reated from {U(x1)}x1∈{0,1} that satisfy

pH(0)Ui(0) + pH(1)Ui(1) = Ûi, i = 1, 2 (A.3)and the remaining onstraint (4.15).By onstraints (4.13) and (4.15), we have δÛ1 + φ(rq1) − ψH = δ[pL(0)U1(0) + pL(1)U1(1)] +

φ(rq1) − ψL, and hene
pL(0)U1(0) + pL(1)U1(1) = Û1 − δ−1∆ψ. (A.4)Solving equations (A.3) (for i = 1) and (A.4), we obtain onstraints (4.18) and (4.19). Constraint(4.20) is equation (A.3) for i = 2. The objetive (4.17) ensures that for any given Û, the variables

{U(x1)} are optimally hosen for the manufaturer. Therefore we obtain the lower level problem(4.17)-(4.20).A.3 Proof of Proposition 2Proof. De�ne Ûi = E(Ui(x)|H,H), i = 1, 2. Then onstraints (4.26), (4.27), and (4.30) beome(4.37), (4.38), and (4.39). Problem (4.25)-(4.30) is transformed into the upper level problem (4.36)-(4.39) as long as Û is reated from {U(x)}x∈{0,1}2 that satisfy
pH(0)[pH(0)U1(0, 0) + pH(1)U1(0, 1)] + pH(1)[pH(0)U1(1, 0) + pH(1)U1(1, 1)] = Û1 (A.5)
[pH(0)U2(0, 0) + pH(1)U2(1, 0)]pH (0) + [pH(0)U2(0, 1) + pH(1)U2(1, 1)]pH (1) = Û2 (A.6)and the remaining onstraints (4.28) and (4.29).By onstraints (4.26) and (4.28), we have δÛ1+φ(rq1)−ψH = δ{pL(0)[pH(0)U1(0, 0)+pH (1)U1(0, 1)]+

pL(1)[pH(0)U1(1, 0) + pH(1)U1(1, 1)]} + φ(rq1) − ψL, and hene
pL(0)[pH (0)U1(0, 0) + pH(1)U1(0, 1)] + pL(1)[pH (0)U1(1, 0) + pH(1)U1(1, 1)] = Û1 − δ−1∆ψ. (A.7)Solving equations (A.5) and (A.7), we obtain onstraints (4.32) and (4.33). Similarly, by onstraints(4.27) and (4.29), we obtain
[pH(0)U2(0, 0) + pH(1)U2(1, 0)]pL(0) + [pH(0)U2(0, 1) + pH(1)U2(1, 1)]pL(1) = Û2 − δ−1∆ψ. (A.8)From (A.6) and (A.8), we obtain onstraints (4.34) and (4.35). The objetive (4.31) ensures thatfor any given Û, the variables {U(x)} are optimally hosen for the manufaturer. Therefore, thelower level problem is de�ned by (4.31)-(4.35). 4



A.4 Proof of Proposition 3Proof. Claims (1) and (2) follow (4.32)-(4.35) immediately. Claim (3) is true beause
pH(0)M1(0) + pH(1)M1(1)

= pH(0)[pH(0)U(0, 0) + pH(1)U(0, 1)] + pH(1)[pH (0)U(1, 0) + pH(1)U(1, 1)]

= E[U(x)|H,H] = (Û1, Û2)and similarly pH(0)M2(0) + pH(1)M2(1) = (Û1, Û2).Now, we show laim (4). BeauseM1(0) = pH(0)U(0, 0)+pH (1)U(0, 1) andM2(0) = pH(0)U(0, 0)+

pH(1)U(1, 0), we haveM1(0)−U(0, 0) = pH(1)[U(0, 1)−U(0, 0)], M2(0)−U(0, 0) = pH(1)[U(1, 0)−
U(0, 0)], and

l(U(0, 0)M1(0))

l(U(0, 0)U(0, 1))
= pH(1) =

l(U(0, 0)M2(0))

l(U(0, 0)U(1, 0))
.Thus, M1(0)M2(0) is parallel to U(0, 1)U(1, 0) and l(M1(0)M2(0)) = pH(1) · l(U(0, 1)U(1, 0)).Similarly, beauseM1(1) = pH(0)U(1, 0)+pH (1)U(1, 1) andM2(1) = pH(0)U(0, 1)+pH (1)U(1, 1),we have

l(U(1, 1)M1(1))

l(U(1, 1)U(1, 0))
= pH(0) =

l(U(1, 1)M2(1))

l(U(1, 1)U(0, 1))and heneM2(1)M1(1) is parallel toU(0, 1)U(1, 0) with length l(M2(1)M1(1)) = pH(0)·l(U(0, 1)U(1, 0)).A.5 Proof of Theorem 1Proof. The proof is by onstrution. We �rst derive the two boundaries of S∞
LL when ψL = 0, asillustrated in Figure 11 (in whih the utility funtion is φ(w) =

√
w). The proof below utilizes theproperties of Minkowski sum of onvex polytopes.(1) Let S denote the upper boundary of a onvex set S. Consider the upper boundary of S∞

LL,i.e., S∞
LL. From equation (4.44), we have S∞

LL = (δS∞
LL) ⊕ conv(T ) = (δS∞

LL)⊕ conv(T ). Notie that
conv(T ) = T . Refer to Figure 11(b) and onsider any point u′ ∈ S∞

LL. Let the normal vetor at u′be n. Clearly, the point on δS∞
LL with the same normal vetor n is u′′ = δu′. By the propertiesof Minkowski sum (Gritzmann and Sturmfels 1993), u′ = u′′ + t′, where t′ is the point on T withthe same normal vetor n. Thus, we have u′ = δu′ + t′, or, u′ = (1 − δ)−1t′, and onsequently

S∞
LL = (1 − δ)−1T .(2) Let S denote the lower boundary of a onvex set S. Consider the lower boundary of S∞

LL,i.e., S∞
LL. From equation (4.44), we have S∞

LL = (δS∞
LL) ⊕ conv(T ) = (δS∞

LL) ⊕ conv(T ). Notiethat conv(T ) is the line segment (φ(0), φ(rQ))(φ(rQ), φ(0)). Refer to Figure 11() and onsider anypoint u′ ∈ S∞
LL. By the same argument as in part (1) above, we have u′ = (1 − δ)−1t′ for some

t′ ∈ conv(T ) and thus S∞
LL = (1 − δ)−1conv(T ). 5
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Figure 11: Determining the boundaries of S∞
LL: (a) The set T and conv(T ); (b) Determining theupper boundary of S∞

LL; () Determining the lower boundary of S∞
LL.Combining (1) and (2), we obtain S∞

LL = (1 − δ)−1conv(T ) when ψL = 0. Now, assume ψL > 0but ignore the onstraint u ∈ R
2
+ for the moment. De�ne S∞′

LL = S∞
LL + (1 − δ)−1(ψL, ψL). By theproperties of Minkowski sum, (Y +d)⊕Z = (Y ⊕Z)+d for any vetor d. Thus, (δS∞′

LL)⊕conv(T ) =

(δS∞
LL) ⊕ conv(T ) + δ(1 − δ)−1(ψL, ψL) = S∞

LL + (ψL, ψL) + δ(1 − δ)−1(ψL, ψL) = S∞′
LL, where theseond equality follows from equation (4.44). Therefore, the set S∞′

LL is idential to the set S∞
LLharaterized above when ψL = 0. As a result, when ψL > 0 and the onstraint u ∈ R

2
+ is ignored,we have S∞

LL = S∞′
LL − (1 − δ)−1(ψL, ψL) = (1 − δ)−1[conv(T ) − (ψL, ψL)].Consider the onstraint u ∈ R

2
+. As shown above, every u′ ∈ (1 − δ)−1[conv(T ) − (ψL, ψL)]an be self-generated aording to u′ = δu′ + t′ (for some t′ ∈ conv(T )). Hene the trunated set

(1 − δ)−1[conv(T ) − (ψL, ψL)] ∩ R
2
+ an be self-generated as well, and S∞

LL ⊃ (1 − δ)−1[conv(T ) −
(ψL, ψL)] ∩ R

2
+ when the onstraint u ∈ R

2
+ is imposed. Suppose that there exists ũ ∈ S∞

LL \ ((1 −
δ)−1[conv(T ) − (ψL, ψL)] ∩ R

2
+). Then ũ + (ψL, ψL) must belong to the set S∞

LL orrespondingto ψL = 0, whih is (1 − δ)−1conv(T ). Clearly, suh a ũ does not exist. Thus, S∞
LL = (1 −

δ)−1[conv(T ) − (ψL, ψL)] ∩ R
2
+.Next, we derive the manufaturer's ontinuation value funtion V∞

LL(·). Beause every point
u′ ∈ S∞

LL an be self-generated as mentioned above (along with ertain t′ ∈ conv(T ) or q satisfying(4.11)), it is feasible to let U = u in problem (4.8)-(4.11) and hene V∞
LL(u) ≥ (πL−r)Q+ δV∞

LL(u),i.e., V∞
LL(u) ≥ (1−δ)−1(πL−r)Q. It an be further seen that the funtion V∞

LL(u) = (1−δ)−1(πL−
r)Q, for all u ∈ S∞

LL, is a �xed point of the operator ΓLL, i.e., satisfying (ΓLLV
∞
LL)(·) = V∞

LL(·).6



Consider the spae of ontinuous and bounded funtions with the ommon domain S∞
LL, and equipthe spae with the supremum norm ‖f‖ ≡ supu∈S∞

LL
|f(u)|, for any funtion f : S∞

LL → R. Considerany funtions f1 : S∞
LL → R and f2 : S∞

LL → R in the spae and let d = ‖f1 − f2‖. By thede�nition (4.8)-(4.11), ΓLLf1 ≥ ΓLLf2 if f1 ≥ f2 and ΓLL(f + d) = ΓLLf + δd for any onstant
d ∈ R. Thus, ΓLLf2 − δd = ΓLL(f2 − d) ≤ ΓLLf1 ≤ ΓLL(f2 + d) = ΓLLf2 + δd, whih implies
‖ΓLLf1 − ΓLLf2‖ ≤ δ ‖f1 − f2‖. Hene the operator ΓLL is a ontration mapping in this funtionspae and the above �xed point V∞

LL(·) = (1 − δ)−1(πL − r)Q is unique under ΓLL.Finally, aording to the onstrution of S∞
LL, any u′ ∈ S∞

LL satis�es u′ = δu′ + t′, where t′lies on the urve T and has the same normal vetor as u′ does. Beause t′ = (1 − δ)u′, it isuniquely determined. By the de�nition of T , t′ = (φ(rq′1), φ(rq′2)) for some (q′1, q
′
2), and therefore

φ(rq′1)/φ(rq′2) = u′1/u
′
2. For any u′ ∈ S∞

LL \ S∞
LL, we an still have u′ = δu′ + t′, with ertain

t′ ∈ conv(T )\T , orresponding to a randomized volume alloation (reall that any t in conv(T )\Tgives the suppliers' expeted utilities from a randomized volume alloation that randomizes betweentwo deterministi volume alloations). However, suh a onstrution is not unique beause we analso have u′ = u′′ + t′′ for some u′′ 6= δu′, as evident from Figure 11().A.6 Proof of Theorem 2Proof. We determine the upper boundary of S∗, i.e., S∗. Beause S∗ = conv(S∗
LL ∪ S∗

HL ∪ S∗
LH ∪

S∗
HH), our main task is to show that the upper boundary of S∗

LL dominates those of S∗
HL, S∗

LH , and
S∗
HH .Let Ŝ∗

a1a2
represent the feasible parameter set of the lower level problem for the e�ort pair

(a1, a2), given the input funtion V ∗(·). By the de�nition of these problems, we have
Ŝ∗
HL = {Û : ∃{U(x1) ∈ S∗}x1∈{0,1} s.t. (4.18)-(4.20)}, (A.9)
Ŝ∗
LH = {Û : ∃{U(x2) ∈ S∗}x2∈{0,1} s.t. the ounterpart of (4.18)-(4.20) for a1a2 = LH}, (A.10)

Ŝ∗
HH = {Û : ∃{U(x) ∈ S∗}x∈{0,1}2 s.t. (4.32)-(4.35)}. (A.11)By the similarity between the upper level problems and the (L,L) problem (4.8)-(4.11), and inanalogy to (4.46), we obtain

S∗
a1a2

= (δŜ∗
a1a2

) ⊕ conv(T ) − (ψa1 , ψa2), a1a2 ∈ {HL,LH,HH}. (A.12)Consider any Û ∈ Ŝ∗
HH . By de�nition (as in Proposition 3), Û is the expeted ontinuationutility vetor and is the onvex ombination of some {U(x) ∈ S∗}x∈{0,1}2 . Hene Û must lie insidethe onvex hull of {U(x)}x∈{0,1}2 and be dominated by S∗, by the onvexity of S∗. Similarly, any

Û ∈ Ŝ∗
HL or Ŝ∗

LH must be dominated by S∗ as well. Thus, the upper boundary of S∗ dominatesthose of Ŝ∗
HL, Ŝ∗

LH , and Ŝ∗
HH . By equations (4.46), (A.12), the fat ψH > ψL, and the monotoniityof S∗

LL (assuming that the urve T is monotone), the upper boundary of S∗
LL dominates those of

S∗
HL, S∗

LH , and S∗
HH . 7



Therefore, equation (4.45) implies S∗ = S∗
LL. By equation (4.46), we obtain

S∗
LL = (δS∗) ⊕ conv(T ) − (ψL, ψL) = (δS∗

LL) ⊕ conv(T ) − (ψL, ψL).Beause this oinides with the de�nition of S∞
LL, the upper boundaries of S∗, S∗

LL, and S∞
LL areidential.A.7 Proof of Theorem 3The basi idea of the proof is the following: Compare problems (4.8)-(4.11), (4.12)-(4.16), and(4.25)-(4.30). Beause the high e�ort ost ψH is inurred by both suppliers in the (H,H) problemwhile by at most one of them in the other problems, the (H,H) e�ort pair may lead to the lowestontinuation utilities for the suppliers. Consider any point u ∈ S∗ that is reated by the (H,H)e�ort pair. Aording to the geometri struture desribed in Proposition 3 and illustrated in Figure3(a), the orresponding expeted ontinuation utility vetor Û must lie in the onvex hull of theorresponding {U(x) ∈ S∗}x∈{0,1}2 , and hene Û ∈ S∗ as well. To ensure u ∈ S∗, we must push

Û toward S∗. Ideally, we would have Û ∈ S∗. This an be ahieved when all {U(x)} lie on thesame line and their onvex hull degenerates into a line segment. Due to the symmetry between thetwo suppliers (essentially, the slope of conv(T )), the line segment should have a −45◦ slope. Weonstrut the solution rigorously below with the aid of two lemmas.Lemma A1. Let µ = δ−1∆ψ/(pH(1) − pL(1)) > 0. If an expeted ontinuation utility vetor Ûan be generated from a set of U(x), x ∈ {0, 1}2, that all lie on a −45◦ line segment, then theline segment is the shortest when U(0, 0) and U(1, 1) lie between U(0, 1) and U(1, 0). The linesegment has the following properties, as illustrated in Figure 12: (1) U(0, 1)U(1, 0) passes through
Û; (2) U(1, 0) −U(0, 1) = (2µ,−2µ); (3) U(0, 1) lies to the left of the vertial line with horizontaloordinate Û1 − pH(1)µ or exatly on it (in whih ase U(0, 1) oinides with U(0, 0) and M1(0));and (4) U(1, 0) lies below the horizontal line with vertial oordinate Û2 − pH(1)µ or exatly on it(in whih ase U(1, 0) oinides with U(0, 0) and M2(0)).Proof. By Proposition 3 and Figure 3(a), when all {U(x)} lie on the same line, the line mustpass through Û. As the intersetions of this line with the dotted (horizontal or vertial) linesin Figure 12, the points Mi(xi), xi ∈ {0, 1}, i ∈ {1, 2}, are uniquely determined. Beause
l(U(0, 1)U(1, 0)) = l(M1(0)M2(0)) + l(M2(1)M1(1)), the distane between U(0, 1) and U(1, 0)is determined as well. To ensure that the line segment that ontains all {U(x)} has the shortestlength (so that it is easiest to sustain in the optimal solution), U(0, 0) and U(1, 1) must lie between
U(0, 1) and U(1, 0). Then by Proposition 3 and Figure 3(a), U(0, 1) must lie to the left of thevertial line with horizontal oordinate Û1 − pH(1)µ, and U(1, 0) below the horizontal line withvertial oordinate Û2−pH(1)µ. Further, beause both M1(0)M2(0) and M2(1)M1(1) pass through8
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Figure 12: Lined up {U(x)} to Generate a Given Û under (H,H) E�orts.
Û, by the geometry illustrated in Figure 12, we obtain M2(0) −M1(0) = (2pH(1)µ,−2pH (1)µ),
M1(1) −M2(1) = (2pH(0)µ,−2pH(0)µ), and hene U(1, 0) − U(0, 1) = (2µ,−2µ).Notie that although the length of U(0, 1)U(1, 0) is �xed, the exat loations of U(0, 1) and
U(1, 0) (and onsequently, U(0, 0) and U(1, 1)) are �exible to some extent.Lemma A2. (1) If ψL

ψH
≤ pL(1)

pH(1) and φ(rQ) ≥ 2(1−δpH(0))µ, the −45◦ line segment ulur an be self-generated under the (H,H) e�ort pair, where ul = (1−δ)−1(δpH(1)µ−ψH ,−δpH(1)µ+φ(rQ)−ψH )and ur = (1 − δ)−1(−δpH(1)µ+ φ(rQ) − ψH , δpH(1)µ− ψH). Further, ulur annot be extended ateither end without losing self-sustainability, and there is no −45◦ line segment below (to the left of)
ulur that an be self-generated under the (H,H) e�ort pair.(2) If ψL

ψH
> pL(1)

pH(1) and φ(rQ) ≥ 2((1−δ)µ+ψH), the −45◦ line segment ulur an be self-generatedunder the (H,H) e�ort pair, where ul = (1 − δ)−1(0, φ(rQ) − 2ψH) and ur = (1 − δ)−1(φ(rQ) −
2ψH , 0). There is no −45◦ line segment below (or to the left of) ulur that an be self-generatedunder the (H,H) e�ort pair.Proof. (1) Assume that the left end point of the line segment, ul, is generated from the expetedontinuation utility vetor Ûl. To push ul to the top left, by equations (4.37)-(4.38), we shouldhoose q = (0, Q), and hene

ul = δÛl + (0, φ(rQ)) − (ψH , ψH). (A.13)The vetor Ûl is reated from the set of ontinuation utility vetors {Ul(x)}, all lying on the linesegment ulur. To push ul to the top left, we should push Ûl to the top left as muh as possible.From Figure 12 and Lemma A1(3), the minimum horizontal and vertial distane between Ûl and9
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Figure 13: Generating ul from {Ul(x)} and Ûl under (H,H) E�orts.
Ul(0, 1) is pH(1)µ, and the minimum is reahed if Ul(0, 1), Ul(0, 0) and M1(0) are of the samepoint. Therefore, to generate the leftmost Ûl, Ul(0, 1) and Ul(0, 0) must oinide with the leftendpoint of the line segment, ul. Hene, as illustrated in Figure 13,

Ûl = ul + (pH(1)µ,−pH(1)µ). (A.14)Substituting (A.14) into (A.13), we obtain
ul = (1 − δ)−1(δpH(1)µ− ψH ,−δpH(1)µ + φ(rQ) − ψH).Similarly, we an obtain the right end point of the line segment
ur = (1 − δ)−1(−δpH(1)µ+ φ(rQ) − ψH , δpH(1)µ− ψH).It follows that

ur − ul = (1 − δ)−1[φ(rQ) − 2δpH(1)µ](1,−1).By Lemma A1, to generate Ûl from {Ul(x)}, we must have Ul(1, 0) − Ul(0, 1) = (2µ,−2µ).Thus, to ontain all {Ul(x)}, ulur must be long enough, i.e., (1 − δ)−1[φ(rQ) − 2δpH(1)µ] ≥ 2µ.That is, φ(rQ) ≥ 2(1 − δ + δpH(1))µ, or,
φ(rQ) ≥ 2(1 − δpH(0))µ.Here, we impliitly assumed that ul1 ≥ 0 (and ur2 ≥ 0), i.e., δpH(1)µ ≥ ψH , whih implies

∆ψpH(1)/(pH (1) − pL(1)) ≥ ψH , (ψH − ψL)pH(1) ≥ ψH(pH(1) − pL(1)), or ψL
ψH

≤ pL(1)
pH(1) .Now, we show that there is no −45◦ line segment below (or to the left of) ulur that an beself-generated under the (H,H) e�ort pair. A −45◦ line is de�ned by an equation u1 + u2 = k,10



for some onstant k. A −45◦ line segment is below or to the left of another −45◦ line segmentif the former has a smaller k in its de�ning equation. Suppose L is the lowest −45◦ line segmentthat an be self-generated under the (H,H) e�ort pair, with a de�ning equation u1 + u2 = k, fora ertain k > 0. For any feasible u under the (H,H) e�orts, equations (4.37)-(4.38) imply that
u = δÛ + t − (ψH , ψH), for ertain Û ∈ Ŝ∗

HH and t ∈ conv(T ) (randomized volume alloation isneeded to reate a t vetor in conv(T ) \ T ). Similar to the situation illustrated in Figure 11() fordetermining S∞
LL, any u ∈ L must be generated from ertain Û ∈ L and t ∈ conv(T ). Beause

conv(T ) = (φ(0), φ(rQ))(φ(rQ), φ(0)), any t ∈ conv(T ) orresponds to a volume alloation (q̃1, q̃2)that randomizes between (0, Q) and (Q, 0) and hene satis�es E[φ(rq̃1)+φ(rq̃2)] = φ(rQ). Thus, by(4.37)-(4.38), we have u1 +u2 = δ(Û1 + Û2)+φ(rQ)−2ψH , whih implies k = δk+φ(rQ)−2ψH , or
k = (1 − δ)−1(φ(rQ) − 2ψH). Clearly, both ul and ur lie on the line segment L and ulur oinideswith L.(2) When ul1 < 0 (and ur2 < 0), i.e., ψL

ψH
> pL(1)

pH(1) , beause u ∈ R
2
+, the line segment ulurwould be trunated by the two axes, beoming ulur. Beause ul1 = 0 and ul1 + ul2 = ul1 + ul2 =

(1 − δ)−1[φ(rQ) − 2ψH ], we have ul2 = (1 − δ)−1[φ(rQ) − 2ψH ]. Thus, the two end points of thetrunated line segment are ul = (1 − δ)−1(0, φ(rQ) − 2ψH) and ur = (1 − δ)−1(φ(rQ) − 2ψH , 0).For the trunated line segment ulur to be self-sustainable, it must be long enough as well. Thatis, (1 − δ)−1[φ(rQ) − 2ψH ] ≥ 2µ, or φ(rQ) ≥ 2((1 − δ)µ + ψH). In addition, beause both ul and
ur lie on the line segment L de�ned above, ulur is the lowest possible self-sustainable line segmentunder the (H,H) e�ort pair.Proof. [Proof of the Theorem℄ By Lemma A2, under the (H,H) e�ort pair, the line segments ulurand ulur an be self-generated in the two ases, respetively, and there is no other self-sustainableline segment below (or to the left of) them. Thus, ulur, ulur ⊂ S∗

HH and they an potentially be
S∗ (or part of whih) in their respetive ases. We verify this by showing that the other e�ort pairsannot generate any u vetor below ulur or ulur.Note that ulur and ulur are both on the −45◦ line L : u1 + u2 = k, for k = (1 − δ)−1(φ(rQ) −
2ψH). By equations (4.46) and (A.12), to generate a ontinuation utility vetor with the smallest
u1+u2 under any e�ort pair (a1, a2), the manufaturer must hoose volume alloation (0, Q), (Q, 0),or a randomization between the two, suh that φ(rq1) + φ(rq2) = φ(rQ) (or E[φ(rq1) + φ(rq2)] =

φ(rQ)). This is similar to the situation illustrated in Figure 11() for determining S∞
LL.Consider the (L,L) e�ort pair. From any U ∈ L, by (4.9)-(4.10), we have u1 +u2 = δ(U1 +U2)+

φ(rq1)+φ(rq2)−2ψL = δk+φ(rQ)−2ψL = k+2∆ψ > k, beause δk+φ(rQ)−2ψH = k. Thus, theresulting u must lie above the line L. Consider the (H,L) e�ort pair next. By Proposition 1 andFigure 2, when both U(0) and U(1) are drawn from L, we have Û ∈ L as well. By (4.22)-(4.23),we have u1 +u2 = δ(Û1 + Û2)+ φ(rq1) +φ(rq2)−ψH −ψL = δk+φ(rQ)−ψH −ψL = k+ ∆ψ > k.Thus, the resulting u lies above the line L. Similarly, under the (L,H) e�ort pair, any u reatedfrom U(0) and U(1) on L must lie above L as well.11
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Figure 14: Generating Û in a Symmetri Way.Therefore, the line segment ulur or ulur an only be sustained under the (H,H) e�ort pair,and any u vetor on or below the −45◦ line L must be generated by the (H,H) e�ort pair alone.We an easily verify that no u vetor below L an be generated by the (H,H) e�ort pair. Hene wemust have ulur ⊂ S∗. In the ase of ulur, it must be S∗ itself beause it extends to the two axes.Finally, onsider the manufaturer's optimal value funtion. Assume that V ∗(u) = V
∗, for all

u ∈ ulur, in ase (1). Beause the orresponding {U(x)} are all on ulur, by (4.25)-(4.30), we have
V

∗
= δV

∗
+ (πH − r)Q, and V ∗

= (1 − δ)−1(πH − r)Q. Thus, the funtion V ∗(u) = V
∗, u ∈ ulur,is self-sustainable. Beause V ∗ is the highest ahievable expeted value for the manufaturer givenany e�ort history, we must have V ∗(u) = V

∗, for all u ∈ ulur. The same an be shown for ase(2).A.8 Proof of Proposition 4Proof. By Lemma A1 and Figure 12, an expeted ontinuation utility vetor Û an be generatedfrom a set of U(x) that all lie on a −45◦ line segment passing through Û, with U(0, 0) and U(1, 1)lying between U(0, 1) and U(1, 0) and U(1, 0) = U(0, 1)+ (2µ,−2µ). By adjusting the positions of
{U(x)}, we an obtain a symmetri layout suh that U(0, 1) = Û+(−µ, µ), U(1, 0) = Û+(µ,−µ),and U(0, 0) = U(1, 1) = Û, as illustrated in Figure 14.In the �rst ase of Theorem 3, all U(x) must be drawn from the self-sustainable line segment u ∈
ulur, whih implies that a Û vetor an be generated through the above symmetri layout if and onlyif Û ∈ ũlũr, where ũl = ul+(µ,−µ) = (1−δ)−1((1−δpH (0))µ−ψH ,−(1−δpH (0))µ+φ(rQ)−ψH )and ũr = ur + (−µ, µ) = (1 − δ)−1(−(1 − δpH(0))µ+ φ(rQ) − ψH , (1 − δpH(0))µ− ψH). Considerany u ∈ ũlũr. If we hoose Û = u, we would have u = δu + (φ(rq1), φ(rq2)) − (ψH , ψH) and
u = (1 − δ)−1(φ(rq1) − ψH , φ(rq2) − ψH). There always exists a random volume alloation (q̃1, q̃2)(randomizing between (0, Q) and (Q, 0)) suh that Eφ(rq̃1) + Eφ(rq̃2) = φ(rQ) and Eφ(rq̃1) ∈12



[(1 − δpH(0))µ,−(1 − δpH(0))µ+ φ(rQ)] ⊂ [0, φ(rQ)]. With this random volume alloation, u anbe self-generated. Thus, for any u ∈ ũlũr, it is feasible to hoose Û = u. Beause any Û ∈ ũlũran be generated through the aforementioned symmetri layout, we have U(0, 1) = u + (−µ, µ),
U(1, 0) = u + (µ,−µ), and U(0, 0) = U(1, 1) = u, whih proves part (1) of the proposition.By the proof of Lemma A2 and Figure 13, a Û vetor that an be generated from the linesegment ulur must be at least pH(1)µ away from eah end point horizontally and vertially. Thus,any u vetor lose enough to ul or ur annot be generated by letting Û = u. These u vetors an bereated from Ûl or Ûr, the Û vetor orresponding to ul or ur, along with proper volume alloations.By Figure 13, ul is generated from Ul(0, 0) = Ul(0, 1) = ul, Ul(1, 1) = ul + pH(1)−pH(0)

pH(1) (µ,−µ),and Ul(1, 0) = ul+(2µ,−2µ). Hene part (2) of the proposition is obtained. Part (3) an be shownsimilarly.
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B Appendix: ExtensionsIn the base model studied in previous setions, we have made some assumptions that simplify ouranalysis. In this appendix, we relax some important assumptions and show that our main resultsare robust under suh extensions. For ompleteness, most disussions in Setion 6 of the main paperare repeated here.B.1 Asymmetri SuppliersThe basi model (3.6)-(3.9) assumes that the two suppliers are symmetri, with regard to theirutility funtions, ost funtions, unit margins, value ontributions, et. This assumption allows usto onentrate on the most valuable irumstanes for dynami volume alloation. Suppose, forexample, the suppliers' unit margins are unequal. Then the manufaturer would tend to alloateless volume to the supplier demanding the higher margin, and hene the power of volume alloationas an inentive lever would diminish. Nevertheless, as shown below, the main results of this paperan be extended to the setting with unequal supplier margins.Suppose supplier i's unit margin is ri, i = 1, 2. The manufaturer's problem (4.1)-(4.6) ofinduing e�orts (a1, a2) only needs minor modi�ations: replaing the term rQ in the objetivefuntion by r1q1 + r2q2, and replaing the terms rq1 and rq2 in the onstraints by r1q1 and r2q2,respetively. It is straightforward to verify that Lemma 1 is still valid. Thus, the problems forinduing e�orts (L,L), (H,L), (L,H), and (H,H) in Subsetion 4.1 are all valid exept for theabove modi�ations in the objetive funtions and onstraints. It implies that the lower levelproblems in Propositions 1 and 2, when induing e�orts (H,L), (L,H), and (H,H), are the sameas before, and hene the relationship between the expeted ontinuation utility vetor Û and theset of ontinuation utility vetors {U(x)}x∈{0,1}2 (or {U(xi)}xi∈{0,1}) is unhanged. Consequently,Figures 2, 3, and Proposition 3 bear no hange as well.The set T of one-period utility vetors generated from deterministi volume alloations, de�nedin expression (4.40), hanges to:
T = {(φ(r1q1), φ(r2q2)) : q1 + q2 = Q, q1, q2 ∈ [0, Q]}

= {(t1, t2) :
φ−1(t1)

r1
+
φ−1(t2)

r2
= Q, t1 ∈ [φ(0), φ(r1Q)], t2 ∈ [φ(0), φ(r2Q)]}. (B.1)As an example, if the utility funtion is φ(w) =

√
w, i.e., φ−1(t) = t2, the new set T would be thenorth-east quarter of an ellipse with radiuses √r1Q and √

r2Q, as opposed to the irle with radius
√
rQ in the equal margin ase. Equations (4.41) to (4.46) still hold true. Theorems 1 and 2 are alsovalid, after minor modi�ations. They an be ombined as follows.Theorem B1. Suppose that r1 6= r2 and both suppliers' reservation utility is 0. To indue ef-forts (L,L) forever, the set of suppliers' ontinuation utility vetors is S∞

LL = (1 − δ)−1[conv(T ) −
(ψL, ψL)] ∩ R

2
+. At any u ∈ S∞

LL, the optimal U equals u, the optimal volume alloation q satis�es14



φ(r1q1)/φ(r2q2) = u1/u2, and the manufaturer's expeted value is V∞
LL(u) = (1−δ)−1(πLQ−r1q1−

r2q2). In the optimal solution to the manufaturer's problem, the upper boundary of the ontinuationutility set S∗ oinides with S∞
LL, and the manufaturer's optimal value at any u ∈ S∗ is given by

V ∗(u) = V∞
LL(u).The proof of the theorem repeats those of Theorems 1 and 2 (and hene is omitted). Here, themanufaturer's expeted value is only derived along the upper boundary of S∞

LL, where the optimalvolume alloation is unique but the value funtion V∞
LL(·) is not �at any more beause the totalmargin r1q1 + r2q2 is not onstant. The theorem implies that the trapping behavior of the upperboundary of S∗ extends to the unequal margin ase.The properties of the optimal solution along the lower boundary of S∗, haraterized by Theorem3 and Proposition 4, an be generalized as well. However, due to spae limitation, a rigorous analysisis omitted. The main modi�ation required is that the line segment ulur (or ulur), self-generatedunder the (H,H) e�orts, is parallel to the line segment conv(T ) = (φ(0), φ(r2Q))(φ(r1Q), φ(0)),whose slope is no longer −45◦ when the margins di�er. Figures 6 and 14 need be modi�ed as well,by tilting the lines along the diretion of conv(T ). In addition, the manufaturer's expeted valuealong the line segment ulur (or ulur) now varies linearly between V ∗(ul) and V ∗(ur). Despite thesehanges, the trapping behavior of the lower boundary of S∗ remains the same.We remark that asymmetries in utility and ost funtions an also be aommodated similarly,by replaing φ(·) and ψ in problem (4.1)-(4.6) with φi(·) and φi, i = 1, 2, and the same solutionapproah applies. The feasible region will not be symmetri along the 45◦ line but the results aresimilar to those under the base model.B.2 Fixed Total PaymentThe additional problem at the start of period 1, given ontinuation utilities u0 = (u0

1, u
0
2) promisedto the suppliers at the beginning, is the following:

V 0(u0) = max
a,{U(x)}

E[π(x1)q + π(x2)q + V (U1(x), U2(x))| a] (B.2)s.t. u0
i = E[Ui(x)| a] − ψai , i ∈ {1, 2}. (B.3)This is a simple one-shot problem. The manufaturer's optimal value funtion V 0(u0) retainsthe strutural properties of the funtion V (u) obtained from the reursive problem (6.2)-(6.5), andthe optimal ontrat has similar properties as in the volume alloation ase.B.3 Flexible Total VolumeIn the base model, the manufaturer's total business volume is a onstant Q in every period. Inthis extension, we allow the total volume to vary in an interval, [Qm, QM ]. We assume that themanufaturer has a target volume Q0 ∈ [Qm, QM ] and inurs overorder and underorder penalties.15



Thus, the manufaturer's total ost of prouring Q units, inluding the margins paid to the suppliers,is desribed by a funtion g(Q) =

{
rQ+ βm(Q0 −Q), if Q ∈ [Qm, Q0),
rQ+ βM (Q−Q0), if Q ∈ [Q0, QM ],

for some nonnegativeoe�ients βm and βM . When βm = βM = ∞, the model redues to the base model with �xed totalvolume; when βm = βM = 0, the model redues to one without a target volume. To avoid trivialases, we assume πL < r+ βM , i.e., inreasing the total volume beyond Q0 is not pro�table for themanufaturer at least in the low e�ort senario; otherwise, the manufaturer would be tempted topush the total volume all the way to QM .The manufaturer's problem (4.1)-(4.6) of induing a given e�ort pair (a1, a2) only undergoesminor modi�ations: the manufaturer's total payment rQ in the objetive funtion is replaed by
g(q1 + q2), and the volume onstraint q1 + q2 = Q is replaed by q1 + q2 ∈ [Qm, QM ]. It an beveri�ed that Lemma 1 is intat. Thus, the problems of induing (L,L), (H,L), (L,H), and (H,H)e�ort pairs are all similar as before exept the above modi�ations. As a result, the deomposition ofthese problems is still valid, i.e., Propositions 1 and 2 are still true exept for the neessary hangesin the objetive funtions and volume onstraints in the upper level problems. Propositions 3 and 4arry over without any modi�ation. The robustness of these results reveals that the fundamentalinentive driver in the problem is unhanged under this generalization.The �exibility in Q broadens the manufaturer's hoies, whih enlarges the feasible set ofthe suppliers' ontinuation utilities and improves the manufaturer's value funtion. Due to suhhanges, Theorems 1, 2, and 3 need to be modi�ed. The main result is that the trapping regionnear the upper boundary of the feasible set S∗ and the reurrent set near the lower boundary areboth enlarged in general, as shown below.Benhmark Contrat: Induing (L,L) E�orts Forever. The benhmark problem of in-duing e�orts (L,L) forever an be solved similarly as in the base model. For onveniene, de�nethe one-period utility set T (Q) given total volume Q ∈ [Qm, QM ] (under deterministi volumealloation) as:

T (Q) = {(φ(rq1), φ(rq2)) : q1 + q2 = Q, q1, q2 ≥ 0}
= {(t1, t2) : φ−1(t1) + φ−1(t2) = rQ, t1, t2 ≥ φ(0)}, (B.4)whih is a onave urve in the (t1, t2) spae but not a onvex set. Let conv(T (Q)) be the onvex hullof T (Q), whose lower left boundary is the line segment (0, φ(rQ))(φ(rQ), 0) (reall that φ(0) = 0).De�ne the one-period utility set for an interval of volumes [Qa, Qb] as

T ([Qa, Qb]) = ∪Q∈[Qa,Qb]T (Q).Theorem 1 an be generalized as follows (as illustrated in Figures 15 and 16):Theorem B2. Suppose both suppliers' reservation utility is 0. To indue e�orts (L,L) forever, theset of suppliers' ontinuation utility vetors is S∞
LL = (1− δ)−1[conv(T ([Qm, QM ]))− (ψL, ψL)]∩R
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and the manufaturer's value funtion V∞
LL(u) is given by: (1) If πL − r + βm ≥ 0,

V∞
LL(u) =





(1−δ)(u1+u2)−φ(rQm)
φ(rQ0)−φ(rQm) · (πL−r+βm)(Q0−Qm)

1−δ

+ (πL−r+βm)Qm−βmQ0

1−δ ,
if u ∈ R

2
+ and u1 + u2 ∈ [φ(rQm)

1−δ , φ(rQ0)
1−δ ),

(πL−r)Q0

1−δ , if u ∈ conv(T (Q0))−(ψL,ψL)
1−δ ∩ R

2
+,

(πL−r−βM )Q+βMQ0

1−δ , if u ∈ T (Q)−(ψL,ψL)
1−δ ∩ R

2
+ for Q ∈ (Q0, QM ];(2) If πL − r + βm < 0,

V∞
LL(u) =





(πL−r+βm)Qm−βmQ0

1−δ , if u ∈ conv(T (Qm))−(ψL,ψL)
1−δ ∩ R

2
+,

(πL−r+βm)Q−βmQ0

1−δ , if u ∈ T (Q)−(ψL,ψL)
1−δ ∩ R

2
+ for Q ∈ (Qm, Q0],

(πL−r−βM )Q+βMQ0

1−δ , if u ∈ T (Q)−(ψL,ψL)
1−δ ∩ R

2
+ for Q ∈ (Q0, QM ].At any u ∈ S∞

LL, an optimal hoie of U is u. The optimal U is unique and the optimal volumealloation q satis�es φ(rq1)/φ(rq2) = u1/u2, for u ∈ (1 − δ)−1[T ([Q0, QM ]) − (ψL, ψL)] ∩ R
2
+ if

πL − r + βm ≥ 0, or u ∈ (1 − δ)−1[T ([Qm, QM ]) − (ψL, ψL)] ∩ R
2
+ if πL − r + βm < 0.
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Figure 15: (a) The set S∞
LL and indi�erene urves of V∞

LL(·), and (b) the setion of V∞
LL(·) at

u1 = u2, when πL − r + βm > 0 and ψL = 0.When πL − r + βm > 0, the indi�erene urves of the manufaturer's value funtion V∞
LL(·)are illustrated in Figure 15(a) and the setion of the funtion along the 45◦ ray in the u plane(suh that u1 = u2) is illustrated in Figure 15(b). In this ase, (πL − r)Q0 > max{(πL − r +

βm)Qm− βmQ0, (πL− r− βM )QM +βMQ0}, and thus V∞
LL(·) has a �at top over the middle subsetof S∞

LL highlighted in Figure 15(a) (whih is the set S∞
LL in the base model). V∞

LL(·) dereases as
u moves away from the middle. Over the lower left subset of S∞

LL, V∞
LL(·) is a onvex ombinationof (1 − δ)−1[(πL − r + βm)Qm − βmQ0] and (1 − δ)−1(πL − r)Q0 with proper weights. When

πL−r+βm < 0, we have (πL−r+βm)Qm−βmQ0 > (πL−r)Q0 > (πL−r−βM)QM+βMQ0, and thus
V∞
LL(·) has a �at top over the lower left subset of S∞

LL illustrated in Figure 16(a). As shown in Figure17
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Figure 16: (a) The set S∞
LL and indi�erene urves of V∞

LL(·), and (b) the setion of V∞
LL(·) at

u1 = u2, when πL − r + βm < 0 and ψL = 0.16(b), the manufaturer's value delines as u moves toward the upper boundary of S∞
LL and the slopeis steeper when Q ∈ (Q0, QM ] than when Q ∈ (Qm, Q0] beause πL − r − βM < πL − r + βm < 0.By Theorem B2, every point on the delining part of V∞

LL(·) is a trapping point, reated from atotal volume in [Q0, QM ] or [Qm, QM ], depending on the sign of πL− r+ βm. Therefore, the set ofpotential trapping points is enlarged as a result of the �exibility of Q.To prove the theorem, we �rst show the following lemmas:Lemma B1. In the (t1, t2) utility plane, the urve T (Q) is dereasing and onave everywhere.Proof. By de�nition, T (Q) = {(φ(rq1), φ(rq2)) : q1 + q2 = Q, q1, q2 ≥ 0} = {(φ(z), φ(rQ − z)) :

z ∈ [0, rQ]}. In the (t1, t2) plane (where t1 is on the horizontal axis and t2 on the vertial axis),the upper left endpoint of T (Q) orresponds to z = 0 and the lower right endpoint orresponds to
z = rQ. The slope of T (Q) at z ∈ [0, rQ] is given by:

s(z;Q) =
−φ′(rQ− z)

φ′(z)
< 0.The inequality follows from the fat that φ′(·) > 0. Thus, T (Q) is dereasing everywhere. Thederivative of the slope at z ∈ [0, rQ] is given by:

s′(z;Q) =
φ′′(rQ− z)φ′(z) + φ′(rQ− z)φ′′(z)

[φ′(z)]2
< 0.The inequality follows from the fat that φ′(·) > 0 and φ′′(·) < 0. Thus, the slope of T (Q) isdereasing everywhere and T (Q) is onave.Lemma B2. Suppose t ∈ T (Q), t′ ∈ T (Q′), and t′′ = λt + (1 − λ)t′ for some Q > 0, Q′ > 0, and

λ ∈ (0, 1). Then, t′′ lies below T (Q′′), where Q′′ = λQ+ (1 − λ)Q′.18



Proof. By de�nition, (t1, t2) = (φ(rq1), φ(rq2)) for some q1, q2 ≥ 0 suh that q1 + q2 = Q; (t′1, t
′
2) =

(φ(rq′1), φ(rq′2)) for some q′1, q
′
2 ≥ 0 suh that q′1 + q′2 = Q′; and (t′′1, t

′′
2) = (λφ(rq1) + (1 −

λ)φ(rq′1), λφ(rq2) + (1 − λ)φ(rq′2)).Beause φ(·) is stritly onave, we have λφ(rq1) + (1 − λ)φ(rq′1) < φ(λrq1 + (1 − λ)rq′1) and
λφ(rq2) + (1 − λ)φ(rq′2) < φ(λrq2 + (1 − λ)rq′2). Beause φ−1(·) is inreasing, we have

φ−1(t′′1) + φ−1(t′′2) = φ−1(λφ(rq1) + (1 − λ)φ(rq′1)) + φ−1(λφ(rq2) + (1 − λ)φ(rq′2))

< φ−1(φ(λrq1 + (1 − λ)rq′1)) + φ−1(φ(λrq2 + (1 − λ)rq′2))

= λrq1 + (1 − λ)rq′1 + λrq2 + (1 − λ)rq′2

= λrQ+ (1 − λ)rQ′ = rQ′′.By the de�nition of T (Q′′), the point (t′′1 , t
′′
2) lies below the urve T (Q′′) in the (t1, t2) plane.Now, we prove the theorem:Proof. [Proof of Theorem B2℄ Given the total volume Q, Theorem 1 states that: (1) The manu-faturer's ontinuation value (1−δ)−1(πLQ−g(Q)) an be ahieved over the suppliers' ontinuationutility set S∞

LL(Q) = (1−δ)−1[conv(T (Q))−(ψL, ψL)]∩R
2
+, i.e., V∞

LL(u;Q) = (1−δ)−1(πLQ−g(Q))for u ∈ S∞
LL(Q); (2) For any u ∈ S∞

LL(Q), an optimal hoie of the future utility vetor U = u; (3)For any u ∈ S∞
LL(Q) = (1 − δ)−1[T (Q) − (ψL, ψL)] ∩ R

2
+, the optimal U is unique and the optimalvolume alloation q satis�es φ(rq1)/φ(rq2) = u1/u2.Now, letQ vary in the interval [Qm, QM ]. De�ne S∞

LL([Qa, Qb]) = ∪Q∈[Qa,Qb]S
∞
LL(Q), S∞

LL([Qa, Qb]) =

∪Q∈[Qa,Qb]S
∞
LL(Q), S∞

LL([Qa, Qb]) = ∪Q∈[Qa,Qb]S
∞
LL(Q), et. Then, the suppliers' ontinuation util-ity set is given by S∞

LL([Qm, QM ]) = (1 − δ)−1[conv(T ([Qm, QM ])) − (ψL, ψL)] ∩ R
2
+. Beause

g(Q) =

{
rQ+ βm(Q0 −Q), if Q ∈ [Qm, Q0),
rQ+ βM (Q−Q0), if Q ∈ [Q0, QM ],

the manufaturer's one-period pro�t from totalvolume Q is πLQ− g(Q) =

{
(πL − r + βm)Q− βmQ0, if Q ∈ [Qm, Q0),
(πL − r − βM )Q+ βMQ0, if Q ∈ [Q0, QM ].

Thus, given a �xed Qfrom the interval [Qm, QM ], the manufaturer's value funtion V∞
LL(·;Q) has three ases:

V∞
LL(u;Q) =





(1 − δ)−1[(πL − r + βm)Q− βmQ0], if Q ∈ [Qm, Q0),
(1 − δ)−1(πL − r)Q0, if Q = Q0,
(1 − δ)−1[(πL − r − βM )Q+ βMQ0], if Q ∈ (Q0, QM ],

(B.5)for all u ∈ S∞
LL(Q). When Q varies in [Qm, QM ], the manufaturer's value funtion V∞

LL(·) is formedby the upper onvex hull of the olletion of funtions {V∞
LL(·;Q)}Q∈[Qm,QM ]. The shape of thisonvex hull depends on the sign of πL − r + βm as follows:(1) Assume πL − r + βm > 0. Consider three regions of u.(i) Reall that πL − r − βM < 0. Thus, we have V∞

LL(·;Q0) > max{V∞
LL(·;Qm), V∞

LL(·;QM )}.It follows that V∞
LL(·) has a �at top over the set S∞

LL(Q0), i.e., V∞
LL(u) = V∞

LL(u;Q0) for all u ∈
S∞
LL(Q0), as illustrated in Figure 15. 19



(ii) Consider the region S∞
LL((Q0, QM ]) = (1 − δ)−1[T ((Q0, QM ]) − (ψL, ψL)] ∩ R

2
+. Any uin S∞

LL((Q0, QM ]) must belong to the set S∞
LL(Q) = (1 − δ)−1[T (Q) − (ψL, ψL)] ∩ R

2
+ for some(unique) Q ∈ (Q0, QM ], whih an be denoted by Q(u). Intuitively, the ontinuation utility vetor

u is reated by splitting the total volume Q(u) in a spei� (deterministi) way forever. We showthat V∞
LL(u) = V∞

LL(u;Q(u)) for all u ∈ S∞
LL((Q0, QM ]). It su�es to verify that the funtion

V∞
LL(·) so de�ned is onave over S∞

LL((Q0, QM ]). Consider any points uA,uB ∈ S∞
LL((Q0, QM ]) and

uλ = λuA + (1 − λ)uB for some λ ∈ (0, 1). By Lemma B2, uλ lies below the urve S∞
LL(Q̂) in the

u plane, where Q̂ = λQ(uA) + (1 − λ)Q(uB). Thus, Q(uλ) < Q̂. Beause V∞
LL(·;Q) is dereasingand linear in Q ∈ (Q0, QM ] (by equation (B.5), V∞

LL(u;Q) is �at in u for a given Q), we have
V∞
LL(uλ;Q(uλ)) > V∞

LL(·; Q̂) = λV∞
LL(uA;Q(uA)) + (1 − λ)V∞

LL(uB ;Q(uB)). By the de�nition ofonave funtions, the funtion V∞
LL(u) = V∞

LL(u;Q(u)) is onave in the domain S∞
LL((Q0, QM ]).(If uλ lies below S∞

LL(Q0), the total volume Q(uλ) is out of the range (Q0, QM ]. But in that asewe must have uλ ∈ S∞
LL(Q0) and, as shown before, V∞

LL(uλ) = V∞
LL(uλ;Q0). We just need to replae

Q(uλ) with Q0 in the above argument.)(iii) The lower boundary of eah set S∞
LL(Q) is the line segment S∞

LL(Q) = {u : u1 + u2 =

(1 − δ)−1φ(rQ);u1, u2 ≥ 0}. For eah u, there is a unique Q suh that u ∈ S∞
LL(Q), or Q =

φ−1((1 − δ)(u1 + u2))/r. Thus, over the set S∞
LL([Qm, Q0)), whih onsists of the lower boundarieswhen Q ∈ [Qm, Q0), the surfae of the olletion of funtions {V∞

LL(·;Q)}Q∈[Qm,Q0) is given by
Ṽ∞
LL(u) = (1−δ)−1[(πL−r+βm)Q−βmQ0] = (1−δ)−1[(πL−r+βm)φ−1((1−δ)(u1+u2))/r−βmQ0].Beause πL − r+ βm > 0 and φ−1(·) is onvex inreasing, the funtion Ṽ∞

LL(u) is onvex inreasingin u1 + u2, as illustrated by the dashed line in Figure 15(b). Thus, over the set S∞
LL([Qm, Q0)), theonvex hull of Ṽ∞

LL(·), whih gives V∞
LL(·), is the onvex ombination of Ṽ∞

LL(u)'s at the two edges
S∞
LL(Qm) and S∞

LL(Q0), with weights φ(rQ0)−(1−δ)(u1+u2)
φ(rQ0)−φ(rQm) and (1−δ)(u1+u2)−φ(rQm)

φ(rQ0)−φ(rQm) , respetively. Asa result,
V∞
LL(u) =

(1 − δ)(u1 + u2) − φ(rQm)

φ(rQ0) − φ(rQm)
· (πL − r + βm)(Q0 −Qm)

1 − δ
+

(πL − r + βm)Qm − βmQ0

1 − δfor any u ∈ R
2
+ suh that u1 + u2 ∈ (1 − δ)−1[φ(rQm), φ(rQ0)).(2) Assume πL− r+βm < 0. Then, we have V∞

LL(·;Qm) > V∞
LL(·;Q0) > V∞

LL(·;QM ), and thus
V∞
LL(·) has a �at top over the set S∞

LL(Qm), i.e., V∞
LL(u) = V∞

LL(u;Qm) for all u ∈ S∞
LL(Qm), as illus-trated in Figure 16. By equation (B.5), V∞

LL(·;Q) is dereasing in Q ∈ (Qm, QM ] and linear in both
(Qm, Q0] and (Q0, QM ]. Thus, similar to the ase (1.ii) above, the funtion V∞

LL(u;Q(u)) is onavein the sub-domains S∞
LL((Qm, Q0]) and S∞

LL((Q0, QM ]) separately, where Q(u) is the (unique) totalvolume Q suh that u ∈ S∞
LL(Q). Beause πL−r−βM < πL−r+βm < 0, the slope of V∞

LL(u;Q(u))in the sub-domain S∞
LL((Q0, QM ]) is steeper than that in the sub-domain S∞

LL((Qm, Q0]), as illus-trated in Figure 16(b). So, when pieed together, V∞
LL(u;Q(u)) is still onave, over the entire set

S∞
LL((Qm, QM ]). Therefore, V∞

LL(u) equals V∞
LL(u;Q(u)) over S∞

LL((Qm, QM ]).The proof is omplete. 20



Optimal Solution near the Upper and Lower Boundaries of S∗. Now, onsider themanufaturer's optimal value funtion V ∗(·) and its domain S∗. Theorem 2 still holds after aminor modi�ation: the upper boundary of S∗ oinides with the upper boundaries of S∗
LL and

S∞
LL, i.e., S∗ = (1 − δ)−1[T (QM ) − (ψL, ψL)] ∩ R

2
+, and the manufaturer's optimal value V ∗(u) =

(1 − δ)−1[(πL − r − βM )QM + βMQ0] for any u ∈ S∗. Reall that V ∗(·) is the onvex hull ofthe optimal objetive funtions of the four subproblems, V ∗
LL(·), V ∗

HL(·), V ∗
LH(·), and V ∗

HH(·), withdomains S∗
LL, S∗

HL, S∗
LH , and S∗

HH , respetively. If the sets S∗
HL, S∗

LH , and S∗
HH are relatively faraway from S∗ (e.g., when ψH ≫ ψL), V ∗(·) may ontain a substantial portion of the delining partof V∞

LL(·) disussed above. Thus, on (and possibly near) S∗, V ∗(·) is made up of all trapping points.Next, onsider the lower boundary of S∗, S∗. De�ne the set (line segment)
L∞
HH(Q) =





{u : u1 + u2 = φ(rQ)−2ψH
1−δ , u1, u2 ≥ δpH(1)µ−ψH

1−δ }, if ψL
ψH

≤ pL(1)
pH(1) , φ(rQ) ≥ 2(1 − δpH(0))µ,

{u : u1 + u2 = φ(rQ)−2ψH
1−δ , u1, u2 ≥ 0}, if ψL

ψH
> pL(1)

pH(1) , φ(rQ) ≥ 2((1 − δ)µ+ ψH),

∅, otherwise.Theorem 3 an be summarized as follows: given a �xed total volume Q, the (H,H) e�ort pair anbe sustained and the manufaturer's value V∞
HH(u;Q) = (1 − δ)−1(πHQ − g(Q)) an be ahievedover the set L∞

HH(Q) (if it is nonempty). The result still holds when Q varies in [Qm, QM ], andthe (H,H) e�ort pair an be sustained over the set L∞
HH([Qm, QM ]) = ∪Q∈[Qm,QM ]L

∞
HH(Q). Inaddition, the manufaturer's values an be improved by randomization. Let Q(u) be the (unique)

Q suh that u ∈ L∞
HH(Q). The value funtion V∞

HH(u;Q(u)) is not onave in u and an be improvedby taking its upper onvex hull, denoted by V∞
HH(u). The set L∞

HH([Qm, QM ]) and funtion V∞
HH(u)are illustrated in Figure 17 (assuming L∞

HH(Qm) 6= ∅). The dashed urves in panels (b) and ()represent the funtion V∞
HH(u;Q(u)) along the 45◦-setion.We have the following result:Theorem B3. (1) If πH−r−βM < 0, the manufaturer's optimal value is V ∗(u) = (1−δ)−1(πH−

r)Q0 for u ∈ L∞
HH(Q0) and the line segment L∞

HH(Q0) is self-generated under the (H,H) e�ortpair. If, further, L∞
HH(Qm) is nonempty, it must belong to S∗ and V ∗(u) = V∞

HH(u) for u ∈
L∞
HH([Qm, Q0]). (2) If πH − r − βM ≥ 0, V ∗(u) = (1 − δ)−1[(πH − r − βM )QM + βMQ0] for

u ∈ L∞
HH(QM ) and L∞

HH(QM ) is self-generated under the (H,H) e�ort pair. If, further, L∞
HH(Qm)is nonempty, it must belong to S∗ and V ∗(u) = V∞

HH(u) for u ∈ L∞
HH([Qm, QM ]).The �exibility in Q enlarges the reurrent region near the lower boundary of S∗. When πH −

r − βM < 0, as under the base model, the line segment L∞
HH(Q0) (if nonempty) is a reurrent set,although it may lie in the interior of S∗ now; if the line segment L∞

HH(Qm) is nonempty, it must bepart of S∗ and the larger set L∞
HH([Qm, Q0]) is reurrent. When πH − r− βM ≥ 0, the existene ofa reurrent set is implied by a weaker ondition that L∞

HH(QM ) 6= ∅; if L∞
HH(Qm) 6= ∅ in addition,the whole set L∞

HH([Qm, QM ]) is a reurrent set. Intuitively, when πH−r−βM ≥ 0, a larger volumeleads to higher pro�t for the manufaturer and, in the meantime, dynamially alloating a larger21
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Figure 17: (a) The set L∞
HH([Qm, QM ]), (b) the 45◦-setion of funtion V∞

HH(·) when πH−r−βM < 0,and () the 45◦-setion of V∞
HH(·) when πH − r − βM > 0.volume an reate stronger inentives for the suppliers, so it is not only more appealing but alsoeasier for the manufaturer to indue high e�ort from both suppliers.A proof of the theorem is provided below.Proof. [Proof of Theorem B3℄ We prove part (1) of the theorem below, i.e., assuming πH − r −

βM < 0. Part (2) an be shown in the same way.By Theorem 3, for a given total volume Q in the interval [Qm, QM ], if the set L∞
HH(Q) isnonempty, the (H,H) e�ort pair an be sustained and the manufaturer's value V∞

HH(u;Q) =

(1 − δ)−1(πHQ− g(Q)) an be ahieved over L∞
HH(Q). More spei�ally, onditional on Q,

V∞
HH(u;Q) =





(1 − δ)−1[(πH − r + βm)Q− βmQ0], if Q ∈ [Qm, Q0),
(1 − δ)−1(πH − r)Q0, if Q = Q0,
(1 − δ)−1[(πH − r − βM )Q+ βMQ0], if Q ∈ (Q0, QM ],

(B.6)for u ∈ L∞
HH(Q). Let Q(u) be the (unique) total volume Q suh that u ∈ L∞

HH(Q).Beause πH − r+ βm > 0 (implied by πH − r > 0) and πH − r− βM < 0 (the assumption), themanufaturer's value (1 − δ)−1(πHQ− g(Q)) is maximized at Q = Q0. Thus, (1 − δ)−1(πH − r)Q0is the highest ahievable value for the manufaturer and his optimal value funtion must satisfy
V ∗(u) = (1 − δ)−1(πH − r)Q0 for u ∈ L∞

HH(Q0).If, in addition, the line segment L∞
HH(Qm) is nonempty (as in Figure 17), the set L∞

HH([Qm, Q0])is inluded in the domain S∗ of the optimal value funtion. Following the proof of Theorem 3, wean show that if the total volume is �xed at Qm, no u vetor an be sustained below (or to the leftof) the line L∞
HH(Qm) by any e�ort pair. Beause a lower volume redues the suppliers' utilities,the minimum value of u1 +u2 must be reated from the minimum volume Qm. Thus, even when the22



total volume varies in [Qm, QM ], no u vetor an be sustained below (or to the left of) L∞
HH(Qm).As a result, L∞

HH(Qm) must be part of S∗. To show that the optimal value funtion V ∗(·) oinideswith V∞
HH(·) (the onvex hull of the funtion V∞

HH(u;Q(u))) over the set L∞
HH([Qm, Q0]), we needto show that for any u ∈ L∞

HH([Qm, Q0]) the highest value obtainable from any other e�ort pair,
(L,L), (H,L) or (L,H), annot exeed V∞

HH(u).The argument is similar to the proof of Theorem 3. De�ne a line segment L(k) = {u : u1 +u2 =

k, u1, u2 ≥ 0}, indexed by k. Let km = (1−δ)−1(φ(rQm)−2ψH) and k0 = (1−δ)−1(φ(rQ0)−2ψH).Then L(km) and L(k0) ontain the line segments L∞
HH(Qm) and L∞

HH(Q0), respetively. Considerany vetor u′ reated under the (L,L) e�ort pair from a total volume Q′ ∈ [Qm, Q0] in the �rstperiod and a ontinuation utility vetor U′ ∈ L(k′) from the seond period onward, for some
k′ ∈ [km, k0]. (The ase Q′ ∈ (Q0, QM ] an be shown similarly.) By equations (4.9)-(4.10), we have

u′1 + u′2 = δ(U ′
1 + U ′

2) + φ(rq′1) + φ(rq′2) − 2ψL

≥ δk′ + φ(rQ′) − 2ψL

> δk′ + (1 − δ)
φ(rQ′) − 2ψH

1 − δ
, (B.7)where the �rst inequality follows from the onavity of φ(·) and the assumption φ(0) = 0 (theinequality still holds when randomized alloation (q̃′1, q̃

′
2) is onsidered). By expression (4.8) (withthe ost rQ replaed by g(Q)), the manufaturer's ontinuation value at u′ is

VLL(u′) = δV∞
HH(U′) + (πL − r + βm)Q′ − βmQ0

< δV∞
HH(U′) + (1 − δ)

(πH − r + βm)Q′ − βmQ0

1 − δ

= δV∞
HH(U′) + (1 − δ)V∞

HH(·;Q′). (B.8)Therefore, the point (u′, VLL(u′)) is dominated by the onvex ombination of the points (U′, V∞
HH(U′))(with weight δ) and (w′, V∞

HH(w′;Q′)) (with weight 1 − δ), for some w′ ∈ L∞
HH(Q′). Beause

V∞
HH(w′;Q′) ≤ V∞

HH(w′), (u′, VLL(u′)) is dominated by the onvex ombination of (U′, V∞
HH(U′))and (w′, V∞

HH(w′)). Beause V∞
HH(·) is onave, (u′, VLL(u′)) lies below the graph of V∞

HH(·).Similarly, under the (H,L) or (L,H) e�ort pair, any point reated by a future ontinuationutility vetor U′ ∈ L(k′) for some k′ ∈ [km, k0] lie below the graph of V∞
HH(·) as well. Thus, theoptimal value funtion V ∗(u) = V∞

HH(u) for all u ∈ L∞
HH([Qm, Q0]).B.4 Multiple E�ort LevelsIn the base model, the suppliers' e�ort level an be either H or L. In this extension, we add anintermediate level, M . More e�ort levels an be treated similarly.As in the two-e�ort-level ase, assume that the disutilities of the e�ort levels and orrespondingprobabilities of the good outome are ordered suh that ψH > ψM > ψL and pH(1) > pM (1) >23



pL(1). De�ne the e�etive marginal osts of e�ort as µHM = δ−1(ψH − ψM )/(pH(1) − pM(1)),
µML = δ−1(ψM − ψL)/(pM (1) − pL(1)), and µHL = δ−1(ψH − ψL)/(pH (1) − pL(1)).Now we have nine possible e�ort pairs. After eliminating symmetri ases, six pairs are left,whih are (H,H), (H,M), (H,L), (M,M), (M,L), and (L,L). As a result, we have more sub-problems to solve. For eah e�ort pair (a1, a2), the manufaturer's subproblem (4.1)-(4.6) is moreomplex as well beause there are two IC onstraints for eah supplier. For instane, to indue
a1 = M , the IC onstraints for supplier 1, denoted by (IC1,MH) and (IC1,ML), would prevent thesupplier from deviating to e�ort H or L. Nevertheless, the subproblems an be simpli�ed throughthe following generalized version of Lemma 1:Lemma B3. If µHM < µML, e�ort M will never be hosen by the suppliers and an be removedfrom the problem formulation without loss of optimality. If µHM > µML, given any onave funtion
V (·) and ontinuation utility vetor u, there exists an optimal solution to problem (4.1)-(4.6) suhthat: (1) if ai = L, the IC onstraints for supplier i do not bind; (2) if ai = M , onstraint (ICi,ML)binds while (ICi,MH) does not; (3) if ai = H, onstraint (ICi,HM ) binds while (ICi,HL) does not.If µHM = µML, the two IC onstraints mentioned in ase (2) or (3) above bind simultaneously.Furthermore, in all irumstanes, the future ontinuation utility vetors {U(x)} are independentof xi if and only if ai = L, for i ∈ {1, 2}.Proof. Beause of the symmetry between the suppliers, it su�es to onsider i = 1. Without lossof generality, suppose that the manufaturer wants to indue e�ort a1 from supplier 1 throughontinuation utility vetors {U(x)} that depends on both x1 and x2. Let a2 be the e�ort exertedby supplier 2. De�ne U1(x1) = pa2(0)U1(x1, 0) + pa2(1)U1(x1, 1), for x1 ∈ {0, 1}. The expetedontinuation utility for supplier 1 is given by δE[U 1(x1)

∣∣ a1] + φ(rq1) − ψa1 = δ[pa1(0)U 1(0) +

pa1(1)U 1(1)]+φ(rq1)−ψa1 = δ[U 1(0)+ pa1(1)(U 1(1)−U1(0))]+φ(rq1)−ψa1 . The variable part ofthe ontinuation utility related to e�ort a1 is δpa1(1)(U 1(1)−U1(0))−ψa1 . Supplier 1's ontinuationutilities under e�orts a1 and â1 di�er by δ(pa1(1)−pâ1(1))(U 1(1)−U1(0))−(ψa1 −ψâ1) = δ(pa1(1)−
pâ1(1))(U 1(1)−U 1(0)−µa1â1). The onstraint (IC1,a1â1) that ensures that supplier 1 prefers e�ort
a1 to â1 is equivalent to U1(1) − U1(0) ≥ µa1â1 when pa1(1) > pâ1(1) or U1(1) − U1(0) ≤ µa1â1when pa1(1) < pâ1(1).Now, assume µHM < µML. Beause pL(1) < pM (1) < pH(1), the onstraints (IC1,MH) and(IC1,ML), whih indue e�ort M , imply that µMH(= µHM ) ≥ U1(1) − U1(0) ≥ µML. But thisontradits the assumption and therefore, supplier 1 will never hoose e�ort M .Next, assume µHM > µML. (1) The ase ai = L an be shown by the same argument as inLemma 1. (2) Consider the ase ai = M . By the argument above, the onstraints (IC1,MH) and(IC1,ML) are equivalent to µMH ≥ U1(1)−U1(0) ≥ µML. Aording to the proof of Lemma 1, thegap U1(1)−U1(0) should be minimized at optimality. Thus, we have µMH > U1(1)−U1(0) = µMLat optimality, whih implies that (IC1,ML) binds and (IC1,MH) holds with strit inequality. (3)24



Consider the ase ai = H. The assumption µHM > µML, or ψH−ψM
pH(1)−pM (1) >

ψM−ψL
pM (1)−pL(1) , implies that

ψH−ψM
pH(1)−pM (1) >

(ψH−ψM )+(ψM−ψL)
(pH(1)−pM (1))+(pM (1)−pL(1)) >

ψM−ψL
pM (1)−pL(1) , or µHM > µHL > µML. Aording to theresult at the beginning of the proof, (IC1,HM ) and (IC1,HL) are equivalent to U1(1)−U1(0) ≥ µHMand U1(1)−U 1(0) ≥ µHL, respetively. From µHM > µHL and the fat that the gap U1(1)−U 1(0)is minimized at optimality, the two onstraints imply that U1(1) − U1(0) = µHM > µHL, i.e.,(IC1,HM ) binds and (IC1,HL) holds with strit inequality.When µHM = µML, we have µHM = µHL = µML. It follows that (IC1,MH) and (IC1,ML) bindssimultaneously in ase (2) and (IC1,HM ) and (IC1,HL) binds simultaneously in ase (3).By the same argument as in Lemma 1, we an show that to indue ai = L, {U(x)} should notdepend on xi at optimality, sine no inentive is needed for supplier i; but to indue ai = M or H,

{U(x)} should be positively related to xi, to provide neessary inentive for supplier i.The intuition behind the lemma is similar to the one in the base model: the future ontinuationutility vetor U(x) should inrease with xi to motivate supplier i to exert non-trivial e�ort, and thegap between supplier i's expeted ontinuation utilities U i(1) and U i(0) should be large enough tooverome the pertinent e�etive marginal ost of e�ort, where U i(xi) =
∑

xj∈{0,1}
paj (xj)Ui(xi, xj)for j 6= i.By Lemma B3, the manufaturer's subproblem (4.1)-(4.6) for e�ort pair (a1, a2) an be simpli�edas follows: for ai = L, no IC onstraint is present for supplier i; and for ai = M or H, the IConstraint (ICi,ML) or (ICi,HM ) is present. Due to this simpli�ation, the (L,L) subproblem is thesame as in the base model; the (H,L) and (M,L) subproblems are similar to the original (H,L)subproblem; and the (H,H), (H,M), and (M,M) subproblems are similar to the original (H,H)subproblem. The deomposition of these subproblems, and hene Propositions 1, 2, and 3, are alsosimilar as before, exept that e�ort H for supplier i in the original propositions an be H or Mnow and the onstant µ should be µHM or µML, orrespondingly. Beause the (L,L) subproblemdoes not hange, the results about the (L,L)-forever benhmark and the upper boundary of S∗, i.e.,Theorems 1 and 2, still hold true. Beause the reurrent segment along the lower boundary of S∗ isdriven by the (H,H) subproblem, whih only bears a minor modi�ation by replaing onstraints(ICi,HL) with (ICi,HM ), Theorem 3 and Proposition 4 only need minor modi�ations as well: theonstant µ beomes µHM , and the e�ort L in the onditions of Theorem 3 beomes M .In onlusion, the main results in the paper withstand the inlusion of more e�ort levels.
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