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Dynami
 Business Share Allo
ation in a Supply Chain withCompeting SuppliersHongmin Li1, Hao Zhang2, and Charles H. Fine3
This paper studies a repeated game between a manufa
turer and two 
ompeting suppliers withimperfe
t monitoring. We present a prin
ipal-agent model for managing long-term supplier relation-ships using a unique form of measurement and in
entive s
heme. We measure a supplier's overallperforman
e with a rating equivalent to its 
ontinuation utility (the expe
ted total dis
ounted util-ity of its future payo�s), and in
entivize supplier e�ort with larger allo
ations of future business.We obtain the ve
tor of the two suppliers' ratings as the state of a Markov de
ision pro
ess, andsolve an in�nite horizon 
ontra
ting problem in whi
h the manufa
turer allo
ates business volumebetween the two suppliers and updates their ratings dynami
ally based on their 
urrent ratings andthe 
urrent performan
e out
ome.Our 
ontributions are both theoreti
al and managerial: We propose a repeated prin
ipal-agentmodel with a novel in
entive s
heme to ta
kle a 
ommon, but 
hallenging in
entive problem in amulti-period supply 
hain setting. Assuming binary e�ort 
hoi
es and performan
e out
omes by thesuppliers, we 
hara
terize the stru
ture of the optimal 
ontra
t through a novel �xed-point analysis.Our results provide a theoreti
al foundation for the emergen
e of �business-as-usual� (low e�ort)trapping states and tournament 
ompetition (high e�ort) re
urrent states as the long-run in
entivedrivers for motivating 
riti
al suppliers.Keywords: Asymmetri
 Information, Performan
e-Based Contra
t, Volume In
entive, RepeatedMoral Hazard, Prin
ipal-Agent Model, Supply Chain Contra
ting
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1 Introdu
tionWe model and analyze the use of business share (or volume) to motivate performan
e improvementsfrom 
riti
al suppliers. Throughout the last few de
ades, many 
ompanies have redu
ed the numberof suppliers they use, and fo
used on improving the quality of the relationships they have with thoseremaining (Giunipero, 1990). In 
onsumer ele
troni
s, information te
hnology, and other industries,dual-sour
ing (or multi-sour
ing from a few suppliers) has be
ome a 
ommon pra
ti
e. For example,Apple In
. often sour
es 
riti
al parts from two suppliers: Solid State Drives for Ma
Book Air fromToshiba and Samsung (O'Grady, 2011); DRAM for iPhone 4S from Samsung and Elpida (Shimpiand Klug, 2011); and assembly manufa
turing for iPhone 4S from Fox
onn and Pegatron (Whitney,2012). Supply base redu
tion allows a �rm to fo
us on long-term ties with suppliers but maypotentially redu
e the power of the buying �rm. How 
an the manufa
turer prevent a supplierfrom getting �too 
omfortable� to improve? Krause et al. (2000) surveyed 527 pur
hasing exe
utivesand found that supplier assessment and supplier in
entives are the two most important enablers ofsupplier development e�orts. The in
entives identi�ed in their resear
h are (1) promise of higherorder volume for 
urrent business, and (2) promise of preferred status for future business. Thatis, performan
e-based business share allo
ation is used to drive 
ompetition among suppliers andkeep the suppliers on their toes. In a Japanese verti
al, Keiretsu-style supply 
hain, a lead �rmoften multi-sour
es to a few suppliers and uses business share in
entives to drive supplier e�
ien
yimprovements (Tezuka, 1997). A supplier that fails to meet the 
ompetitive standard over someextended period of time will lose business share and its preferred status.In this paper, we fo
us on the in
entive issues arised when a manufa
turer 
annot dire
tlyobserve or verify its suppliers' e�ort de
isions that a�e
t the delivered value to the manufa
turer.For example, in ea
h 
ontra
t period, a supplier may boost its quality-
ontrol e�ort to redu
e thedefe
t rate, optimize the equipment maintenan
e s
hedule to de
rease ma
hine down time, or assignthe most e�e
tive a

ount manager to manage the produ
tion and delivery for this manufa
turer.The level of these e�orts is not easily veri�able by the manufa
turer, but 
an a�e
t the supplier'sperforman
e and thus the delivered value to the manufa
turer greatly. We explore via a prin
ipal-agent model how a manufa
turer 
an indu
e the desired supplier behavior through business shareallo
ation based on supplier performan
e. We examine this in the 
ontext of a 
ost-plus 
ontra
tin whi
h the transfer pri
e between ea
h supplier and the manufa
turer is the unit 
ost of the
omponent plus a margin.We make both te
hni
al and managerial 
ontributions to the supply 
hain management and1




ontra
t design literature. On the te
hni
al side, we propose a novel prin
ipal-agent model forperforman
e-based supplier in
entive s
hemes in a dual-sour
ed supply 
hain. Our model is an(in�nitely) repeated moral hazard model with imperfe
t monitoring, whi
h is known for its theoret-i
al 
hallenge: �Generally speaking, the design of an optimal 
ompensation s
heme in the dynami
prin
ipal-agent 
ontext is 
onsidered an intra
table problem. In fa
t, even in the simpler repeatedprin
ipal-agent setting, the analysis of optimal s
hemes is formidable and involves 
omplex andsubtle e
onomi
 reasoning� (Plambe
k and Zenios, 2000). We are among the very few to ta
klea two-agent repeated moral hazard model. We 
hara
terize the optimal 
ontra
t through a novel�xed-point analysis. Extending the dynami
 programming approa
h of Spear and Srivastava (1987)for a single-agent model, we formulate the two-agent problem in a re
ursive fashion and 
onstru
tthe �xed point (fun
tion) dire
tly, whi
h allows us to obtain interesting stru
tural results.Managerially, our study provides theoreti
al explanations to popular business pra
ti
es. In thestudy by Giunipero (1990), 46% of the �rms studied use formal quantitative rating systems to mon-itor and motivate suppliers. Empiri
al resear
h has do
umented many instan
es of rating/s
oringsystems for suppliers. For example, Nike regularly rates its sub
ontra
tors for environmental andlabor performan
e (Sabel et al., 2000). High s
orers often garner more lu
rative orders and low s
or-ers risk losing 
ontra
ts. Intel tra
ks a supplier's 
ost, availability, servi
e, support responsivenessand quality, and rewards suppliers who have the best ratings with more business (Datta, 2004). De-spite the apparent prevalen
e in pra
ti
e, there are no published theoreti
al results addressing thesewidely used supplier management pra
ti
es. Our results �ll this gap and explain the relationshipbetween a quantitative supplier assessment system and the manufa
turer's de
isions on suppliers'business shares.A 
entral managerial �nding in this paper relates to the longitudinal behaviors of the supply
hain under the optimal 
ontra
t. In our model, the state of the system is given by the ve
torof the two suppliers' ratings (quanti�ed as their sustainable 
ontinuation values, or values-to-go).Under the optimal 
ontra
t, three types of states emerge. (i) A set of �trapping� states in whi
hthe suppliers 
hoose low e�ort forever. Ea
h trapping state represents a �business-as-usual� s
enariowith a state-dependent but �xed volume allo
ation for all future periods, whi
h is rea
hed after bothor at least one supplier over-perform for some extended time. Sin
e ea
h supplier prefers a trappingstate that yields a higher volume for itself, this 
reates in
entive for suppliers to 
ontinually exerthigh e�ort in order to in�uen
e the dire
tion of the state transition. (ii) A �re
urrent� 
lass of states,in whi
h suppliers engage in a tournament-like 
ompetition and both 
hoose high e�ort forever inan e�ort to win a preferential status for future business. This represents an ideal situation for the2



manufa
turer but a punishing situation for the suppliers, and is usually rea
hed after both suppliersrepeatedly under-perform. (iii) �Transient� states, from whi
h the system eventually evolves intoeither a business-as-usual s
enario or a tournament 
ompetition situation. Therefore, 
ases (i) and(ii) form the long-run in
entive drivers, as the �
arrot� or �sti
k�, for the suppliers to work hard.The rest of the paper is organized as follows: Se
tion 2 reviews the relevant literature in e
o-nomi
s and operations. Se
tion 3 provides the problem des
ription and assumptions. We presentthe solution of the history-dependent dynami
 
ontra
t problem in Se
tion 4. In Se
tion 5, wefurther explore properties of the optimal 
ontra
t numeri
ally. Se
tion 6 dis
usses extensions of thebasi
 model and Se
tion 7 
on
ludes. The proofs of the results are given in Appendix A, and moredetails of the extensions are given in Appendix B.2 Related LiteratureMoral Hazard (Hidden A
tion). In this paper, we 
onsider an in
entive problem with moralhazard where a manufa
turer (the buyer) does not dire
tly observe its suppliers' e�ort de
isionsand needs to design in
entive me
hanisms to indu
e desired supplier behavior. Single-period moralhazard problems have been extensively studied in e
onomi
s; see La�ont and Martimort (2002),Bolton and Dewatripont (2005), and referen
es therein. Moral hazard problems have frequentlyemerged in operations management (supply 
hain management in parti
ular) in re
ent years, in-volving various operational and managerial de
isions a
ross the supply 
hain, su
h as managers'manufa
turing and marketing e�orts, suppliers' 
apa
ity investment and 
ost redu
tion de
isions,manufa
turers' quality improvement e�orts, and buyer's pro
essing and testing e�orts; we refer thereader to Porteus and Whang (1991), Baiman et al. (2001), Corbett et al. (2005), Kaya and Özer(2009), Kim et al. (2007), and Kim et al. (2011). In 
ontrast to these papers, whi
h fo
us on singleperiod settings or steady state analysis that redu
es to a stati
 setting, we solve a moral hazardproblem with repeated intera
tions.Be
ause a multi-period 
ontra
t 
an use both immediate 
ompensation and future promises asin
entives to indu
e desired behaviors, it is potentially more powerful than a stati
 
ontra
t. Themain obsta
le to �nding an optimal multi-period 
ontra
t is history dependen
y. In theory, theoptimal 
ontra
t 
ould 
ompensate a supplier based on its entire performan
e history and that of
ompeting suppliers (if any). As more performan
e data be
omes available, the information setexpands and the 
omputational 
omplexity grows exponentially.Using formal 
ontra
ts, Plambe
k and Zenios (2000) solve a dynami
 moral hazard problem3



in operations management. They assume that the agent has an exponential utility fun
tion and
an borrow and lend freely from a bank, whi
h leads to a memoryless optimal 
ontra
t. Buildingupon this paper, also assuming the agent's exponential utility and free a

ess to banking, Fuloriaand Zenios (2001) study dynami
 out
ome-adjusted reimbursement for a health-
are provider whoprivately 
hooses the intensity of treatment in every period, and Plambe
k and Zenios (2003) studya make-to-sto
k queueing system in whi
h the produ
tion rate of the server is privately 
ontrolled bythe agent. Our paper however, presents an in
entive stru
ture based on suppliers' full performan
ehistory, without the aforementioned assumptions. Abreu et al. (1986, 1990) introdu
e a re
ursiverepresentation of the dynami
 
ontra
t using the agent's expe
ted future utility as the state variable,whi
h is then extended by Spear and Srivastava (1987) to the Prin
ipal-Agent framework. We use asimilar approa
h to solve a two-agent problem with 
ommon business/resour
e 
onstraint, whereasthe above papers all solve a single-agent problem.The literature on relational 
ontra
ts examines informal 
ontra
tual agreements between players.In the presen
e of moral hazard, a relational 
ontra
t 
an indu
e desired a
tions from the players bythe threat of termination of the business relationship or the worst payo�s thereafter if a deviationis 
aught (the so 
alled �trigger strategies;� see Friedman 1971). Levin (2003) shows that under
ertain assumptions (risk neutral players, su�
iently high dis
ount fa
tor, et
.), there exists ahistory-independent, stationary optimal 
ontra
t, whi
h 
an be solved as a one-period problem.This result has sin
e been extended to supply 
hain management by Plambe
k and Taylor (2006)and Taylor and Plambe
k (2007a,b). In 
ontrast to this approa
h, we solve a repeated moral hazardproblem with risk averse agents and formal 
ontra
ts, without any restri
tion on the dis
ount fa
tor.Relational 
ontra
ts 
an also be history dependent, when the players adopt �review strategies�(Radner 1985). Ren et al. (2010) examine a supply 
hain in whi
h a supplier reviews a demandfore
ast from a buyer in every period before investing in 
apa
ity. If the buyer does not pass thetruth-telling test, a limited-time punishment phase follows. They show that truthful informationsharing is indu
ed under large dis
ount fa
tors. In 
omparison, we 
onsider hidden e�orts, utilizethe entire performan
e history, and allow any level of dis
ount fa
tor.Lastly, we note some additional work in supply 
hain management on multi-period games withhidden information. Zhang et al. (2010) investigate the optimal wholesale 
ontra
t for a supplierin fa
e of a retailer who 
arries inventory privately. Oh and Özer (2012) study a supplier's 
hoi
ebetween making its own demand fore
asts and s
reening the information from a downstream man-ufa
turer before a 
apa
ity investment. The work by Li and Debo (2009a,b) examines the optionvalue of future supplier-swit
hing or se
ond-sour
ing of a manufa
turer fa
ing un
ertain demand4



when suppliers have private 
ost information.Volume Allo
ation. Many papers on reverse au
tion or dual sour
ing address volume allo
a-tions, whi
h is an important aspe
t of the problem we are studying. Anton and Yao (1989) 
omparethe split-award au
tion with a winner-take-all au
tion in a single-stage Nash equilibrium. Klotzand Chatterjee (1995) 
onsider a two-period dual-sour
ing model where the buyer reserves a �xedvolume share for ea
h supplier and leaves the rest to a 
ompetitive bidding in whi
h the lower-
ostprovider takes all. Seshadri (1995) studies a dual-sour
ing model with a 
ost-plus 
ontest thatawards ea
h supplier its a
tual audited 
ost plus a fra
tion of the �xed in
entive money. Benjaa-far et al. (2007) 
onsider a performan
e-based proportional allo
ation me
hanism in a single-periodmodel. Ca
hon and Zhang (2007) 
ompare several performan
e-based allo
ation poli
ies that assignin
oming jobs to two servers who 
ontrol their own servi
e rate. They analyze open-loop strategiesin steady state and e�e
tively solve a stati
 problem. We extend this resear
h stream by 
onsideringdynami
 volume allo
ation in an in�nite-horizon problem.A few re
ent papers examine volume allo
ation in dynami
 environments. Lu and Lariviere(2011) 
onsider a dynami
 sto
hasti
 game in whi
h a 
ar manufa
turer allo
ates its s
ar
e 
apa
ityto its retailers through a �xed (equal) or �turn-and-earn� allo
ation s
heme (whi
h allo
ates a highervolume to the retailer with more sales). In 
ontrast, we do not assume a parti
ular mathemati
alform of the allo
ation poli
y. Belavina and Girotra (2012) model sour
ing de
isions with an in-termediary and 
onsider business allo
ations between two suppliers in an in�nitely repeated game.They examine 
ooperative behavior of the suppliers under relational governan
e whereas we studyformal 
ontra
ts for indu
ing e�orts from 
ompeting suppliers.3 Problem Des
ription and Model FormulationIn this se
tion, we formulate the volume allo
ation problem for a manufa
turer fa
ing two substi-tutable suppliers.3.1 Problem Des
ription and AssumptionsWe 
onsider a single manufa
turer sour
ing a 
riti
al 
omponent from two 
hosen suppliers: Supplier1 and Supplier 2. Both suppliers are able to meet the minimum 
ost and quality requirement forthe manufa
turer. However, the total 
ost of ownership to the manufa
turer 
ould di�er betweenthe two suppliers on a number of key measures su
h as the defe
t rate, te
hnology innovation,per
entage of on-time delivery, et
. The manufa
turer 
onstantly evaluates ea
h supplier using thesemeasures and generates an overall rating for the supplier, whi
h serves as a basis for determining5



business allo
ations in future time periods. Ea
h supplier, in order to earn more business, has anin
entive to expend additional resour
es to improve the performan
e out
ome (or measure). Su
han a
tion 
an be 
ostly, and does not always work � it only in
reases the performan
e out
omeprobabilisti
ally. From the manufa
turer's perspe
tive, additional supplier e�ort is desirable andideally the manufa
turer would like its suppliers to engage in 
ontinuous improvement over thelong run. However, the manufa
turer needs to provide enough in
entive so that a supplier wouldvoluntarily engage in su
h a
tivities. These in
entives 
ould 
ome at a 
ost to the manufa
turer.Therefore, it is not ne
essarily optimal or feasible to always indu
e high e�ort from the suppliers.In this paper, we strive to �nd the optimal 
ontra
t that generates the maximal long-run payo�sfor the manufa
turer.We make the following assumptions regarding the manufa
turer and its suppliers.(1) The manufa
turer is risk neutral and the suppliers are risk averse, whi
h approximates atypi
al situation with a large buyer and relatively small suppliers.(2) The transfer pri
e between ea
h supplier and the manufa
turer is determined through a
ost-plus model. That is, the manufa
turer promises to pay ea
h supplier the 
ost of the 
omponentplus a margin r for ea
h unit of the 
omponent for an agreed quantity qi, i = 1, 2. In this paper,we fo
us on the 
ase where the manufa
turer uses volume allo
ation as an in
entive lever and thuswe treat r as a 
onstant and for simpli
ity, assume that the two suppliers re
eive the same margin
r. We later relax this assumption and show how the optimal 
ontra
t may 
hange if the marginsare asymmetri
 (Se
tion 6.1) and how the problem of allo
ating a total volume is similar to theproblem of allo
ating a total payment (Se
tion 6.2).(3) In the base model, the total volume to be allo
ated between the two suppliers is �xed, as theorder quantity of a 
riti
al part is typi
ally determined by the produ
tion plan for the �nal produ
t.In Se
tion 6.3, we will allow the total volume to deviate from a target level and show that the maininsights from the optimal 
ontra
t stay true with this generalization.(4) The suppliers are identi
al with regard to their e�ort 
hoi
e options, utility fun
tions, and
ost fun
tions, whi
h allows us to fo
us on the performan
e di�eren
es 
aused solely by suppliers'e�orts. A supplier's utility from the one-period margin rqi is φ(rqi), whi
h is an in
reasing and
on
ave fun
tion and, without loss of generality, satis�es φ(0) = 0. In addition, the supplier's utilityis additively separable a
ross time, as is standard in the dynami
 
ontra
t literature.(5) The suppliers have two e�ort 
hoi
es, �high� and �low,� from the set A = {H,L}, and theirdisutility of e�ort 
hoi
e a ∈ A is ψ(a) (or ψa), with ∆ψ = ψH − ψL > 0. Treating the disutility ofe�ort a separately from the utility of margin rqi is standard in the literature, be
ause the 
ost-of-6



e�ort might not easily translate to a monetary 
ost. For the performan
e-enhan
ing e�orts that thesuppliers engage in, a
tivities are often pro
ess based and therefore only in
ur �xed 
osts.4 We willrelax the assumption of binary e�ort 
hoi
es in Se
tion 6.4 and demonstrate that the main resultsremain true.(6) The suppliers' produ
tion fun
tions are independent and the set of possible performan
eout
omes is X = {0, 1}, representing �poor� and �good� out
omes, respe
tively.5 We assume thatthe performan
e out
omes are publi
 information to the manufa
turer and the two suppliers.6The probability for out
ome x ∈ X after a supplier 
hooses e�ort a ∈ A is pa(x), whi
h satis�es
pH(1) > pL(1), i.e., a good out
ome is more likely to result from the high e�ort. We assume that thee�ort 
hoi
e in ea
h period dire
tly a�e
ts the performan
e in the 
urrent period only. This is oftenthe 
ase with management, maintenan
e, or operational type of e�ort, and is arguably the moreinteresting situation for indu
ing supplier e�orts be
ause in
entive must be provided 
onstantly andsuppliers 
annot sit ba
k and enjoy the lasting e�e
ts of their previous e�orts.(7) The value of a supplier's performan
e out
ome x ∈ X to the manufa
turer is q · π(x), where
q is the quantity provided by that supplier and π(1) > π(0). That is, the performan
e out
ome islinked to a per unit dollar value π(x).7(8) The manufa
turer and the suppliers have the same dis
ount fa
tor δ ∈ (0, 1).3.2 Model FormulationNow, we formulate the model. In ea
h period t, the manufa
turer assigns a quantity qit to supplier
i and the supplier privately 
hooses an e�ort level ait ∈ A. The supplier's performan
e xit ∈ Xdepends on ait through the probabilities pait(xit). Let ht = {(x11, x21), . . . , (x1t, x2t)} denote thesuppliers' performan
e history up to the end of period t, and Ht = (X × X )t denote the set ofpossible ht's. Supplier i's utility from the quantity qit is φ(rqit) and disutility from the e�ort is4A general disutility fun
tion may also in
lude a variable element whi
h depends on the business volume qiallo
ated to a supplier. If the variable element of the disutility fun
tion has a linear form cqi, it 
an be viewedas part of the variable 
ost and dire
tly 
ompensated by the manufa
turer (see Swinney and Netessine 2009 for asimilar argument). Assuming ψ(a) independent of qi fa
ilitates our analysis and allows us to 
on
entrate on the keytrade-o�s in motivating suppliers to make high e�orts.5It is known that a manufa
turer 
an �lter out 
ommon industry noise by observing the performan
e from multiplesuppliers (see Holmstrom, 1982; Swinney and Netessine, 2009; and Chen et al., 2011). In this paper, we treatperforman
e out
omes as the out
omes after 
ommon noise �ltration.6In pra
ti
e, this is key for inspiring the suppliers and indu
ing 
ompetition. For example, Sun Mi
rosystems In
.gave ea
h supplier its s
ore
ard results, along with the highest s
ores of other suppliers in the same 
ommodity area(Farlow et al., 1995); Waste Management In
. publishes s
ores of all its suppliers (without dis
losing names) to letsuppliers see how they performed relative to other vendors (Du�y, 2005).7For example, at Sun Mi
rosystems, if a supplier re
eives a total s
ore of 86 from the s
ore
ard evaluation, the
ommodity manager may 
al
ulate the Total Cost of Ownership (TCO) for Sun using the formula (100-s
ore)/100+1and inform the supplier that every dollar Sun spends with the supplier a
tually 
osts Sun $1.14 (Farlow et al., 1995).7



ψ(ait). Therefore, a dynami
 
ontra
t 
an be represented by σ = {qit(ht−1), ait(h
t−1)}i=1,2;t=1,··· ,∞,whi
h de�nes the strategy pro�le for the manufa
turer and two suppliers. Be
ause suppliers' e�orts
annot be observed by the manufa
turer, {ait(ht−1)}t=1,··· ,∞ 
an be viewed as the manufa
turer'ssuggested e�ort plan to supplier i. Noti
e that qit and ait depend on ht−1, the performan
e out
omesobserved before period t, be
ause the pur
hase volumes from the suppliers in period t must bedetermined before entering period t and the suppliers must exert e�orts before the out
omes arerealized. By default, h0 = Ø, representing no initial information. We denote the ve
tors (q1t, q2t),

(a1t, a2t), and (x1t, x2t) by qt, at, and xt, respe
tively.The manufa
turer maximizes its total dis
ounted value through the following problem:
V = max

{qt(·),at(·)}∞t=1

∑

i=1,2

E

{
∞∑

t=1

δt−1[π(xit)qit(h
t−1) − rqit(h

t−1)]

∣∣∣∣∣ {at(·)}
∞
t=1

} (3.1)
s.t. E

{
∞∑

τ=t

δτ−t[φ(rqiτ (h
τ−1)) − ψ(aiτ (h

τ−1))]

∣∣∣∣∣ {aτ (·)}
∞
τ=t, h

t−1

}
≥ ui,

ht−1 ∈ Ht−1, t = 1, . . . ,∞, i ∈ {1, 2}, (3.2)
E

{
∞∑

τ=t

δτ−t[φ(rqiτ (h
τ−1)) − ψ(aiτ (h

τ−1))]

∣∣∣∣∣ {aτ (·)}
∞
τ=t, h

t−1

}
≥

E

{
∞∑

τ=t

δτ−t[φ(rqiτ (ĥ
τ−1)) − ψ(âiτ (ĥ

τ−1))]

∣∣∣∣∣ {âiτ (·) ∈ A, ajτ (·)}∞τ=t, ht−1

}
,

ht−1 ∈ Ht−1, t = 1, . . . ,∞, j 6= i ∈ {1, 2}, (3.3)
∑

i=1,2

qit(h
t−1) = Q, q1t(h

t−1) ≥ 0, q2t(h
t−1) ≥ 0, ht−1 ∈ Ht−1, t = 1, . . . ,∞. (3.4)Inequality (3.3) for i ∈ {1, 2} (and j 6= i) is supplier i's in
entive 
ompatibility (IC) 
onstraint,whi
h implies that the supplier would voluntarily follow the manufa
turer's suggested e�ort plan,from any period t onward and after any performan
e history ht−1. Note that the deviated e�ortplan {âiτ (·)}∞τ=t would alter the performan
e path sto
hasti
ally, and we denote a deviated pathafter history ht−1 by {ĥτ}∞τ=t (assuming ĥt−1 = ht−1). Inequality (3.2) for i ∈ {1, 2} is the par-ti
ipation 
onstraint for supplier i, whi
h ensures that the supplier would voluntarily parti
ipatein the 
ontra
t, after any performan
e history ht−1, given its reservation utility ui. Expression(3.4) represents a volume 
onstraint whi
h requires the total business volume to be �xed and ismathemati
ally akin to the �budget 
onstraint� in the literature. In this in�nite-horizon problem,the information set Ht−1 (i.e., performan
e history set) grows with t and eventually be
omes toolarge to allow 
omputation of the equilibrium strategy.8



3.3 Model TransformationAbreu et al. (1986, 1990) and Spear and Srivastava (1987) address the 
omputational 
omplexityissue in a repeated game between a prin
ipal and a single agent by a re
ursive formulation, whi
h
an be extended to the two-agent setting of (3.1)-(3.4). In what follows, we des
ribe the basi
 ideaof this extended approa
h. Be
ause the future looks exa
tly the same from any period onward, thesubgame following every publi
 history is 
on
eptually identi
al. It 
an be easily shown that ea
hagent (supplier)'s expe
ted future utility ui following any publi
 history 
an be de
omposed into animmediate utility φ(rqi) − ψ(ai) in the 
urrent period and a 
ontinuation utility Ui from the nextperiod onward, 
ontingent on the random out
ome of the 
urrent period:8
ui = φ(rqi) − ψ(ai) + δE[Ui(x)| a], i = 1, 2. (3.5)Be
ause of the in�nite future, the set of feasible 
ontinuation utility ve
tors from any period onwardshould be identi
al. That is, the ve
tors (u1, u2) and (U1, U2)(x) should all belong to the same
ontinuation utility set. The ve
tor u = (u1, u2) 
an be interpreted as the state of an (indu
ed)Markov de
ision pro
ess, sin
e the transition from state u to state U is determined by the 
urrent-period e�orts a sto
hasti
ally (through the 
urrent-period out
omes x).The re
ursive formulation redu
es the history-dependent 
ontra
t problem to a dynami
 pro-gramming problem with a state variable u. Consequently, the problem of sear
hing for the optimalvolume allo
ation 
ontra
t σ = {qt(ht−1),at(h

t−1)}t=1,··· ,∞ is redu
ed to one of �nding the optimalvariables {a,q,U(x)} for ea
h feasible u.9 The state variable u in this stationary representationhas dual interpretations. On the one hand, it is a proxy of the suppliers' performan
e history asfrom any given initial state, the value of u at time t is determined by the sequen
e of performan
eout
omes ht−1 = {x1,x2, . . . ,xt−1}. On the other hand, ui represents supplier i's expe
ted future(or 
ontinuation) utility. The manufa
turer may simply treat it as an equivalent of the supplier'spreferential status, and update it in ea
h period with new performan
e data. Thus, we shall referto it as the supplier's �rating.�8Let hτt denote the performan
e history from the beginning of period t to the end of period τ , for τ ≥ t,i.e., hτt = {xt, . . . ,xτ}; by default, hτt = Ø if τ < t. Then, hτ is equivalent to (ht−1, hτt ), for τ ≥
t. Based on the formulation (3.1)-(3.4), at the beginning of period t after any performan
e history ht−1,de�ne ui(h

t−1) = E
{∑∞

τ=t δ
τ−t[φ(rqiτ (h

t−1, hτ−1
t )) − ψ(aiτ (h

t−1, hτ−1
t ))]

∣∣ {aτ (·)}∞τ=t, ht−1
} and Ui(h

t−1,xt) =
E

{∑∞
τ=t+1 δ

τ−t−1[φ(rqiτ (h
t−1,xt, h

τ−1
t+1 )) − ψ(aiτ (h

t−1,xt, h
τ−1
t+1 ))]

∣∣ {aτ (·)}∞τ=t+1, h
t−1,xt

}. In the ba
kward indu
-tion, the past information ht−1 plays no expli
it role and 
an be suppressed without loss of generality. Hen
e, noti
ing
ht = (ht−1,xt), we arrive at the equation ui = φ(rqit) − ψ(ait) + δE[Ui(xt)|at].9The ve
tors q, a, and U(x) depend on the suppliers' 
urrent 
ontinuation utility ve
tor u impli
itly, but fornotational simpli
ity, this dependen
e is suppressed. 9



Figure 1 shows the sequen
e of events in the re
ursive framework. At the beginning of period
t, the suppliers' ratings are given by u. The manufa
turer announ
es the volume allo
ation for the
urrent period and ratings U(x) for the next period, 
ontingent on the out
omes of the 
urrentperiod. Then the suppliers privately 
hoose e�ort levels. After delivery, the manufa
turer observesthe suppliers' performan
e out
omes and updates their ratings. The game enters the next period.

Beginning of period t

Suppliers’ ratings are 

u=(u1,u2)

Performance

outcomes

x=(x1 , x2)

observed by all

Beginning of 

period t+1

Suppliers’ ratings 

become U(x)

=(U1(x), U2 (x) )

Buyer realizes 

payoff  (x,q);

pays each 

supplier rqi

Each supplier 

chooses effort 

ai privately

Buyer announces

period-t volumes q=(q1, q2)

and next-period ratings

{U(x)=(U1(x), U2(x))}

Each supplier 

realizes utility 

 (rqi)  (ai)

Figure 1: Sequen
e of Events in Period t under a Dynami
 Volume Contra
t.Let V (u) be the expe
ted future payo� for the manufa
turer given the suppliers' expe
ted futureutilities u = (u1, u2). For ea
h feasible u, the manufa
turer 
hooses volumes q = (q1, q2), e�orts
a = (a1, a2), as well as the suppliers' 
ontinuation utilities U(x) = (U1(x), U2(x)) to maximize itsexpe
ted future payo�, provided that the suppliers voluntarily 
hoose a:
V (u) = max

a,q,{U(x)}
E[π(x1)q1 + π(x2)q2 + δV (U1(x), U2(x))| a] − rQ (3.6)s.t. φ(rqi) − ψai + δE[Ui(x)| a] = ui, i ∈ {1, 2} (3.7)

φ(rqi) − ψai + δE[Ui(x)| a] ≥ φ(rqi) − ψâi + δE[Ui(x)| âi, aj ], âi 6= ai, j 6= i ∈ {1, 2} (3.8)
q1 + q2 = Q, q1, q2 ≥ 0. (3.9)Equation (3.7) is the promise keeping (PK) 
onstraint, the same as (3.5). Constraints (3.8) and(3.9) are again the in
entive 
ompatibility (IC) 
onstraint and the volume 
onstraint, respe
tively.This problem is parameterized by u. Both the parameter u and the de
ision variables {U(x)} aredrawn from the same feasible 
ontinuation utility set, say S ⊂ R

2, and the manufa
turer's optimalvalue fun
tion V (·) is determined re
ursively through the above problem. Our goal is to 
hara
terizethis fun
tion V : S → R. Note that the original parti
ipation 
onstraint (3.2) is equivalent to u ≥ u,for a reservation utility ve
tor u; we will later normalize u to 0 (without loss of generality) andrequire u and U(x) ≥ 0, or, S ⊂ R
2
+. 10



In general, the optimal value fun
tion V (·) may not be 
on
ave. However, when randomized
ontra
ts are allowed, V (·) must be 
on
ave with a 
onvex domain. To see this, suppose that theoptimal solutions to the problem given any feasible u′ and u′′ are {a′,q′,U′(x)} and {a′′,q′′,U′′(x)},respe
tively. Then the randomized 
ontra
t that exe
utes {a′,q′,U′(x)} with probability λ and
{a′′,q′′,U′′(x)} with probability 1 − λ would generate 
ontinuation utility ve
tor λu′ + (1 − λ)u′′for the suppliers and 
ontinuation value λV (u′) + (1 − λ)V (u′′) for the manufa
turer. Therefore,the suppliers' 
ontinuation utility ve
tor λu′ + (1− λ)u′′ is feasible and the manufa
turer's optimal
ontinuation value at λu′+(1−λ)u′′ is at least λV (u′)+(1−λ)V (u′′), whi
h implies the 
on
avity of
V (·). Randomization is 
ommonly assumed in the repeated game/dynami
 
ontra
t literature (e.g.,Fudenberg and Tirole 1991, Phelan and Sta

hetti 2001, Judd et al. 2003, Doepke and Townsend2006) and is permitted in this paper as well. In essen
e, the manufa
turer may randomly 
hooseamong a set of deterministi
 
ontra
ts a

ording to a publi
 lottery (with probabilities dependent onthe suppliers' ratings u), whi
h allows the manufa
turer to potentially improve its value fun
tion.4 Solving the Dynami
 Volume Allo
ation ProblemThe manufa
turer's volume allo
ation problem 
ouples the two suppliers together through the vol-ume 
onstraint (3.9). The manufa
turer wishes to 
reate in
entives for the suppliers to exert highe�ort. However, to maintain the total volume, the manufa
turer 
annot penalize the suppliers simul-taneously when their performan
e out
omes are both poor or reward them at the same time whenthe out
omes are both good. The manufa
turer thus fa
es an intri
ate problem of providing theright in
entives for the suppliers through dynami
 volume allo
ation. In the following, we dis
ussstep-by-step how to solve for the dynami
 
ontra
t. Spe
i�
ally, The problem 
an be fa
ilitated byfour subproblems, given the intended e�ort pair (H,H), (H,L), (L,H), and (L,L), respe
tively.We �rst analyze ea
h subproblem and obtain useful properties of the solution (Se
tion 4.1) and thenderive the optimal 
ontra
t from these subproblems (Se
tion 4.2). For the ease of representation,let πL = E(π(xi)| ai = L) and πH = E(π(xi)| ai = H).4.1 Indu
ing a Given E�ort PairGiven an e�ort pair (a1, a2) to implement, the manufa
turer's problem (3.6)-(3.9) redu
es to

11



(Γa1a2V )(u) = max
q∈R2,{U(x)∈S}

x∈{0,1}2

E[π(x1)q1 + π(x2)q2 + δV (U(x))| a1, a2] − rQ (4.1)s.t. u1 = δE[U1(x)| a1, a2] + φ(rq1) − ψa1 (4.2)
u2 = δE[U2(x)| a1, a2] + φ(rq2) − ψa2 (4.3)
u1 ≥ δE[U1(x)| â1, a2] + φ(rq1) − ψâ1 , â1 6= a1 (4.4)
u2 ≥ δE[U2(x)| a1, â2] + φ(rq2) − ψâ2 , â2 6= a2 (4.5)
q1 + q2 = Q, q1, q2 ≥ 0. (4.6)This problem impli
itly de�nes a fun
tional operator Γa1a2 , mapping a value fun
tion V : S → Rto another value fun
tion Γa1a2V : Sa1a2 → R. Using this operator, the manufa
turer's volumeallo
ation problem (3.6)-(3.9) 
an be su

in
tly written as

V ∗(u) = max
(a1,a2)∈{H,L}2

(Γa1a2V
∗)(u) (4.7)(the supers
ript �∗� represents �optimum� throughout this paper). Problem (4.1)-(4.6), given

(a1, a2), 
an be simpli�ed by the following results:Lemma 1. Given any 
on
ave fun
tion V (·) and feasible 
ontinuation utility ve
tor u, there existsan optimal solution to problem (4.1)-(4.6) su
h that: (1) if (a1, a2) = (L,L), the IC 
onstraints (4.4)and (4.5) do not bind and Ui(x) ≡ U∗
i for i ∈ {1, 2}; (2) if (a1, a2) = (H,L), (4.4) binds, (4.5) doesnot, and Ui(x1, 0) = Ui(x1, 1) = U∗
i (x1), for i ∈ {1, 2} and x1 ∈ {0, 1}; (3) if (a1, a2) = (L,H),(4.5) binds, (4.4) does not, and Ui(0, x2) = Ui(1, x2) = U∗

i (x2), for i ∈ {1, 2} and x2 ∈ {0, 1}; (4)if (a1, a2) = (H,H), both (4.4) and (4.5) bind.The lemma 
on�rms the intuition that to indu
e high e�ort from a supplier, the supplier'sfuture utility must be 
ontingent on (in fa
t, in
rease with) its performan
e out
ome xi and its IC
onstraint should be a
tive.4.1.1 Indu
ing E�ort Pair (L,L)By Lemma 1, if (a1, a2) = (L,L), problem (4.1)-(4.6) be
omes
(ΓLLV )(u) = δ max

q∈R2,U∈S
V (U) + (πL − r)Q (4.8)s.t. u1 = δU1 + φ(rq1) − ψL (4.9)

u2 = δU2 + φ(rq2) − ψL (4.10)
q1 + q2 = Q, q1, q2 ≥ 0. (4.11)12



This problem is relatively straightforward and 
an be solved dire
tly given any input fun
tion V (·).4.1.2 Indu
ing E�ort Pair (H,L) or (L,H)We fo
us on the (H,L) problem below; the (L,H) problem is symmetri
 and 
an be analyzedsimilarly. For (a1, a2) = (H,L), problem (4.1)-(4.6) be
omes:
(ΓHLV )(u) = max

q∈R2,{U(x1)∈S}x1∈{0,1}

{πHq1 + πLq2 + δE[V (U(x1))| a1 = H]} − rQ (4.12)s.t. u1 = δE[U1(x1)| a1 = H] + φ(rq1) − ψH (4.13)
u2 = δE[U2(x1)| a1 = H] + φ(rq2) − ψL (4.14)
u1 = δE[U1(x1)| a1 = L] + φ(rq1) − ψL (4.15)
q1 + q2 = Q, q1, q2 ≥ 0. (4.16)Noti
e that the variables U(x1) do not depend on a2, as shown in Lemma 1. This problem 
an bede
omposed as follows:Proposition 1. Problem (4.12)-(4.16) 
an be solved in two steps: At the lower level, given anexpe
ted 
ontinuation utility ve
tor Û and an input value fun
tion V : S → R, solve

V̂HL(Û) = max
{U(x1)∈S}x1∈{0,1}

E[V (U(x1))| a1 = H] (4.17)s.t. U1(0) = Û1 − pH(1)µ, (4.18)
U1(1) = Û1 + pH(0)µ, (4.19)
pH(0)U2(0) + pH(1)U2(1) = Û2, (4.20)where µ = δ−1∆ψ/(pH(1)−pL(1)) > 0. Let ŜHL be the feasible parameter set of this problem. At theupper level, given the promised 
ontinuation utility ve
tor u and the above fun
tion V̂HL : ŜHL → R,solve

(ΓHLV )(u) = max
q∈R2,Û∈ŜHL

{πHq1 + πLq2 + δV̂HL(Û)} − rQ (4.21)s.t. u1 = δÛ1 + φ(rq1) − ψH (4.22)
u2 = δÛ2 + φ(rq2) − ψL (4.23)
q1 + q2 = Q, q1, q2 ≥ 0. (4.24)The upper level problem fo
uses on the optimal 
hoi
e of volume allo
ation q and the expe
ted
ontinuation utility ve
tor Û (from the next period onward) that render the 
ontinuation utility13
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Figure 2: Positions of U(0) and U(1) given Û.ve
tor u; while the lower level problem fo
uses on the optimal 
hoi
e of the 
ontinuation utilityve
tors {U(x1)} that yield the expe
ted utility Û, subje
t to supplier 1's in
entive 
ompatibilitywith the high e�ort. The proposition suggests that in order to motivate supplier 1 to exert high e�ort,its future 
ompensation must di�er substantially based on its performan
e x1, i.e., U1(1)−U1(0) = µ.Geometri
ally, as shown in Figure 2, the future utility points U(0) and U(1) must lie on the verti
allines with horizontal 
oordinates Û1 − pH(1)µ and Û1 + pH(0)µ, respe
tively, and their expe
tation
pH(0)U(0) + pH(1)U(1) is exa
tly Û.The lower level problem for any given Û has essentially one free de
ision variable (U2(0) or
U2(1)) and the upper level problem given u has also one free de
ision variable (q1 or q2). The
hallenge 
omes from the fa
t that these problems are parameterized and must be solved for allpossible Û and u, for a given input fun
tion V (·).4.1.3 Indu
ing E�ort Pair (H,H)When (a1, a2) = (H,H), a

ording to Lemma 1, problem (4.1)-(4.6) be
omes

(ΓHHV )(u) = δ max
q∈R2,{U(x)∈S}

x∈{0,1}2

E[V (U(x))| a1 = H,a2 = H] + (πH − r)Q (4.25)s.t. u1 = δE[U1(x)| a1 = H,a2 = H] + φ(rq1) − ψH (4.26)
u2 = δE[U2(x)| a1 = H,a2 = H] + φ(rq2) − ψH (4.27)
u1 = δE[U1(x)| a1 = L, a2 = H] + φ(rq1) − ψL (4.28)
u2 = δE[U2(x)| a1 = H,a2 = L] + φ(rq2) − ψL (4.29)
q1 + q2 = Q, q1, q2 ≥ 0. (4.30)This problem 
an be de
omposed as follows. 14



Proposition 2. Problem (4.25)-(4.30) 
an be solved in two steps: At the lower level, given anexpe
ted 
ontinuation utility ve
tor Û and an input value fun
tion V : S → R, solve
V̂HH(Û) = max

{U(x)∈S}
x∈{0,1}2

E[V (U(x))| a1 = H,a2 = H] (4.31)s.t. pH(0)U1(0, 0) + pH(1)U1(0, 1) = Û1 − pH(1)µ, (4.32)
pH(0)U1(1, 0) + pH(1)U1(1, 1) = Û1 + pH(0)µ, (4.33)
pH(0)U2(0, 0) + pH(1)U2(1, 0) = Û2 − pH(1)µ, (4.34)
pH(0)U2(0, 1) + pH(1)U2(1, 1) = Û2 + pH(0)µ, (4.35)where µ = δ−1∆ψ/(pH(1)−pL(1)) > 0. Let ŜHH be the feasible parameter set of this problem. At theupper level, given the promised 
ontinuation utility ve
tor u and the above fun
tion V̂HH : ŜHH → R,solve

(ΓHHV )(u) = δ max
q∈R2,Û∈ŜHH

V̂HH(Û) + (πH − r)Q (4.36)s.t. u1 = δÛ1 + φ(rq1) − ψH (4.37)
u2 = δÛ2 + φ(rq2) − ψH (4.38)
q1 + q2 = Q, q1, q2 ≥ 0. (4.39)With four free de
ision variables, the lower level problem in this 
ase is 
onsiderably harder thanits 
ounterpart in the (H,L) or (L,H) 
ase. Noti
e that E[U1(1, x2)| a2 = H] − E[U1(0, x2)| a2 =

H] = E[U2(x1, 1)| a1 = H] − E[U2(x1, 0)| a1 = H] = µ. On
e again, to motivate the suppliersto 
hoose high e�ort, their future 
ompensation must in
rease with their individual performan
e,and the gap between the two s
enarios must be su�
iently large. The resulting 
ontinuation utilitypoints {U(x)}x∈{0,1}2 also possess strong geometri
 properties, as summarized below and illustratedin Figure 3(a). Let l(N1N2) denote the length of a line segment N1N2.Proposition 3. Given Û, (1) the points (
onvex 
ombinations)M1(x1) = pH(0)U(x1, 0)+pH(1)U(x1, 1),
x1 ∈ {0, 1}, lie on the verti
al lines with horizontal 
oordinates Û1 − pH(1)µ and Û1 + pH(0)µ,respe
tively; (2) the points M2(x2) = pH(0)U(0, x2) + pH(1)U(1, x2), x2 ∈ {0, 1}, lie on the hori-zontal lines with verti
al 
oordinates Û2 − pH(1)µ and Û2 + pH(0)µ, respe
tively; (3) the line seg-ments M1(0)M1(1) and M2(0)M2(1) interse
t at Û; and (4) the line segments M1(0)M2(0) and
M2(1)M1(1) are parallel to U(0, 1)U(1, 0), with lengths l(M1(0)M2(0)) = pH(1) · l(U(0, 1)U(1, 0))and l(M2(1)M1(1)) = pH(0) · l(U(0, 1)U(1, 0)).1010Proposition 3 suggests a geometri
 method to determine points {U(x)} from Û: �rst, freely 
hoose U(0, 1) and
U(1, 0); then the points M1(0), M2(0), M1(1), and M2(1) are uniquely determined a

ording to part (4); �nally,
U(0, 0) and U(1, 1) are uniquely determined by the expressions of {Mi(xi)} in part (1) or (2).15
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(b) A 
ommon patternFigure 3: Positions of U(0, 0), U(0, 1), U(1, 0) and U(1, 1) given Û.The geometri
 properties reveal a 
ommon pattern of the suppliers' 
ontinuation utilities, asillustrated in Figure 3(b), and are useful for retrieving stru
tural properties of the optimal 
ontra
tlater.4.2 Finding Optimal Contra
tNow we return to the volume allo
ation problem (3.6)-(3.9), or equivalently, (4.7).4.2.1 Suppliers' Continuation Utility Set and Randomized Volume Allo
ationThe domain of the manufa
turer's optimal value fun
tion V ∗(·) is a subset of R
2. To derive thisset, we introdu
e a set operation. The Minkowski sum of two sets Y and Z in an Eu
lidean spa
e

R
n is the set

Y ⊕ Z = {y + z : y ∈ Y, z ∈ Z}.Consider problem (4.8)-(4.11) of indu
ing e�orts (L,L). Let S ⊂ R
2 be the domain of the inputfun
tion V (·) and SLL ⊂ R

2 be that of the output fun
tion (ΓLLV )(·). De�ne the set
T = {(φ(rq1), φ(rq2)) : q1 + q2 = Q, q1, q2 ∈ [0, Q]}

= {(t1, t2) : φ−1(t1) + φ−1(t2) = rQ, t1, t2 ∈ [φ(0), φ(rQ)]}. (4.40)Every ve
tor t in T represents the suppliers' utilities from a 
ertain volume allo
ation q. Using theMinkowski sum operation, 
onstraints (4.9)-(4.11) 
an be 
ondensed to
SLL = (δS) ⊕ T − (ψL, ψL). (4.41)16



The output set SLL so de�ned may not be 
onvex even if the input set S is 
onvex, be
ause Tis a 
urve in R
2 and is a non-
onvex set for risk-averse suppliers. However, by the argument at theend of Se
tion 3, when randomization is permitted, problem (4.8)-(4.11) 
an be modi�ed so that theoutput domain is 
onvex (and the output fun
tion is 
on
ave). When the input domain S is 
onvex(and the input fun
tion V (·) is 
on
ave), whi
h is true under our model, it su�
es to randomizeover the utility set T be
ause the Minkowski sum of two 
onvex sets is also 
onvex. To that end,denote the 
onvex hull of T by

conv(T ) = {λt′ + (1 − λ)t′′ : t′, t′′ ∈ T, λ ∈ [0, 1]}. (4.42)Every t ∈ conv(T )\T gives the suppliers' expe
ted utilities from a randomized volume allo
ation thatrandomizes between two deterministi
 allo
ations q′ and q′′. After in
orporating randomization,equation (4.41) be
omes
SLL = (δS) ⊕ conv(T ) − (ψL, ψL). (4.43)Similarly, randomized 
ontra
ts are allowed in problems (4.12)-(4.16) and (4.25)-(4.30).4.2.2 Ben
hmark Contra
t: Indu
ing (L,L) ForeverTo always indu
e e�ort pair (L,L) is a feasible strategy for the manufa
turer and provides a usefulben
hmark solution to the dynami
 volume allo
ation problem although it may not be optimal. Let

V∞
LL(·) be the manufa
turer's value fun
tion in this solution. It is the �xed point of the operator

ΓLL de�ned in (4.8)-(4.11), i.e., satisfying (ΓLLV
∞
LL)(·) = V∞

LL(·).This �xed point property has two impli
ations. First, the domain of V∞
LL, denoted by S∞

LL, isself-generated through (4.8)-(4.11) and hen
e, by (4.43), satis�es
S∞
LL = (δS∞

LL) ⊕ conv(T ) − (ψL, ψL). (4.44)This equation 
an be solved through the properties of the Minkowski sum (Gritzmann and Sturmfels,1993; Zhang, 2010). Se
ond, if we 
an show that V∞
LL(u) ≡ V∞

LL, it follows immediately that
V∞
LL = δV∞

LL + (πL − r)Q. Along these lines, we obtain the following result:Theorem 1. Suppose without loss of generality that both suppliers' reservation utility is 0. To indu
ee�orts (L,L) forever, the set of suppliers' 
ontinuation utility ve
tors is S∞
LL = (1− δ)−1[conv(T )−

(ψL, ψL)] ∩ R
2
+, and the manufa
turer's value fun
tion is V∞

LL(u) = (1 − δ)−1(πL − r)Q, for any
u ∈ S∞

LL. At any u ∈ S∞
LL, an optimal 
hoi
e of U is u. When u lies on the upper boundaryof S∞

LL, denoted by S∞
LL, this optimal U is unique and the optimal volume allo
ation q satis�es

φ(rq1)/φ(rq2) = u1/u2. 17



The set S∞
LL is illustrated by the shaded areas in Figure 4 for ψL = 0 and ψL > 0, re
alling that

φ(0) = 0. The theorem implies that every point (u, V∞
LL(u)) 
an be self-generated or self-sustained:On the upper boundary of S∞

LL, i.e., for u ∈ S∞
LL, the manufa
turer provides the suppliers withthe same business volume allo
ation q in every period whi
h satis�es φ(rq1)/φ(rq2) = u1/u2, andthe suppliers' ratings are the same u forever; If u /∈ S∞

LL, ea
h point 
an still be self-generated,but through a randomized volume allo
ation. Therefore, every point (u, V∞
LL(u)), for u ∈ S∞

LL,is a �trapping� state and represents a �business as usual� situation: ea
h supplier maintains itsstatus quo (i.e., does not undertake additional e�ort to improve performan
e) and the manufa
turersimply 
ompensates them a

ording to this status quo and maintains the same volume allo
ationfrom period to period. Although good performan
e 
an still be observed in this s
enario (unless
pL(1) is zero), it is not interpreted as an indi
ation of high e�ort and the manufa
turer does notdi�erentiate good and bad performan
e observations. As we explain in the following se
tions, thisben
hmark s
enario serves as an e�e
tive long-run in
entive, whi
h seems 
ounterintuitive but 
anbe well explained on
e the longitudinal behavior of the optimal 
ontra
t is revealed.4.2.3 Properties of the Optimal SolutionLet S∗ denote the domain of the manufa
turer's optimal value fun
tion V ∗(·) and S∗

a1a2
denote thefeasible domain of the subproblem of indu
ing e�orts (a1, a2) given the input fun
tion V ∗(·). Afterin
orporating randomized 
ontra
ts, the volume allo
ation problem (4.7) implies that

S∗ = conv(S∗
LL ∪ S∗

HL ∪ S∗
LH ∪ S∗

HH), (4.45)where
S∗
LL = (δS∗) ⊕ conv(T ) − (ψL, ψL) (4.46)by equation (4.43), and the other S∗

a1a2

an be derived from the upper and lower level problemsde�ned in Propositions 1 and 2.We 
hara
terize the optimal solution along the upper and lower boundaries of S∗ by examiningthe sets {S∗

a1a2
}. A representative S∗ is illustrated in Figure 4, for ψL = 0 and ψL > 0. The sets

S∗
LL, S∗

HL, S∗
LH , and S∗

HH are illustrated in Figure 5, for the numeri
al example dis
ussed in Se
tion5 (see Table 1 for the parameters). We denote the upper (lower) boundary of a set S by S (S).Theorem 2. The upper boundary of S∗ 
oin
ides with the upper boundaries of S∗
LL and S∞

LL, and themanufa
turer's optimal value V ∗(u) = (1− δ)−1(πL− r)Q for any u ∈ S∗. The optimal solution atany u ∈ S∗, in
luding the volume allo
ation and next period ratings, is identi
al to that in Theorem1. 18
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LL, S∗
HL, S∗

LH , and S∗
HH .The theorem identi�es a set of self-generated points along the upper boundary of S∗. That is,if the suppliers' 
ontinuation utility ve
tor u enters S∗, it will be �trapped� there forever. Next, weexamine the lower boundary of S∗.Theorem 3. (1) If ψL

ψH
≤ pL(1)

pH(1) and φ(rQ) ≥ 2(1 − δpH(0))µ, the 
enter of the lower boundaryof S∗ is a −45◦ line segment self-generated under the (H,H) e�ort pair, with end points ul =

(1 − δ)−1(δpH(1)µ − ψH ,−δpH(1)µ + φ(rQ) − ψH) and ur = (1 − δ)−1(−δpH(1)µ + φ(rQ) −
ψH , δpH (1)µ− ψH).(2) If ψL

ψH
> pL(1)

pH(1) and φ(rQ) ≥ 2((1 − δ)µ + ψH), the lower boundary of S∗ is a −45◦ linesegment self-generated under the (H,H) e�ort pair, with end points ul = (1− δ)−1(0, φ(rQ)− 2ψH )and ur = (1 − δ)−1(φ(rQ) − 2ψH , 0). 19



(3) In the above 
ases, for any u ∈ ulur or ulur, the manufa
turer's optimal value V ∗(u) =

(1 − δ)−1(πH − r)Q and the optimal volume allo
ation q is randomized between (0, Q) and (Q, 0).Part (3) implies that the manufa
turer 
an a
hieve the highest possible (�rst-best) expe
tedvalue (1 − δ)−1(πH − r)Q by keeping the suppliers' ratings in the line segment ulur (or ulur)and indu
ing both of them to exert high e�ort; the line segment ulur is labeled in Figure 4. The
onditions in parts (1) and (2) of the theorem are su�
ient but not ne
essary. They enable su�
ientvariations in the suppliers' future utilities for in
entive provision 11 and 
an be easily met when the(possible) reward is su�
iently high (e.g., high Q, r, or δ) and/or the 
ost of the high e�ort (ψH)is su�
iently low. 12Although the lower boundary of S∗ is also generated from points on the lower boundary, noindividual point on S∗ 
an be a trapping point as those on the upper boundary, be
ause, to providein
entive for e�orts (a1, a2) 6= (L,L), a utility ve
tor u ∈ S∗ must be generated from at least twodistin
t points in the feasible domain to reward a good out
ome and punish a bad one. However,as shown below and illustrated in Figure 6, the suppliers' 
ontinuation utilities 
an still be �lo
allytrapped� on the lower boundary, i.e., 
on�ned to a 
losed line segment whi
h forms a �re
urrent�
lass of the indu
ed Markov pro
ess.Proposition 4. Let ũl = ul + (µ,−µ) and ũr = ur + (−µ, µ). In the �rst 
ase of Theorem 3,there exists an optimal solution su
h that (1) for any u ∈ ũlũr, U(0, 0) = U(1, 1) = u, U(0, 1) =

u+(−µ, µ), and U(1, 0) = u+(µ,−µ); (2) for any u ∈ ulũl, U(0, 0) = U(0, 1) = ul, U(1, 1) = ul+

pH(1)−pH(0)
pH(1) (µ,−µ), and U(1, 0) = ul+(2µ,−2µ); and (3) for any u ∈ ũrur, U(0, 0) = U(1, 0) = ur,

U(1, 1) = ur + pH(1)−pH(0)
pH(1) (−µ, µ), and U(0, 1) = ur + (−2µ, 2µ). In the se
ond 
ase of Theorem3, there exists an optimal solution similar to the above, with ul, ur, ũl, and ũr repla
ed by ul, ur,

ũ
l = ul + (µ,−µ), and ũ

r = ur + (−µ, µ), respe
tively.The proposition reveals an interesting and intuitive solution for the manufa
turer. On
e thesuppliers' ratings fall into the middle se
tion of the trapping segment ulur on the lower boundary,the manufa
turer 
an keep the suppliers on their toes through the following �tournament�: when11In 
ase (1), the distan
e between the two end points ul and ur is given by (1 − δ)−1(φ(rQ) − 2δpH(1)µ) alongboth axes. Thus the 
ondition φ(rQ) ≥ 2(1− δpH(0))µ implies that these two points are at least 2µ apart along bothaxes. The assumption ψL

ψH

≤ pL(1)
pH(1)

is equivalent to δpH(1)µ ≥ ψH and thus ul1 = ur2 ≥ 0. In 
ase (2), the line segment
ulur is trun
ated by the two axes to ulur. Sin
e the distan
e between ul and ur is given by (1− δ)−1(φ(rQ)−2ψH),the assumption φ(rQ) ≥ 2((1 − δ)µ+ ψH) similarly ensures that ulur is long enough for in
entive provision.12For example, when δ is 
lose to 1, the main assumption in 
ase (2), φ(rQ) ≥ 2((1 − δ)µ+ ψH), is approximately
φ(rQ) ≥ 2ψH , whi
h is ne
essary to just 
over the disutility of high e�ort for the two suppliers (under randomizedvolume allo
ation). 20
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Figure 6: Lo
al Trapping on the Lower Boundary.one supplier performs better than the other (i.e., the out
ome ve
tor is either (0, 1) or (1, 0)),promote the former supplier and demote the latter; if they perform equally well or equally poor(with out
ome ve
tor (0, 0) or (1, 1)), keep their ratings un
hanged. This strategy highlights therole of 
ompetition in motivating suppliers. When the suppliers' ratings move too 
lose to one endof the trapping segment, i.e., into ulũl or ũrur, the above tournament be
omes non-sustainable andthe manufa
turer's strategy needs to be modi�ed: for example, the manufa
turer should punishpoor performan
e by the lower-rated supplier even if the 
ompeting supplier performs equally poor.4.2.4 State Evolution under the Optimal Contra
tOur solution approa
h to the repeated moral hazard problem rests upon the idea that the suppliers'rating ve
tor evolves as a Markov de
ision pro
ess. Now, we examine the longitudinal behavior ofthis pro
ess, as summarized in Figure 7. Theorems 1, 2, and 3 reveal that trapping and re
urrent
lass of states may exist in this Markov de
ision pro
ess. From Theorems 1 and 2, there are in�nitelymany individual �trapping� states on the upper boundary of S∗. Ea
h trapping state represents a�business-as-usual� (low e�ort) s
enario with a 
hara
teristi
 volume allo
ation determined by theratio of the two suppliers' ratings. Theorem 3 identi�es a �re
urrent� 
lass on the lower boundaryof S∗ under 
ertain 
onditions. This subset is 
hara
terized by high e�ort from both suppliers andhighest value a
hieved for the manufa
turer. From the manufa
turer's perspe
tive, this is the mostdesirable situation. The suppliers however, experien
e the most intense 
ompetition in these states.Any point from whi
h S∗ 
an be rea
hed with a positive probability is a �transient� state.Similarly, when the re
urrent 
lass exists on the lower boundary, any point from whi
h a re
urrent21
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ontra
t.state may be rea
hed is also transient. In fa
t, the majority of the feasible domain S∗ 
omprises ofthese transient states. Be
ause the analyti
al solution is intra
table in the interior of S∗, a 
omplete
hara
terization of transient states is infeasible. However, Propositions 1-3 and Figures 2-3 shedlight on in
entive provision and state transitions at those points. In general, the power of in
entivesat the transient points is less intense than on the lower boundary but stronger than on the upperboundary. More properties of the optimal solution at the interior of S∗ are explored numeri
ally inSe
tion 5.Consider an initial state that is transient, as the point in the interior of S∗ in Figure 7. Over time,the state transitions as performan
e out
omes are observed. The overall trend of su
h transitionsis illustrated in the �gure (see also Figure 3(b)). Eventually the state be
omes trapped, either to apoint on the upper boundary or to some re
urrent states on the lower boundary. For instan
e, theline segment des
ribed in Theorem 3 
an be rea
hed after both suppliers under-perform for someextended time, in whi
h 
ase the punishment for the suppliers is exa
tly what 
hara
terizes thisre
urrent 
lass: high e�ort, intense 
ompetition, and low expe
ted payo�. The upper boundary isrea
hed after both or at least one supplier over-perform for some extended time. In this 
ase, theexa
t lo
ation where it is trapped makes a huge di�eren
e for the suppliers. As shown in Theorem1, ea
h point on the upper boundary has a 
hara
teristi
 volume allo
ation whi
h 
hanges from
0 : 1 on one end to 1 : 0 on the other, and is solely determined by the ratio of the suppliers' ratings
u1 : u2. Ideally, a supplier prefers the trapping to o

ur at a lo
ation that yields a higher volume foritself (sin
e that volume allo
ation will persist in all future periods), whi
h provides in
entive forthe supplier to 
ontinually exert high e�ort in order to in�uen
e the dire
tion of the state transition.22



In summary, the trapping states on the upper boundary of S∗ and the re
urrent states on the lowerboundary are long-run in
entive drivers, as the �
arrot� or �sti
k�, for the suppliers to work hard.The results resonate with some known results in the repeated game literature. The �trapping�states on the upper boundary are reminis
ent of the Nash equilibria in a stati
 game in whi
hthe manufa
turer allo
ates volume between two suppliers to mat
h ea
h supplier's promised utility.The �re
urrent� states on the lower boundary bear some resemblan
e to the punishment threat in a�trigger strategy� in repeated games (Friedman 1971, Levin 2003, Plambe
k and Taylor 2006). Whilepunishment often involves termination of the 
ooperation and is thus the worst equilibrium for allplayers, under the optimal 
ontra
t in our model, the re
urrent states impose intense 
ompetitionand low payo� for the suppliers but result in high e�ort input and the �rst-best value to themanufa
turer, i.e., they are �punishment� to the suppliers but not to the manufa
turer.5 Numeri
al AnalysisTo further 
hara
terize the optimal 
ontra
t, we resort to numeri
al analysis. For simpli
ity, we as-sume the utility fun
tion φ(w) =
√
w, for w ≥ 0, but the results 
an be generalized to other 
on
aveutility fun
tions. We examine the optimal solution for a representative example, in
luding the sup-pliers' 
ontinuation utility set, e�ort 
hoi
es, and allo
ated volumes, as well as the manufa
turer'svalue fun
tion. We also study the longitudinal evolution of the suppliers' ratings.Sin
e we have already provided analyti
al 
hara
terizations of the optimal 
ontra
t under the
onditions given in Theorem 3, in the numeri
al analysis, we explore the 
ase when su
h 
onditionsare not met. In parti
ular, we 
onsider the example given in Table 1 (the total volume Q isnormalized to 1). The results are presented in Figures 8 and 9.13 We have also 
ondu
ted a
omparative stati
s analysis, by varying the parameters pH(1), pL(1), ψH , ψL, π̄H , π̄L, r, and δ, toverify that the numeri
al �ndings are robust; due to spa
e limitation, those results are omitted herebut are available from the authors.Parameter Q r δ pH(1) pL(1) ψH ψL πH πLValue 1 0.5 0.9 0.7 0.3 0.3 0 1 0.1Table 1: Parameter Values for the ExampleManufa
turer's Optimal Value Fun
tion. The domain S∗ and fun
tion V ∗(·) are illustrated13We �rst identify the minimum and maximum values of ea
h supplier's rating ui using the results in Theorem2. We then dis
retize this interval into 50 points and iteratively sear
h for the two-dimensional self-generatingdomain S∗, whose upper boundary is spe
i�ed exa
tly in Theorem 2 but the lower boundary has to be identi�ed
omputationally. Next, based on the obtained domain S∗ and the ben
hmark value V∞

LL identi�ed in Theorem 1, weiteratively 
onstru
t the value fun
tion V ∗(·) through the de
omposed problems de�ned in Propositions 1 and 2.23
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(b) Optimal Continuation ValuesFigure 8: Manufa
turer's Optimal Value Fun
tion V ∗(·).in Figures 8(a) and 8(b), respe
tively. By the randomized version of equation (4.7), V ∗(·) is formedfrom the upper 
onvex hull of the individual fun
tions (Γa1a2V
∗)(·), for a1a2 ∈ {LL,HL,LH,HH}.Hen
e the verti
es on the surfa
e of V ∗(·), identi�ed in Figure 8(a), 
orrespond to (the manufa
-turer's) pure strategies and the non-vertex points in the blank spa
es represent mixed strategies.The upper boundary of S∗ 
onsists entirely of points with optimal e�ort pair (L,L), marked with�+�; from Theorem 2, we know that these points are �trapping�. The lower boundary of S∗ 
onsistsof points with optimal e�ort pair (H,H) (marked with �o�), (H,L) (marked with �△�), and (L,H)(marked with ���). In 
ontrast to the 
ases identi�ed in Theorem 3, the highest manufa
turer val-ues, marked with �∗� in Figure 8(a), are not lo
ated on the lower boundary, but at the interse
tionof the three regions where a = (H,H), (H,L), and (L,H) respe
tively dominate and near the 45◦line. This implies that the manufa
turer's value is higher if the suppliers are symmetri
 with respe
tto their ratings, and that the highest manufa
turer values are a
hieved with a randomized 
ontra
twhi
h implements (H,H), (H,L) and (L,H) probabilisti
ally.Optimal Volume Allo
ation. As shown in Theorem 1, ea
h point on the upper boundaryof S∗ (or S∞

LL) 
orresponds to a spe
i�
 volume allo
ation, whi
h 
hanges 
ontinuously with theratio u1/u2 (su
h that φ(rq1)/φ(rq2) = u1/u2). Figure 9(a) shows supplier 1's volume allo
ationunder the optimal 
ontra
t over the entire domain S∗ (supplier 2's volume is symmetri
).14 Clearly,higher value of u1 results in higher business volume for supplier 1. The volume drops markedly as14Noise along the upper boundary is due to the 
omputation pre
ision and the fa
t that the lower-level optimizationproblems have an obje
tive fun
tion that is rather �at near the optimal point.24
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upper boundary
lower boundary(b) On the BoundariesFigure 9: Volume Allo
ated to Supplier 1.the state moves from the area where supplier 1 is stronger (i.e., with a higher rating) to the areawhere supplier 2 is stronger. We observe that the trend of the volume allo
ation is interrelated withthe optimal e�ort 
hoi
es (a1, a2). For instan
e, the allo
ation along the upper boundary where

(L,L) dominates behaves quite di�erently from the lower boundary where (H,H), (H,L) or (L,H)dominates. Although on both the upper and lower boundaries, the optimal volume allo
ation forsupplier 1 follows a upward trend and 
hanges from 0 to 1 as u1 in
reases from its minimum valueto its maximum (Figure 9(b)), the 
hange is mu
h more drasti
 on the lower boundary, where atleast one supplier 
hooses high e�ort.State Evolution. The suppliers' ratings form a set of Markov states and evolve over time.We simulate the state path from di�erent starting states, whi
h helps shed light on the behaviorsof the transient states between the upper and lower boundaries. We observe in this example thattrapping is inevitable and it always o

urs on the upper boundary, whi
h is reasonable sin
e the
onditions for the re
urrent 
lass identi�ed in Theorem 3 are not met. As dis
ussed in Se
tion4.2, being trapped at a parti
ular point (on the upper boundary) implies that the future �businessnorm� is represented by a 
hara
teristi
 volume allo
ation, whi
h serves as the ultimate long-runin
entive/disin
entive for 
ontinuous supplier improvement. Our simulation reveals that the time ittakes to rea
h a trapping state varies with the starting state and so does the exa
t lo
ation wheretrapping o

urs. In parti
ular, when the initial state is farther away from the upper boundary, ittakes longer to rea
h trapping and the initial state (or, the initial ratings of the suppliers) has aweaker impa
t on the �nal trapping lo
ation. 25



6 ExtensionsIn the base model studied in previous se
tions, we have made some assumptions that simplify ouranalysis. In this se
tion, we demonstrate that our main results still hold if some of these assumptionsare relaxed or altered. We highlight the main �ndings here and defer the details to Appendix B.6.1 Asymmetri
 SuppliersThe basi
 model (3.6)-(3.9) assumes that the two suppliers are symmetri
, with regard to theirutility fun
tions, 
ost fun
tions, unit margins, value 
ontributions, et
. This assumption allowsus to 
on
entrate on the most valuable 
ir
umstan
es for dynami
 volume allo
ation. Suppose, forexample, the suppliers' unit margins are unequal. Then the manufa
turer would tend to allo
ate lessvolume to the supplier demanding the higher margin, diminishing the power of volume in
entive.Nevertheless, as dis
ussed below, the main results of this paper 
an be extended to the setting ofunequal supplier margins (asymmetries in utility and 
ost fun
tions 
an be a

ommodated similarly).Suppose supplier i's unit margin is ri, i = 1, 2. The manufa
turer's problem (4.1)-(4.6) needsslight modi�
ations � repla
ing the term rQ in the obje
tive fun
tion by r1q1 + r2q2, and repla
ingthe terms rq1 and rq2 in the 
onstraints by r1q1 and r2q2, respe
tively. It is straightforward toverify that Lemma 1 is still valid and results in Se
tion 4.1 are slightly modi�ed as above.The set T of one-period utility ve
tors from deterministi
 volume allo
ations, de�ned in expres-sion (4.40), 
hanges to:
T = {(φ(r1q1), φ(r2q2)) : q1 + q2 = Q, q1, q2 ∈ [0, Q]}

= {(t1, t2) :
φ−1(t1)

r1
+
φ−1(t2)

r2
= Q, t1 ∈ [φ(0), φ(r1Q)], t2 ∈ [φ(0), φ(r2Q)]}. (6.1)As an example, if the utility fun
tion is φ(w) =

√
w, i.e., φ−1(t) = t2, the new set T would bethe north-east quarter of an ellipse with radiuses √
r1Q and √

r2Q, as opposed to the 
ir
le withradius √
rQ in the equal margin 
ase. Equations (4.41) to (4.46) still hold true, and Theorems1 and 2 only in
ur minor modi�
ations. The upper boundary of S∞

LL or S∗ is still given by (1 −
δ)−1[conv(T )− (ψL, ψL)]∩R

2
+, and the optimal volume allo
ation q on this boundary is still unique(satisfying φ(r1q1)/φ(r2q2) = u1/u2), but the manufa
turer's expe
ted value fun
tion, now givenby V∞

LL(u) = (1 − δ)−1(πLQ− r1q1 − r2q2), is not �at any more be
ause the total margin payment
r1q1 + r2q2 is not 
onstant. The properties of the optimal solution along the lower boundary of
S∗, 
hara
terized by Theorem 3 and Proposition 4, 
an also be generalized ex
ept that the slope ofthe line segment ulur (or ulur), is no longer −45◦ when the margins di�er and the manufa
turer's26



expe
ted value along that line segment now varies linearly between V ∗(ul) and V ∗(ur). Lastly, thelongitudinal behavior on the upper and lower boundaries stays un
hanged.6.2 Fixed Total PaymentIn the base model of the paper, the unit margin for ea
h supplier is a 
onstant r, and the manu-fa
turer allo
ates a �xed total volume Q between the suppliers in every period. In this extension,we 
onsider the �opposite� problem, in whi
h the business volume allo
ated to ea
h supplier is 
on-stant at q, and the manufa
turer has a �xed total payment W to allo
ate in ea
h period. The keydi�eren
e between the two problems lies in the timing of the 
riti
al events. Business volumes areusually determined at the beginning of a period, while the payments are often made at the end andthus 
an be 
ontingent on the performan
e out
ome of that period. Nevertheless, a 
areful 
hoi
eof the referen
e point 
an suppress this 
ontingen
y and streamline the latter problem.We 
all the time point (in ea
h period) at whi
h the performan
e out
omes and the manu-fa
turer's payo� have been realized but the payments to the suppliers are yet to be made the
ompensation point . Let u = (u1, u2) be the 
ontinuation utility ve
tor promised to the suppliersfrom the 
ompensation point of the 
urrent period onward and V (u) be the manufa
turer's 
or-responding 
ontinuation payo� from the 
ompensation point onward (without the 
urrent-periodpayo�). Given u, the manufa
turer 
hooses the 
urrent-period payments w = (w1, w2), next-periode�orts a = (a1, a2), as well as the suppliers' 
ontinuation utilities U(x) = (U1(x), U2(x)) (
ontingenton the next-period performan
e out
omes x) to maximize its expe
ted value, subje
t to promisekeeping, in
entive 
ompatibility, and total payment 
onstraints:
V (u) = max

w,a,{U(x)}
E[δπ(x1)q + δπ(x2)q + δV (U1(x), U2(x))| a] −W (6.2)s.t. φ(qwi) − δψai + δE[Ui(x)| a] = ui, i ∈ {1, 2} (6.3)

φ(qwi) − δψai + δE[Ui(x)| a] ≥ φ(qwi) − δψâi + δE[Ui(x)| âi, aj ], âi 6= ai, j 6= i ∈ {1, 2}(6.4)
w1 + w2 = W/q, w1, w2 ≥ 0. (6.5)The problem is similar to the volume allo
ation problem (3.6)-(3.9); so the fun
tion V (u) andthe 
orresponding optimal 
ontra
t possess similar properties. The only additional task is to de
idefor period 1 the optimal e�ort ve
tor a and 
ontinuation utility ve
tors {U(x)} (
ontingent onperiod 1's out
omes), given an initial state u0 = (u0

1, u
0
2); it is a simple one-shot problem and doesnot a�e
t the long-term properties of the optimal 
ontra
t governed by the re
ursive problem above.27



6.3 Flexible Total VolumeIn the base model, the manufa
turer's total business volume is a 
onstant Q in every period. In thisextension, we allow the total volume to vary in an interval, [Qm, QM ]. We assume that the manufa
-turer has a target volume Q0 ∈ [Qm, QM ] and in
urs over and under-order penalties. The manufa
-turer's total 
ost of pro
uring Q units is given by g(Q) =

{
rQ+ βm(Q0 −Q), if Q ∈ [Qm, Q0),
rQ+ βM (Q−Q0), if Q ∈ [Q0, QM ],for some nonnegative 
oe�
ients βm and βM . When βm = βM = ∞, the model redu
es to thebase model with a �xed total volume Q0; when βm = βM = 0, the model redu
es to one withouta target volume. To avoid trivial 
ases, we assume πL < r + βM , i.e., in
reasing the total volumebeyond Q0 is not pro�table for the manufa
turer at least in the low e�ort s
enario; otherwise, themanufa
turer would be tempted to push the total volume all the way to QM .The manufa
turer's problem (4.1)-(4.6) of indu
ing a given e�ort pair (a1, a2) only undergoesminor modi�
ations: the manufa
turer's total payment rQ in the obje
tive fun
tion is repla
ed by

g(q1 + q2), and the volume 
onstraint q1 + q2 = Q is repla
ed by q1 + q2 ∈ [Qm, QM ]. It 
an beveri�ed that Lemma 1 is inta
t. Thus, the problems of indu
ing (L,L), (H,L), (L,H), and (H,H)e�ort pairs are all similar as before ex
ept the above modi�
ations. As a result, the de
omposition ofthese problems is still valid, i.e., Propositions 1 and 2 are still true ex
ept for the ne
essary 
hangesin the obje
tive fun
tions and volume 
onstraints in the upper level problems. Propositions 3 and 4
arry over without any modi�
ation. The robustness of these results reveals that the fundamentalin
entive driver in the problem is un
hanged under this generalization.The �exibility in Q broadens the manufa
turer's 
hoi
es, whi
h enlarges the feasible set ofthe suppliers' 
ontinuation utilities and improves the manufa
turer's value fun
tion. Due to su
h
hanges, Theorems 1, 2, and 3 need to be modi�ed; most notably, the trapping region near the upperboundary of the feasible set S∗ and the re
urrent set near the lower boundary are both enlargedas a result of the �exibility in Q. Being able to dynami
ally allo
ate a larger (as well as smaller)volume makes it easier for the manufa
turer to indu
e high e�ort from the suppliers. A rigorousanalysis 
an be found in Appendix B.6.4 Multiple E�ort LevelsIn the base model, the suppliers' e�ort level 
an be either H or L. In this extension, we add anintermediate level, M . More e�ort levels 
an be treated similarly.As in the two-e�ort-level 
ase, assume that the disutilities of the e�ort levels and 
orrespondingprobabilities of the good out
ome are ordered su
h that ψH > ψM > ψL and pH(1) > pM (1) >28



pL(1). De�ne the e�e
tive marginal 
osts of e�ort as µHM = δ−1(ψH − ψM )/(pH(1) − pM(1)),
µML = δ−1(ψM − ψL)/(pM (1) − pL(1)), and µHL = δ−1(ψH − ψL)/(pH(1) − pL(1)). We assume
µHM > µML; otherwise e�ort M will never be 
hosen by the suppliers and the problem be
omestrivial. Eliminating symmetri
 
ases, we have six subproblems to solve, whi
h are for e�ort pairs
(H,H), (H,M), (H,L), (M,M), (M,L), and (L,L). For ea
h e�ort pair (a1, a2), the subproblemis largely the same as given in (4.1)-(4.6), with the IC 
onstraints (4.4) and (4.5) ea
h repla
ed bytwo IC 
onstraints to prevent ea
h supplier from deviating to other e�ort levels.Similar to Lemma 1, it 
an be shown that the IC 
onstraints for supplier i do not bind if ai = Land only one of them binds if ai = M (or H). Consequently, the (L,L) subproblem is the same as inthe base model and the results about the (L,L)-forever ben
hmark and the upper boundary of S∗ inTheorems 1 and 2 
ontinue to hold. The (H,L) and (M,L) subproblems are similar to the original
(H,L) subproblem (with one IC 
onstraint binding for supplier 1); and the (H,H), (H,M), and
(M,M) subproblems are similar to the original (H,H) subproblem (with one IC 
onstraint bindingfor ea
h supplier). Sin
e the the re
urrent segment on the lower boundary of S∗ is driven by the
(H,H) subproblem, Theorem 3 and Proposition 4 hold with minor modi�
ations � repla
ing the
onstant µ with µHM , and the e�ort L with M in the 
onditions of Theorem 3. Therefore, the mainresults in the paper withstand the in
lusion of more e�ort levels.7 Con
lusionWe have presented a dynami
 
ontra
t problem for managing 
riti
al suppliers using business vol-ume in
entives. Be
ause the manufa
turer 
annot dire
tly observe or verify ea
h supplier's e�ortdevoted to supplying goods or servi
es that the manufa
turer buys from them, a performan
e-based 
ontra
t is ne
essary. In this paper, we solve the repeated moral hazard problem with twoagents and 
hara
terize the main properties of the optimal 
ontra
t. We formulate the problemas a Markov de
ision pro
ess, treating the suppliers' 
ontinuation utility ve
tor as the state of thesystem. We have shown that the pro
ess 
omprises of three types of states, ea
h representing uniquetransition 
hara
teristi
 and longitudinal behavior. The dis
overy of these states leads to a 
learunderstanding of the dynami
 in
entive stru
ture embedded in the optimal solution. In parti
ular,we �nd that individual trapping states with 
hara
teristi
 volume allo
ations, as well as a trappingregion formed by a re
urrent 
lass of the Markov states, are the ultimate long-run in
entive leversfor the manufa
turer. Compared to existing literature on dynami
 
ontra
ts, we are among thevery few to give well-
hara
terized solution. In addition, our paper is �rst to exploit the transition29



dynami
s and longitudinal behaviors of the optimal 
ontra
t to unveil 
hara
teristi
s of long-runvolume in
entives, to the best of our knowledge.We have made some simplifying assumptions in the model, some of whi
h are relaxed in theextensions: we have 
onsidered asymmetri
 suppliers, �xed total payment (instead of volume),�exible total volume, as well as multiple e�ort levels. In parti
ular, �exibility in the total quantityenables the manufa
turer to o�er stronger-powered in
entives and trapping near the two boundarieswhere both suppliers exert low e�ort or high e�ort is more widespread. It is also possible to generalizeour model in other dire
tions. For instan
e, we have not 
onsidered 
ommon industry noise in thesuppliers' produ
tion fun
tions, and therefore, the manufa
turer needs to �rst �lter out the 
ommonnoise when implementing the 
ontra
t. If, however, 
ommon noise is 
onsidered in the problem,we expe
t the reward (punishment) be
omes stronger (more severe) for the good (poor) performerbe
ause the manufa
turer has to rely more on relative performan
e to infer the e�ort 
hoi
e of ea
hsupplier.Finally, although the mathemati
al model developed in this paper is motivated by a buyer-supplier problem involving two 
ompeting suppliers providing the same produ
t or servi
e, the modeland solution te
hnique 
an also be applied to other prin
ipal-agent problem settings involving (1)two or more agents, (2) repeated moral hazard issues, and (3) 
ommon resour
e 
onstraints amongthe agents. This is a promising future resear
h dire
tion.A
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Dynami
 Business Share Allo
ation in a Supply Chain withCompeting SuppliersHongmin Li1, Hao Zhang2, and Charles H. Fine3A Appendix: ProofsA.1 Proof of Lemma 1Proof. (1) Assume (a1, a2) = (L,L). Consider any feasible solution {q1, q2, U1(x), U2(x)}. Let
U∗

1 = E[U1(x)|L,L] and U∗
2 = E[U2(x)|L,L]. Clearly, U∗

1 and U∗
2 satisfy (4.2) and (4.3). Theyalso satisfy (4.4) and (4.5) stri
tly be
ause ψL < ψH . Further, be
ause V (u1, u2) is 
on
ave,

V (U∗
1 , U

∗
2 ) = V (E[U1(x), U2(x)|L,L]) ≥ E[V (U1(x), U2(x))|L,L], by Jensen's inequality. Thus,the set of variables {q1, q2, U∗

1 , U
∗
2 } is feasible to (4.1)-(4.6) and yields weakly higher expe
tedvalue for the manufa
turer than {q1, q2, U1(x), U2(x)} does. Therefore, the problem (4.1)-(4.6)for (a1, a2) = (L,L) must have an optimal solution that satis�es U1(x) ≡ U∗

1 , U2(x) ≡ U∗
2 , and theIC 
onstraints (4.4) and (4.5) stri
tly.(2) Assume (a1, a2) = (H,L). Consider any feasible solution {q1, q2, U1(x), U2(x)}. Let U ′

i(x1) =

E[Ui(x1, x2)| a2 = L] =
∑

x2∈{0,1}

pL(x2)Ui(x1, x2), for i = 1, 2, as illustrated in Figure 10(a). We have
E[Ui(x)|H,L] =

∑

x1∈{0,1}

∑

x2∈{0,1}

pH(x1)pL(x2)Ui(x1, x2)

=
∑

x1∈{0,1}

pH(x1)[
∑

x2∈{0,1}

pL(x2)Ui(x1, x2)]

= E[U ′
i(x1)

∣∣ a1 = H].Thus, the menu {U ′
1(x1), U

′
2(x1)}x1∈{0,1} satis�es the PK 
onstraints (4.2) and (4.3). Be
ause

E[U1(x)|L,L] = E[U ′
1(x1)| â1 = L], the IC 
onstraint (4.4) implies u1 ≥ δE[U1(x)|L,L]+φ(rq1)−

ψL = δE[U ′
1(x1)| â1 = L]+φ(rq1)−ψL, and hen
e (4.4) is satis�ed by {U ′

1(x1), U
′
2(x1)}x1∈{0,1}. Be-
ause E[U ′

2(x1)|H,H] = E[U ′
2(x1)|H,L], from (4.3) and ψH > ψL we obtain u2 = δE[U ′

2(x1)|H,L]+

φ(rq2) − ψL > δE[U ′
2(x1)|H,H] + φ(rq2) − ψH , and hen
e the IC 
onstraint (4.5) is also satis�ed1W.P. Carey S
hool of Business, Arizona State University, Tempe, AZ 85287. Email: hongmin.li�asu.edu.2Sauder S
hool of Business, University of British Columbia, Van
ouver, BC, V6T 1Z2, Canada. Email:hao.zhang�sauder.ub
.
a.3Sloan S
hool of Management, Massa
husetts Institute of Te
hnology, Cambridge, MA 02139. Email:
harley�mit.edu.
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(stri
tly). Be
ause V (·) is 
on
ave,
E[V (U′(x1))

∣∣ a1 = H] =
∑

x1∈{0,1}

pH(x1)V (
∑

x2∈{0,1}

pL(x2)U(x))

≥
∑

x1∈{0,1}

pH(x1)
∑

x2∈{0,1}

pL(x2)V (U(x))

= E[V (U(x))|H,L]by Jensen's inequality. Thus, the set of variables {q1, q2, U ′
1(x1), U

′
2(x1)} is feasible to the problem(4.1)-(4.6) and yields weakly higher expe
ted value for the manufa
turer than {q1, q2, U1(x), U2(x)}does. Therefore, the problem (4.1)-(4.6) for (a1, a2) = (H,L) must have an optimal solution su
hthat U1(x1, x2) ≡ U ′

1(x1), U2(x1, x2) ≡ U ′
2(x1), and the IC 
onstraint (4.5) is stri
tly satis�ed.If the 
onstraint (4.4) does not bind at {U′(x1)}x1∈{0,1}, we 
an �nd two points U′′(0) and

U′′(1) on the line segment U′(0)U′(1) su
h that E[U′′(x1)|H] = E[U′(x1)|H] and (4.4) binds,as illustrated in Figure 10(a). We show below that U′′(0) and U′′(1) must lie between U′(0) and
U′(1), and hen
e by the 
on
avity of V (·), E[V (U′′(x1))|H] ≥ E[V (U′(x1))|H].By the above non-binding assumption,

u1 > δE[U ′
1(x1)

∣∣L] + φ(rq1) − ψL. (A.1)Be
ause u1 = δE[U ′
1(x1)|H] + φ(rq1) − ψH and ψH > ψL, we have

u1 < δE[U ′
1(x1)

∣∣H] + φ(rq1) − ψL, (A.2)i.e., (4.4) is violated at the expe
ted point E[U′(x1)|H]. Inequalities (A.1) and (A.2) imply
pL(0)U ′

1(0) + pL(1)U ′
1(1) < pH(0)U ′

1(0) + pH(1)U ′
1(1). Be
ause pL(0)− pH(0) = pH(1)− pL(1) > 0,we obtain U ′

1(0) < U ′
1(1). For any U ′′

1 (0) and U ′′
1 (1) su
h that U ′

1(0) < U ′′
1 (0) < E[U ′

1(x1)|H] <

U ′′
1 (1) < U ′

1(1) and E[U ′′
1 (x1)|H] = E[U ′

1(x1)|H], we have
pH(0)[U ′′

1 (0) − U ′
1(0)] = pH(1)[U ′

1(1) − U ′′
1 (1)]and

[pL(0)U ′′
1 (0) + pL(1)U ′′

1 (1)] − [pL(0)U ′
1(0) + pL(1)U ′

1(1)]

=pL(0)[U ′′
1 (0) − U ′

1(0)] − pL(1)[U ′
1(1) − U ′′

1 (1)]

=[pL(0) − pL(1)
pH(0)

pH(1)
][U ′′

1 (0) − U ′
1(0)] > 0,be
ause pL(0)pH(1) − pL(1)pH(0) = pL(0)pH(1) − (1 − pL(0))(1 − pH(1)) = pL(0) + pH(1) − 1 =

pH(1) − pL(1) > 0. Further,
[pL(0)U ′′

1 (0) + pL(1)U ′′
1 (1)] − [pH(0)U ′′

1 (0) + pH(1)U ′′
1 (1)]

=[pL(0) − pH(0)]U ′′
1 (0) + [pL(1) − pH(1)]U ′′

1 (1)

=[pH(1) − pL(1)][U ′′
1 (0) − U ′′

1 (1)] < 0.2
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(b) The 
ase with e�ort pair (H,H)Figure 10: Making IC Constraints Binding.Thus, we obtain E[U ′
1(x1)|L] < E[U ′′

1 (x1)|L] < E[U ′′
1 (x1)|H] = E[U ′

1(x1)|H]. By varyingthe gap between U ′′
1 (0) and U ′′

1 (1) while maintaining U ′
1(0) < U ′′

1 (0) < U ′′
1 (1) < U ′

1(1) and
E[U ′′

1 (x1)|H] = E[U ′
1(x1)|H], we 
an have E[U ′′

1 (x1)|L] anywhere between E[U ′
1(x1)|L] and

E[U ′
1(x1)|H]. Then by inequalities (A.1) and (A.2), there must exist a pair of U ′′

1 (0) and U ′′
1 (1)su
h that u1 = δE[U ′′

1 (x1)|L] + φ(rq1) − ψL, i.e., the IC 
onstraint (4.4) is satis�ed with equality.(3) The 
ase (a1, a2) = (L,H) is symmetri
 to the 
ase (H,L) above and 
an be proved similarly.(4) Assume (a1, a2) = (H,H). Consider any feasible solution {q,U(x)} and suppose thatthe 
onstraint (4.5) does not bind. As illustrated in Figure 10(b), there must exist {U′(x)} su
hthat (i) for any x1 ∈ {0, 1}, U′(x1, 0) and U′(x1, 1) lie on the line segment U(x1, 0)U(x1, 1) and
Ex2 [U

′(x1, x2)| a2 = H] = Ex2 [U(x1, x2)| a2 = H], and (ii) the 
onstraint (4.5) binds (by the sameargument as in part 2). Then, we have
Ex1,x2[U

′(x)
∣∣ a2 = H,a1] = Ex1{Ex2 [U

′(x1, x2)
∣∣ a2 = H]

∣∣ a1}
= Ex1{Ex2 [U(x1, x2)| a2 = H]| a1}
= Ex1,x2[U(x)| a2 = H,a1], a1 ∈ {H,L}.Consequently, the PK 
onstraints (4.2), (4.3), and the IC 
onstraint (4.4) are un
hanged, butthe IC 
onstraint (4.5) is now binding (by the assumption about {U′(x)}). By the 
on
avity of

V (·), for any x1 ∈ {0, 1}, Ex2 [V (U′(x1, x2))| a2 = H] ≥ Ex2 [V (U(x1, x2))| a2 = H], and hen
e
E[V (U′(x))|H,H] ≥ E[V (U(x))|H,H].If the IC 
onstraint (4.4) binds at {U′(x)}, the proof is 
ompleted. Suppose (4.4) does notbind. As illustrated in Figure 10(b), there must exist {U′′(x)} su
h that (i) for any x2 ∈ {0, 1},
U′′(0, x2) and U′′(1, x2) lie on the line segment U′(0, x2)U′(1, x2) and Ex1[U

′′(x1, x2)| a1 = H] =

Ex1 [U
′(x1, x2)| a1 = H], and (ii) the 
onstraint (4.4) binds. By the same argument as above, we3




an show that the PK 
onstraints (4.2), (4.3), and the IC 
onstraint (4.5) are all un
hanged, and
E[V (U′′(x))|H,H] ≥ E[V ′(U(x))|H,H]. Noti
e that both IC 
onstraints bind at {U′′(x)}, andthe proof is 
ompleted.A.2 Proof of Proposition 1Proof. De�ne Ûi = E(Ui(x1)| a1 = H), i = 1, 2. Then 
onstraints (4.13), (4.14), and (4.16) be
ome(4.22), (4.23), and (4.24). Problem (4.12)-(4.16) is transformed into the upper level problem (4.21)-(4.24) as long as Û is 
reated from {U(x1)}x1∈{0,1} that satisfy

pH(0)Ui(0) + pH(1)Ui(1) = Ûi, i = 1, 2 (A.3)and the remaining 
onstraint (4.15).By 
onstraints (4.13) and (4.15), we have δÛ1 + φ(rq1) − ψH = δ[pL(0)U1(0) + pL(1)U1(1)] +

φ(rq1) − ψL, and hen
e
pL(0)U1(0) + pL(1)U1(1) = Û1 − δ−1∆ψ. (A.4)Solving equations (A.3) (for i = 1) and (A.4), we obtain 
onstraints (4.18) and (4.19). Constraint(4.20) is equation (A.3) for i = 2. The obje
tive (4.17) ensures that for any given Û, the variables

{U(x1)} are optimally 
hosen for the manufa
turer. Therefore we obtain the lower level problem(4.17)-(4.20).A.3 Proof of Proposition 2Proof. De�ne Ûi = E(Ui(x)|H,H), i = 1, 2. Then 
onstraints (4.26), (4.27), and (4.30) be
ome(4.37), (4.38), and (4.39). Problem (4.25)-(4.30) is transformed into the upper level problem (4.36)-(4.39) as long as Û is 
reated from {U(x)}x∈{0,1}2 that satisfy
pH(0)[pH(0)U1(0, 0) + pH(1)U1(0, 1)] + pH(1)[pH(0)U1(1, 0) + pH(1)U1(1, 1)] = Û1 (A.5)
[pH(0)U2(0, 0) + pH(1)U2(1, 0)]pH (0) + [pH(0)U2(0, 1) + pH(1)U2(1, 1)]pH (1) = Û2 (A.6)and the remaining 
onstraints (4.28) and (4.29).By 
onstraints (4.26) and (4.28), we have δÛ1+φ(rq1)−ψH = δ{pL(0)[pH(0)U1(0, 0)+pH (1)U1(0, 1)]+

pL(1)[pH(0)U1(1, 0) + pH(1)U1(1, 1)]} + φ(rq1) − ψL, and hen
e
pL(0)[pH (0)U1(0, 0) + pH(1)U1(0, 1)] + pL(1)[pH (0)U1(1, 0) + pH(1)U1(1, 1)] = Û1 − δ−1∆ψ. (A.7)Solving equations (A.5) and (A.7), we obtain 
onstraints (4.32) and (4.33). Similarly, by 
onstraints(4.27) and (4.29), we obtain
[pH(0)U2(0, 0) + pH(1)U2(1, 0)]pL(0) + [pH(0)U2(0, 1) + pH(1)U2(1, 1)]pL(1) = Û2 − δ−1∆ψ. (A.8)From (A.6) and (A.8), we obtain 
onstraints (4.34) and (4.35). The obje
tive (4.31) ensures thatfor any given Û, the variables {U(x)} are optimally 
hosen for the manufa
turer. Therefore, thelower level problem is de�ned by (4.31)-(4.35). 4



A.4 Proof of Proposition 3Proof. Claims (1) and (2) follow (4.32)-(4.35) immediately. Claim (3) is true be
ause
pH(0)M1(0) + pH(1)M1(1)

= pH(0)[pH(0)U(0, 0) + pH(1)U(0, 1)] + pH(1)[pH (0)U(1, 0) + pH(1)U(1, 1)]

= E[U(x)|H,H] = (Û1, Û2)and similarly pH(0)M2(0) + pH(1)M2(1) = (Û1, Û2).Now, we show 
laim (4). Be
auseM1(0) = pH(0)U(0, 0)+pH (1)U(0, 1) andM2(0) = pH(0)U(0, 0)+

pH(1)U(1, 0), we haveM1(0)−U(0, 0) = pH(1)[U(0, 1)−U(0, 0)], M2(0)−U(0, 0) = pH(1)[U(1, 0)−
U(0, 0)], and

l(U(0, 0)M1(0))

l(U(0, 0)U(0, 1))
= pH(1) =

l(U(0, 0)M2(0))

l(U(0, 0)U(1, 0))
.Thus, M1(0)M2(0) is parallel to U(0, 1)U(1, 0) and l(M1(0)M2(0)) = pH(1) · l(U(0, 1)U(1, 0)).Similarly, be
auseM1(1) = pH(0)U(1, 0)+pH (1)U(1, 1) andM2(1) = pH(0)U(0, 1)+pH (1)U(1, 1),we have

l(U(1, 1)M1(1))

l(U(1, 1)U(1, 0))
= pH(0) =

l(U(1, 1)M2(1))

l(U(1, 1)U(0, 1))and hen
eM2(1)M1(1) is parallel toU(0, 1)U(1, 0) with length l(M2(1)M1(1)) = pH(0)·l(U(0, 1)U(1, 0)).A.5 Proof of Theorem 1Proof. The proof is by 
onstru
tion. We �rst derive the two boundaries of S∞
LL when ψL = 0, asillustrated in Figure 11 (in whi
h the utility fun
tion is φ(w) =

√
w). The proof below utilizes theproperties of Minkowski sum of 
onvex polytopes.(1) Let S denote the upper boundary of a 
onvex set S. Consider the upper boundary of S∞

LL,i.e., S∞
LL. From equation (4.44), we have S∞

LL = (δS∞
LL) ⊕ conv(T ) = (δS∞

LL)⊕ conv(T ). Noti
e that
conv(T ) = T . Refer to Figure 11(b) and 
onsider any point u′ ∈ S∞

LL. Let the normal ve
tor at u′be n. Clearly, the point on δS∞
LL with the same normal ve
tor n is u′′ = δu′. By the propertiesof Minkowski sum (Gritzmann and Sturmfels 1993), u′ = u′′ + t′, where t′ is the point on T withthe same normal ve
tor n. Thus, we have u′ = δu′ + t′, or, u′ = (1 − δ)−1t′, and 
onsequently

S∞
LL = (1 − δ)−1T .(2) Let S denote the lower boundary of a 
onvex set S. Consider the lower boundary of S∞

LL,i.e., S∞
LL. From equation (4.44), we have S∞

LL = (δS∞
LL) ⊕ conv(T ) = (δS∞

LL) ⊕ conv(T ). Noti
ethat conv(T ) is the line segment (φ(0), φ(rQ))(φ(rQ), φ(0)). Refer to Figure 11(
) and 
onsider anypoint u′ ∈ S∞
LL. By the same argument as in part (1) above, we have u′ = (1 − δ)−1t′ for some

t′ ∈ conv(T ) and thus S∞
LL = (1 − δ)−1conv(T ). 5
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Figure 11: Determining the boundaries of S∞
LL: (a) The set T and conv(T ); (b) Determining theupper boundary of S∞

LL; (
) Determining the lower boundary of S∞
LL.Combining (1) and (2), we obtain S∞

LL = (1 − δ)−1conv(T ) when ψL = 0. Now, assume ψL > 0but ignore the 
onstraint u ∈ R
2
+ for the moment. De�ne S∞′

LL = S∞
LL + (1 − δ)−1(ψL, ψL). By theproperties of Minkowski sum, (Y +d)⊕Z = (Y ⊕Z)+d for any ve
tor d. Thus, (δS∞′

LL)⊕conv(T ) =

(δS∞
LL) ⊕ conv(T ) + δ(1 − δ)−1(ψL, ψL) = S∞

LL + (ψL, ψL) + δ(1 − δ)−1(ψL, ψL) = S∞′
LL, where these
ond equality follows from equation (4.44). Therefore, the set S∞′

LL is identi
al to the set S∞
LL
hara
terized above when ψL = 0. As a result, when ψL > 0 and the 
onstraint u ∈ R

2
+ is ignored,we have S∞

LL = S∞′
LL − (1 − δ)−1(ψL, ψL) = (1 − δ)−1[conv(T ) − (ψL, ψL)].Consider the 
onstraint u ∈ R

2
+. As shown above, every u′ ∈ (1 − δ)−1[conv(T ) − (ψL, ψL)]
an be self-generated a

ording to u′ = δu′ + t′ (for some t′ ∈ conv(T )). Hen
e the trun
ated set

(1 − δ)−1[conv(T ) − (ψL, ψL)] ∩ R
2
+ 
an be self-generated as well, and S∞

LL ⊃ (1 − δ)−1[conv(T ) −
(ψL, ψL)] ∩ R

2
+ when the 
onstraint u ∈ R

2
+ is imposed. Suppose that there exists ũ ∈ S∞

LL \ ((1 −
δ)−1[conv(T ) − (ψL, ψL)] ∩ R

2
+). Then ũ + (ψL, ψL) must belong to the set S∞

LL 
orrespondingto ψL = 0, whi
h is (1 − δ)−1conv(T ). Clearly, su
h a ũ does not exist. Thus, S∞
LL = (1 −

δ)−1[conv(T ) − (ψL, ψL)] ∩ R
2
+.Next, we derive the manufa
turer's 
ontinuation value fun
tion V∞

LL(·). Be
ause every point
u′ ∈ S∞

LL 
an be self-generated as mentioned above (along with 
ertain t′ ∈ conv(T ) or q satisfying(4.11)), it is feasible to let U = u in problem (4.8)-(4.11) and hen
e V∞
LL(u) ≥ (πL−r)Q+ δV∞

LL(u),i.e., V∞
LL(u) ≥ (1−δ)−1(πL−r)Q. It 
an be further seen that the fun
tion V∞

LL(u) = (1−δ)−1(πL−
r)Q, for all u ∈ S∞

LL, is a �xed point of the operator ΓLL, i.e., satisfying (ΓLLV
∞
LL)(·) = V∞

LL(·).6



Consider the spa
e of 
ontinuous and bounded fun
tions with the 
ommon domain S∞
LL, and equipthe spa
e with the supremum norm ‖f‖ ≡ supu∈S∞

LL
|f(u)|, for any fun
tion f : S∞

LL → R. Considerany fun
tions f1 : S∞
LL → R and f2 : S∞

LL → R in the spa
e and let d = ‖f1 − f2‖. By thede�nition (4.8)-(4.11), ΓLLf1 ≥ ΓLLf2 if f1 ≥ f2 and ΓLL(f + d) = ΓLLf + δd for any 
onstant
d ∈ R. Thus, ΓLLf2 − δd = ΓLL(f2 − d) ≤ ΓLLf1 ≤ ΓLL(f2 + d) = ΓLLf2 + δd, whi
h implies
‖ΓLLf1 − ΓLLf2‖ ≤ δ ‖f1 − f2‖. Hen
e the operator ΓLL is a 
ontra
tion mapping in this fun
tionspa
e and the above �xed point V∞

LL(·) = (1 − δ)−1(πL − r)Q is unique under ΓLL.Finally, a

ording to the 
onstru
tion of S∞
LL, any u′ ∈ S∞

LL satis�es u′ = δu′ + t′, where t′lies on the 
urve T and has the same normal ve
tor as u′ does. Be
ause t′ = (1 − δ)u′, it isuniquely determined. By the de�nition of T , t′ = (φ(rq′1), φ(rq′2)) for some (q′1, q
′
2), and therefore

φ(rq′1)/φ(rq′2) = u′1/u
′
2. For any u′ ∈ S∞

LL \ S∞
LL, we 
an still have u′ = δu′ + t′, with 
ertain

t′ ∈ conv(T )\T , 
orresponding to a randomized volume allo
ation (re
all that any t in conv(T )\Tgives the suppliers' expe
ted utilities from a randomized volume allo
ation that randomizes betweentwo deterministi
 volume allo
ations). However, su
h a 
onstru
tion is not unique be
ause we 
analso have u′ = u′′ + t′′ for some u′′ 6= δu′, as evident from Figure 11(
).A.6 Proof of Theorem 2Proof. We determine the upper boundary of S∗, i.e., S∗. Be
ause S∗ = conv(S∗
LL ∪ S∗

HL ∪ S∗
LH ∪

S∗
HH), our main task is to show that the upper boundary of S∗

LL dominates those of S∗
HL, S∗

LH , and
S∗
HH .Let Ŝ∗

a1a2
represent the feasible parameter set of the lower level problem for the e�ort pair

(a1, a2), given the input fun
tion V ∗(·). By the de�nition of these problems, we have
Ŝ∗
HL = {Û : ∃{U(x1) ∈ S∗}x1∈{0,1} s.t. (4.18)-(4.20)}, (A.9)
Ŝ∗
LH = {Û : ∃{U(x2) ∈ S∗}x2∈{0,1} s.t. the 
ounterpart of (4.18)-(4.20) for a1a2 = LH}, (A.10)

Ŝ∗
HH = {Û : ∃{U(x) ∈ S∗}x∈{0,1}2 s.t. (4.32)-(4.35)}. (A.11)By the similarity between the upper level problems and the (L,L) problem (4.8)-(4.11), and inanalogy to (4.46), we obtain

S∗
a1a2

= (δŜ∗
a1a2

) ⊕ conv(T ) − (ψa1 , ψa2), a1a2 ∈ {HL,LH,HH}. (A.12)Consider any Û ∈ Ŝ∗
HH . By de�nition (as in Proposition 3), Û is the expe
ted 
ontinuationutility ve
tor and is the 
onvex 
ombination of some {U(x) ∈ S∗}x∈{0,1}2 . Hen
e Û must lie insidethe 
onvex hull of {U(x)}x∈{0,1}2 and be dominated by S∗, by the 
onvexity of S∗. Similarly, any

Û ∈ Ŝ∗
HL or Ŝ∗

LH must be dominated by S∗ as well. Thus, the upper boundary of S∗ dominatesthose of Ŝ∗
HL, Ŝ∗

LH , and Ŝ∗
HH . By equations (4.46), (A.12), the fa
t ψH > ψL, and the monotoni
ityof S∗

LL (assuming that the 
urve T is monotone), the upper boundary of S∗
LL dominates those of

S∗
HL, S∗

LH , and S∗
HH . 7



Therefore, equation (4.45) implies S∗ = S∗
LL. By equation (4.46), we obtain

S∗
LL = (δS∗) ⊕ conv(T ) − (ψL, ψL) = (δS∗

LL) ⊕ conv(T ) − (ψL, ψL).Be
ause this 
oin
ides with the de�nition of S∞
LL, the upper boundaries of S∗, S∗

LL, and S∞
LL areidenti
al.A.7 Proof of Theorem 3The basi
 idea of the proof is the following: Compare problems (4.8)-(4.11), (4.12)-(4.16), and(4.25)-(4.30). Be
ause the high e�ort 
ost ψH is in
urred by both suppliers in the (H,H) problemwhile by at most one of them in the other problems, the (H,H) e�ort pair may lead to the lowest
ontinuation utilities for the suppliers. Consider any point u ∈ S∗ that is 
reated by the (H,H)e�ort pair. A

ording to the geometri
 stru
ture des
ribed in Proposition 3 and illustrated in Figure3(a), the 
orresponding expe
ted 
ontinuation utility ve
tor Û must lie in the 
onvex hull of the
orresponding {U(x) ∈ S∗}x∈{0,1}2 , and hen
e Û ∈ S∗ as well. To ensure u ∈ S∗, we must push

Û toward S∗. Ideally, we would have Û ∈ S∗. This 
an be a
hieved when all {U(x)} lie on thesame line and their 
onvex hull degenerates into a line segment. Due to the symmetry between thetwo suppliers (essentially, the slope of conv(T )), the line segment should have a −45◦ slope. We
onstru
t the solution rigorously below with the aid of two lemmas.Lemma A1. Let µ = δ−1∆ψ/(pH(1) − pL(1)) > 0. If an expe
ted 
ontinuation utility ve
tor Û
an be generated from a set of U(x), x ∈ {0, 1}2, that all lie on a −45◦ line segment, then theline segment is the shortest when U(0, 0) and U(1, 1) lie between U(0, 1) and U(1, 0). The linesegment has the following properties, as illustrated in Figure 12: (1) U(0, 1)U(1, 0) passes through
Û; (2) U(1, 0) −U(0, 1) = (2µ,−2µ); (3) U(0, 1) lies to the left of the verti
al line with horizontal
oordinate Û1 − pH(1)µ or exa
tly on it (in whi
h 
ase U(0, 1) 
oin
ides with U(0, 0) and M1(0));and (4) U(1, 0) lies below the horizontal line with verti
al 
oordinate Û2 − pH(1)µ or exa
tly on it(in whi
h 
ase U(1, 0) 
oin
ides with U(0, 0) and M2(0)).Proof. By Proposition 3 and Figure 3(a), when all {U(x)} lie on the same line, the line mustpass through Û. As the interse
tions of this line with the dotted (horizontal or verti
al) linesin Figure 12, the points Mi(xi), xi ∈ {0, 1}, i ∈ {1, 2}, are uniquely determined. Be
ause
l(U(0, 1)U(1, 0)) = l(M1(0)M2(0)) + l(M2(1)M1(1)), the distan
e between U(0, 1) and U(1, 0)is determined as well. To ensure that the line segment that 
ontains all {U(x)} has the shortestlength (so that it is easiest to sustain in the optimal solution), U(0, 0) and U(1, 1) must lie between
U(0, 1) and U(1, 0). Then by Proposition 3 and Figure 3(a), U(0, 1) must lie to the left of theverti
al line with horizontal 
oordinate Û1 − pH(1)µ, and U(1, 0) below the horizontal line withverti
al 
oordinate Û2−pH(1)µ. Further, be
ause both M1(0)M2(0) and M2(1)M1(1) pass through8
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Figure 12: Lined up {U(x)} to Generate a Given Û under (H,H) E�orts.
Û, by the geometry illustrated in Figure 12, we obtain M2(0) −M1(0) = (2pH(1)µ,−2pH (1)µ),
M1(1) −M2(1) = (2pH(0)µ,−2pH(0)µ), and hen
e U(1, 0) − U(0, 1) = (2µ,−2µ).Noti
e that although the length of U(0, 1)U(1, 0) is �xed, the exa
t lo
ations of U(0, 1) and
U(1, 0) (and 
onsequently, U(0, 0) and U(1, 1)) are �exible to some extent.Lemma A2. (1) If ψL

ψH
≤ pL(1)

pH(1) and φ(rQ) ≥ 2(1−δpH(0))µ, the −45◦ line segment ulur 
an be self-generated under the (H,H) e�ort pair, where ul = (1−δ)−1(δpH(1)µ−ψH ,−δpH(1)µ+φ(rQ)−ψH )and ur = (1 − δ)−1(−δpH(1)µ+ φ(rQ) − ψH , δpH(1)µ− ψH). Further, ulur 
annot be extended ateither end without losing self-sustainability, and there is no −45◦ line segment below (to the left of)
ulur that 
an be self-generated under the (H,H) e�ort pair.(2) If ψL

ψH
> pL(1)

pH(1) and φ(rQ) ≥ 2((1−δ)µ+ψH), the −45◦ line segment ulur 
an be self-generatedunder the (H,H) e�ort pair, where ul = (1 − δ)−1(0, φ(rQ) − 2ψH) and ur = (1 − δ)−1(φ(rQ) −
2ψH , 0). There is no −45◦ line segment below (or to the left of) ulur that 
an be self-generatedunder the (H,H) e�ort pair.Proof. (1) Assume that the left end point of the line segment, ul, is generated from the expe
ted
ontinuation utility ve
tor Ûl. To push ul to the top left, by equations (4.37)-(4.38), we should
hoose q = (0, Q), and hen
e

ul = δÛl + (0, φ(rQ)) − (ψH , ψH). (A.13)The ve
tor Ûl is 
reated from the set of 
ontinuation utility ve
tors {Ul(x)}, all lying on the linesegment ulur. To push ul to the top left, we should push Ûl to the top left as mu
h as possible.From Figure 12 and Lemma A1(3), the minimum horizontal and verti
al distan
e between Ûl and9
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Figure 13: Generating ul from {Ul(x)} and Ûl under (H,H) E�orts.
Ul(0, 1) is pH(1)µ, and the minimum is rea
hed if Ul(0, 1), Ul(0, 0) and M1(0) are of the samepoint. Therefore, to generate the leftmost Ûl, Ul(0, 1) and Ul(0, 0) must 
oin
ide with the leftendpoint of the line segment, ul. Hen
e, as illustrated in Figure 13,

Ûl = ul + (pH(1)µ,−pH(1)µ). (A.14)Substituting (A.14) into (A.13), we obtain
ul = (1 − δ)−1(δpH(1)µ− ψH ,−δpH(1)µ + φ(rQ) − ψH).Similarly, we 
an obtain the right end point of the line segment
ur = (1 − δ)−1(−δpH(1)µ+ φ(rQ) − ψH , δpH(1)µ− ψH).It follows that

ur − ul = (1 − δ)−1[φ(rQ) − 2δpH(1)µ](1,−1).By Lemma A1, to generate Ûl from {Ul(x)}, we must have Ul(1, 0) − Ul(0, 1) = (2µ,−2µ).Thus, to 
ontain all {Ul(x)}, ulur must be long enough, i.e., (1 − δ)−1[φ(rQ) − 2δpH(1)µ] ≥ 2µ.That is, φ(rQ) ≥ 2(1 − δ + δpH(1))µ, or,
φ(rQ) ≥ 2(1 − δpH(0))µ.Here, we impli
itly assumed that ul1 ≥ 0 (and ur2 ≥ 0), i.e., δpH(1)µ ≥ ψH , whi
h implies

∆ψpH(1)/(pH (1) − pL(1)) ≥ ψH , (ψH − ψL)pH(1) ≥ ψH(pH(1) − pL(1)), or ψL
ψH

≤ pL(1)
pH(1) .Now, we show that there is no −45◦ line segment below (or to the left of) ulur that 
an beself-generated under the (H,H) e�ort pair. A −45◦ line is de�ned by an equation u1 + u2 = k,10



for some 
onstant k. A −45◦ line segment is below or to the left of another −45◦ line segmentif the former has a smaller k in its de�ning equation. Suppose L is the lowest −45◦ line segmentthat 
an be self-generated under the (H,H) e�ort pair, with a de�ning equation u1 + u2 = k, fora 
ertain k > 0. For any feasible u under the (H,H) e�orts, equations (4.37)-(4.38) imply that
u = δÛ + t − (ψH , ψH), for 
ertain Û ∈ Ŝ∗

HH and t ∈ conv(T ) (randomized volume allo
ation isneeded to 
reate a t ve
tor in conv(T ) \ T ). Similar to the situation illustrated in Figure 11(
) fordetermining S∞
LL, any u ∈ L must be generated from 
ertain Û ∈ L and t ∈ conv(T ). Be
ause

conv(T ) = (φ(0), φ(rQ))(φ(rQ), φ(0)), any t ∈ conv(T ) 
orresponds to a volume allo
ation (q̃1, q̃2)that randomizes between (0, Q) and (Q, 0) and hen
e satis�es E[φ(rq̃1)+φ(rq̃2)] = φ(rQ). Thus, by(4.37)-(4.38), we have u1 +u2 = δ(Û1 + Û2)+φ(rQ)−2ψH , whi
h implies k = δk+φ(rQ)−2ψH , or
k = (1 − δ)−1(φ(rQ) − 2ψH). Clearly, both ul and ur lie on the line segment L and ulur 
oin
ideswith L.(2) When ul1 < 0 (and ur2 < 0), i.e., ψL

ψH
> pL(1)

pH(1) , be
ause u ∈ R
2
+, the line segment ulurwould be trun
ated by the two axes, be
oming ulur. Be
ause ul1 = 0 and ul1 + ul2 = ul1 + ul2 =

(1 − δ)−1[φ(rQ) − 2ψH ], we have ul2 = (1 − δ)−1[φ(rQ) − 2ψH ]. Thus, the two end points of thetrun
ated line segment are ul = (1 − δ)−1(0, φ(rQ) − 2ψH) and ur = (1 − δ)−1(φ(rQ) − 2ψH , 0).For the trun
ated line segment ulur to be self-sustainable, it must be long enough as well. Thatis, (1 − δ)−1[φ(rQ) − 2ψH ] ≥ 2µ, or φ(rQ) ≥ 2((1 − δ)µ + ψH). In addition, be
ause both ul and
ur lie on the line segment L de�ned above, ulur is the lowest possible self-sustainable line segmentunder the (H,H) e�ort pair.Proof. [Proof of the Theorem℄ By Lemma A2, under the (H,H) e�ort pair, the line segments ulurand ulur 
an be self-generated in the two 
ases, respe
tively, and there is no other self-sustainableline segment below (or to the left of) them. Thus, ulur, ulur ⊂ S∗

HH and they 
an potentially be
S∗ (or part of whi
h) in their respe
tive 
ases. We verify this by showing that the other e�ort pairs
annot generate any u ve
tor below ulur or ulur.Note that ulur and ulur are both on the −45◦ line L : u1 + u2 = k, for k = (1 − δ)−1(φ(rQ) −
2ψH). By equations (4.46) and (A.12), to generate a 
ontinuation utility ve
tor with the smallest
u1+u2 under any e�ort pair (a1, a2), the manufa
turer must 
hoose volume allo
ation (0, Q), (Q, 0),or a randomization between the two, su
h that φ(rq1) + φ(rq2) = φ(rQ) (or E[φ(rq1) + φ(rq2)] =

φ(rQ)). This is similar to the situation illustrated in Figure 11(
) for determining S∞
LL.Consider the (L,L) e�ort pair. From any U ∈ L, by (4.9)-(4.10), we have u1 +u2 = δ(U1 +U2)+

φ(rq1)+φ(rq2)−2ψL = δk+φ(rQ)−2ψL = k+2∆ψ > k, be
ause δk+φ(rQ)−2ψH = k. Thus, theresulting u must lie above the line L. Consider the (H,L) e�ort pair next. By Proposition 1 andFigure 2, when both U(0) and U(1) are drawn from L, we have Û ∈ L as well. By (4.22)-(4.23),we have u1 +u2 = δ(Û1 + Û2)+ φ(rq1) +φ(rq2)−ψH −ψL = δk+φ(rQ)−ψH −ψL = k+ ∆ψ > k.Thus, the resulting u lies above the line L. Similarly, under the (L,H) e�ort pair, any u 
reatedfrom U(0) and U(1) on L must lie above L as well.11



)1,0(U !

µ)1(ˆ
1 HpU ! ! µ)0(ˆ

1 HpU + !
1
U !

2
U !

"!

"!

)0,0(U !

"!

µ)1(ˆ
2 HpU ! !

µ)0(ˆ
2 HpU + !

)1,1(U !

)0,1(U !
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Figure 14: Generating Û in a Symmetri
 Way.Therefore, the line segment ulur or ulur 
an only be sustained under the (H,H) e�ort pair,and any u ve
tor on or below the −45◦ line L must be generated by the (H,H) e�ort pair alone.We 
an easily verify that no u ve
tor below L 
an be generated by the (H,H) e�ort pair. Hen
e wemust have ulur ⊂ S∗. In the 
ase of ulur, it must be S∗ itself be
ause it extends to the two axes.Finally, 
onsider the manufa
turer's optimal value fun
tion. Assume that V ∗(u) = V
∗, for all

u ∈ ulur, in 
ase (1). Be
ause the 
orresponding {U(x)} are all on ulur, by (4.25)-(4.30), we have
V

∗
= δV

∗
+ (πH − r)Q, and V ∗

= (1 − δ)−1(πH − r)Q. Thus, the fun
tion V ∗(u) = V
∗, u ∈ ulur,is self-sustainable. Be
ause V ∗ is the highest a
hievable expe
ted value for the manufa
turer givenany e�ort history, we must have V ∗(u) = V

∗, for all u ∈ ulur. The same 
an be shown for 
ase(2).A.8 Proof of Proposition 4Proof. By Lemma A1 and Figure 12, an expe
ted 
ontinuation utility ve
tor Û 
an be generatedfrom a set of U(x) that all lie on a −45◦ line segment passing through Û, with U(0, 0) and U(1, 1)lying between U(0, 1) and U(1, 0) and U(1, 0) = U(0, 1)+ (2µ,−2µ). By adjusting the positions of
{U(x)}, we 
an obtain a symmetri
 layout su
h that U(0, 1) = Û+(−µ, µ), U(1, 0) = Û+(µ,−µ),and U(0, 0) = U(1, 1) = Û, as illustrated in Figure 14.In the �rst 
ase of Theorem 3, all U(x) must be drawn from the self-sustainable line segment u ∈
ulur, whi
h implies that a Û ve
tor 
an be generated through the above symmetri
 layout if and onlyif Û ∈ ũlũr, where ũl = ul+(µ,−µ) = (1−δ)−1((1−δpH (0))µ−ψH ,−(1−δpH (0))µ+φ(rQ)−ψH )and ũr = ur + (−µ, µ) = (1 − δ)−1(−(1 − δpH(0))µ+ φ(rQ) − ψH , (1 − δpH(0))µ− ψH). Considerany u ∈ ũlũr. If we 
hoose Û = u, we would have u = δu + (φ(rq1), φ(rq2)) − (ψH , ψH) and
u = (1 − δ)−1(φ(rq1) − ψH , φ(rq2) − ψH). There always exists a random volume allo
ation (q̃1, q̃2)(randomizing between (0, Q) and (Q, 0)) su
h that Eφ(rq̃1) + Eφ(rq̃2) = φ(rQ) and Eφ(rq̃1) ∈12



[(1 − δpH(0))µ,−(1 − δpH(0))µ+ φ(rQ)] ⊂ [0, φ(rQ)]. With this random volume allo
ation, u 
anbe self-generated. Thus, for any u ∈ ũlũr, it is feasible to 
hoose Û = u. Be
ause any Û ∈ ũlũr
an be generated through the aforementioned symmetri
 layout, we have U(0, 1) = u + (−µ, µ),
U(1, 0) = u + (µ,−µ), and U(0, 0) = U(1, 1) = u, whi
h proves part (1) of the proposition.By the proof of Lemma A2 and Figure 13, a Û ve
tor that 
an be generated from the linesegment ulur must be at least pH(1)µ away from ea
h end point horizontally and verti
ally. Thus,any u ve
tor 
lose enough to ul or ur 
annot be generated by letting Û = u. These u ve
tors 
an be
reated from Ûl or Ûr, the Û ve
tor 
orresponding to ul or ur, along with proper volume allo
ations.By Figure 13, ul is generated from Ul(0, 0) = Ul(0, 1) = ul, Ul(1, 1) = ul + pH(1)−pH(0)

pH(1) (µ,−µ),and Ul(1, 0) = ul+(2µ,−2µ). Hen
e part (2) of the proposition is obtained. Part (3) 
an be shownsimilarly.

13



B Appendix: ExtensionsIn the base model studied in previous se
tions, we have made some assumptions that simplify ouranalysis. In this appendix, we relax some important assumptions and show that our main resultsare robust under su
h extensions. For 
ompleteness, most dis
ussions in Se
tion 6 of the main paperare repeated here.B.1 Asymmetri
 SuppliersThe basi
 model (3.6)-(3.9) assumes that the two suppliers are symmetri
, with regard to theirutility fun
tions, 
ost fun
tions, unit margins, value 
ontributions, et
. This assumption allows usto 
on
entrate on the most valuable 
ir
umstan
es for dynami
 volume allo
ation. Suppose, forexample, the suppliers' unit margins are unequal. Then the manufa
turer would tend to allo
ateless volume to the supplier demanding the higher margin, and hen
e the power of volume allo
ationas an in
entive lever would diminish. Nevertheless, as shown below, the main results of this paper
an be extended to the setting with unequal supplier margins.Suppose supplier i's unit margin is ri, i = 1, 2. The manufa
turer's problem (4.1)-(4.6) ofindu
ing e�orts (a1, a2) only needs minor modi�
ations: repla
ing the term rQ in the obje
tivefun
tion by r1q1 + r2q2, and repla
ing the terms rq1 and rq2 in the 
onstraints by r1q1 and r2q2,respe
tively. It is straightforward to verify that Lemma 1 is still valid. Thus, the problems forindu
ing e�orts (L,L), (H,L), (L,H), and (H,H) in Subse
tion 4.1 are all valid ex
ept for theabove modi�
ations in the obje
tive fun
tions and 
onstraints. It implies that the lower levelproblems in Propositions 1 and 2, when indu
ing e�orts (H,L), (L,H), and (H,H), are the sameas before, and hen
e the relationship between the expe
ted 
ontinuation utility ve
tor Û and theset of 
ontinuation utility ve
tors {U(x)}x∈{0,1}2 (or {U(xi)}xi∈{0,1}) is un
hanged. Consequently,Figures 2, 3, and Proposition 3 bear no 
hange as well.The set T of one-period utility ve
tors generated from deterministi
 volume allo
ations, de�nedin expression (4.40), 
hanges to:
T = {(φ(r1q1), φ(r2q2)) : q1 + q2 = Q, q1, q2 ∈ [0, Q]}

= {(t1, t2) :
φ−1(t1)

r1
+
φ−1(t2)

r2
= Q, t1 ∈ [φ(0), φ(r1Q)], t2 ∈ [φ(0), φ(r2Q)]}. (B.1)As an example, if the utility fun
tion is φ(w) =

√
w, i.e., φ−1(t) = t2, the new set T would be thenorth-east quarter of an ellipse with radiuses √r1Q and √

r2Q, as opposed to the 
ir
le with radius
√
rQ in the equal margin 
ase. Equations (4.41) to (4.46) still hold true. Theorems 1 and 2 are alsovalid, after minor modi�
ations. They 
an be 
ombined as follows.Theorem B1. Suppose that r1 6= r2 and both suppliers' reservation utility is 0. To indu
e ef-forts (L,L) forever, the set of suppliers' 
ontinuation utility ve
tors is S∞

LL = (1 − δ)−1[conv(T ) −
(ψL, ψL)] ∩ R

2
+. At any u ∈ S∞

LL, the optimal U equals u, the optimal volume allo
ation q satis�es14



φ(r1q1)/φ(r2q2) = u1/u2, and the manufa
turer's expe
ted value is V∞
LL(u) = (1−δ)−1(πLQ−r1q1−

r2q2). In the optimal solution to the manufa
turer's problem, the upper boundary of the 
ontinuationutility set S∗ 
oin
ides with S∞
LL, and the manufa
turer's optimal value at any u ∈ S∗ is given by

V ∗(u) = V∞
LL(u).The proof of the theorem repeats those of Theorems 1 and 2 (and hen
e is omitted). Here, themanufa
turer's expe
ted value is only derived along the upper boundary of S∞

LL, where the optimalvolume allo
ation is unique but the value fun
tion V∞
LL(·) is not �at any more be
ause the totalmargin r1q1 + r2q2 is not 
onstant. The theorem implies that the trapping behavior of the upperboundary of S∗ extends to the unequal margin 
ase.The properties of the optimal solution along the lower boundary of S∗, 
hara
terized by Theorem3 and Proposition 4, 
an be generalized as well. However, due to spa
e limitation, a rigorous analysisis omitted. The main modi�
ation required is that the line segment ulur (or ulur), self-generatedunder the (H,H) e�orts, is parallel to the line segment conv(T ) = (φ(0), φ(r2Q))(φ(r1Q), φ(0)),whose slope is no longer −45◦ when the margins di�er. Figures 6 and 14 need be modi�ed as well,by tilting the lines along the dire
tion of conv(T ). In addition, the manufa
turer's expe
ted valuealong the line segment ulur (or ulur) now varies linearly between V ∗(ul) and V ∗(ur). Despite these
hanges, the trapping behavior of the lower boundary of S∗ remains the same.We remark that asymmetries in utility and 
ost fun
tions 
an also be a

ommodated similarly,by repla
ing φ(·) and ψ in problem (4.1)-(4.6) with φi(·) and φi, i = 1, 2, and the same solutionapproa
h applies. The feasible region will not be symmetri
 along the 45◦ line but the results aresimilar to those under the base model.B.2 Fixed Total PaymentThe additional problem at the start of period 1, given 
ontinuation utilities u0 = (u0

1, u
0
2) promisedto the suppliers at the beginning, is the following:

V 0(u0) = max
a,{U(x)}

E[π(x1)q + π(x2)q + V (U1(x), U2(x))| a] (B.2)s.t. u0
i = E[Ui(x)| a] − ψai , i ∈ {1, 2}. (B.3)This is a simple one-shot problem. The manufa
turer's optimal value fun
tion V 0(u0) retainsthe stru
tural properties of the fun
tion V (u) obtained from the re
ursive problem (6.2)-(6.5), andthe optimal 
ontra
t has similar properties as in the volume allo
ation 
ase.B.3 Flexible Total VolumeIn the base model, the manufa
turer's total business volume is a 
onstant Q in every period. Inthis extension, we allow the total volume to vary in an interval, [Qm, QM ]. We assume that themanufa
turer has a target volume Q0 ∈ [Qm, QM ] and in
urs overorder and underorder penalties.15



Thus, the manufa
turer's total 
ost of pro
uring Q units, in
luding the margins paid to the suppliers,is des
ribed by a fun
tion g(Q) =

{
rQ+ βm(Q0 −Q), if Q ∈ [Qm, Q0),
rQ+ βM (Q−Q0), if Q ∈ [Q0, QM ],

for some nonnegative
oe�
ients βm and βM . When βm = βM = ∞, the model redu
es to the base model with �xed totalvolume; when βm = βM = 0, the model redu
es to one without a target volume. To avoid trivial
ases, we assume πL < r+ βM , i.e., in
reasing the total volume beyond Q0 is not pro�table for themanufa
turer at least in the low e�ort s
enario; otherwise, the manufa
turer would be tempted topush the total volume all the way to QM .The manufa
turer's problem (4.1)-(4.6) of indu
ing a given e�ort pair (a1, a2) only undergoesminor modi�
ations: the manufa
turer's total payment rQ in the obje
tive fun
tion is repla
ed by
g(q1 + q2), and the volume 
onstraint q1 + q2 = Q is repla
ed by q1 + q2 ∈ [Qm, QM ]. It 
an beveri�ed that Lemma 1 is inta
t. Thus, the problems of indu
ing (L,L), (H,L), (L,H), and (H,H)e�ort pairs are all similar as before ex
ept the above modi�
ations. As a result, the de
omposition ofthese problems is still valid, i.e., Propositions 1 and 2 are still true ex
ept for the ne
essary 
hangesin the obje
tive fun
tions and volume 
onstraints in the upper level problems. Propositions 3 and 4
arry over without any modi�
ation. The robustness of these results reveals that the fundamentalin
entive driver in the problem is un
hanged under this generalization.The �exibility in Q broadens the manufa
turer's 
hoi
es, whi
h enlarges the feasible set ofthe suppliers' 
ontinuation utilities and improves the manufa
turer's value fun
tion. Due to su
h
hanges, Theorems 1, 2, and 3 need to be modi�ed. The main result is that the trapping regionnear the upper boundary of the feasible set S∗ and the re
urrent set near the lower boundary areboth enlarged in general, as shown below.Ben
hmark Contra
t: Indu
ing (L,L) E�orts Forever. The ben
hmark problem of in-du
ing e�orts (L,L) forever 
an be solved similarly as in the base model. For 
onvenien
e, de�nethe one-period utility set T (Q) given total volume Q ∈ [Qm, QM ] (under deterministi
 volumeallo
ation) as:

T (Q) = {(φ(rq1), φ(rq2)) : q1 + q2 = Q, q1, q2 ≥ 0}
= {(t1, t2) : φ−1(t1) + φ−1(t2) = rQ, t1, t2 ≥ φ(0)}, (B.4)whi
h is a 
on
ave 
urve in the (t1, t2) spa
e but not a 
onvex set. Let conv(T (Q)) be the 
onvex hullof T (Q), whose lower left boundary is the line segment (0, φ(rQ))(φ(rQ), 0) (re
all that φ(0) = 0).De�ne the one-period utility set for an interval of volumes [Qa, Qb] as

T ([Qa, Qb]) = ∪Q∈[Qa,Qb]T (Q).Theorem 1 
an be generalized as follows (as illustrated in Figures 15 and 16):Theorem B2. Suppose both suppliers' reservation utility is 0. To indu
e e�orts (L,L) forever, theset of suppliers' 
ontinuation utility ve
tors is S∞
LL = (1− δ)−1[conv(T ([Qm, QM ]))− (ψL, ψL)]∩R

2
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and the manufa
turer's value fun
tion V∞
LL(u) is given by: (1) If πL − r + βm ≥ 0,

V∞
LL(u) =





(1−δ)(u1+u2)−φ(rQm)
φ(rQ0)−φ(rQm) · (πL−r+βm)(Q0−Qm)

1−δ

+ (πL−r+βm)Qm−βmQ0

1−δ ,
if u ∈ R

2
+ and u1 + u2 ∈ [φ(rQm)

1−δ , φ(rQ0)
1−δ ),

(πL−r)Q0

1−δ , if u ∈ conv(T (Q0))−(ψL,ψL)
1−δ ∩ R

2
+,

(πL−r−βM )Q+βMQ0

1−δ , if u ∈ T (Q)−(ψL,ψL)
1−δ ∩ R

2
+ for Q ∈ (Q0, QM ];(2) If πL − r + βm < 0,

V∞
LL(u) =





(πL−r+βm)Qm−βmQ0

1−δ , if u ∈ conv(T (Qm))−(ψL,ψL)
1−δ ∩ R

2
+,

(πL−r+βm)Q−βmQ0

1−δ , if u ∈ T (Q)−(ψL,ψL)
1−δ ∩ R

2
+ for Q ∈ (Qm, Q0],

(πL−r−βM )Q+βMQ0

1−δ , if u ∈ T (Q)−(ψL,ψL)
1−δ ∩ R

2
+ for Q ∈ (Q0, QM ].At any u ∈ S∞

LL, an optimal 
hoi
e of U is u. The optimal U is unique and the optimal volumeallo
ation q satis�es φ(rq1)/φ(rq2) = u1/u2, for u ∈ (1 − δ)−1[T ([Q0, QM ]) − (ψL, ψL)] ∩ R
2
+ if

πL − r + βm ≥ 0, or u ∈ (1 − δ)−1[T ([Qm, QM ]) − (ψL, ψL)] ∩ R
2
+ if πL − r + βm < 0.
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Figure 15: (a) The set S∞
LL and indi�eren
e 
urves of V∞

LL(·), and (b) the se
tion of V∞
LL(·) at

u1 = u2, when πL − r + βm > 0 and ψL = 0.When πL − r + βm > 0, the indi�eren
e 
urves of the manufa
turer's value fun
tion V∞
LL(·)are illustrated in Figure 15(a) and the se
tion of the fun
tion along the 45◦ ray in the u plane(su
h that u1 = u2) is illustrated in Figure 15(b). In this 
ase, (πL − r)Q0 > max{(πL − r +

βm)Qm− βmQ0, (πL− r− βM )QM +βMQ0}, and thus V∞
LL(·) has a �at top over the middle subsetof S∞

LL highlighted in Figure 15(a) (whi
h is the set S∞
LL in the base model). V∞

LL(·) de
reases as
u moves away from the middle. Over the lower left subset of S∞

LL, V∞
LL(·) is a 
onvex 
ombinationof (1 − δ)−1[(πL − r + βm)Qm − βmQ0] and (1 − δ)−1(πL − r)Q0 with proper weights. When

πL−r+βm < 0, we have (πL−r+βm)Qm−βmQ0 > (πL−r)Q0 > (πL−r−βM)QM+βMQ0, and thus
V∞
LL(·) has a �at top over the lower left subset of S∞

LL illustrated in Figure 16(a). As shown in Figure17
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Figure 16: (a) The set S∞
LL and indi�eren
e 
urves of V∞

LL(·), and (b) the se
tion of V∞
LL(·) at

u1 = u2, when πL − r + βm < 0 and ψL = 0.16(b), the manufa
turer's value de
lines as u moves toward the upper boundary of S∞
LL and the slopeis steeper when Q ∈ (Q0, QM ] than when Q ∈ (Qm, Q0] be
ause πL − r − βM < πL − r + βm < 0.By Theorem B2, every point on the de
lining part of V∞

LL(·) is a trapping point, 
reated from atotal volume in [Q0, QM ] or [Qm, QM ], depending on the sign of πL− r+ βm. Therefore, the set ofpotential trapping points is enlarged as a result of the �exibility of Q.To prove the theorem, we �rst show the following lemmas:Lemma B1. In the (t1, t2) utility plane, the 
urve T (Q) is de
reasing and 
on
ave everywhere.Proof. By de�nition, T (Q) = {(φ(rq1), φ(rq2)) : q1 + q2 = Q, q1, q2 ≥ 0} = {(φ(z), φ(rQ − z)) :

z ∈ [0, rQ]}. In the (t1, t2) plane (where t1 is on the horizontal axis and t2 on the verti
al axis),the upper left endpoint of T (Q) 
orresponds to z = 0 and the lower right endpoint 
orresponds to
z = rQ. The slope of T (Q) at z ∈ [0, rQ] is given by:

s(z;Q) =
−φ′(rQ− z)

φ′(z)
< 0.The inequality follows from the fa
t that φ′(·) > 0. Thus, T (Q) is de
reasing everywhere. Thederivative of the slope at z ∈ [0, rQ] is given by:

s′(z;Q) =
φ′′(rQ− z)φ′(z) + φ′(rQ− z)φ′′(z)

[φ′(z)]2
< 0.The inequality follows from the fa
t that φ′(·) > 0 and φ′′(·) < 0. Thus, the slope of T (Q) isde
reasing everywhere and T (Q) is 
on
ave.Lemma B2. Suppose t ∈ T (Q), t′ ∈ T (Q′), and t′′ = λt + (1 − λ)t′ for some Q > 0, Q′ > 0, and

λ ∈ (0, 1). Then, t′′ lies below T (Q′′), where Q′′ = λQ+ (1 − λ)Q′.18



Proof. By de�nition, (t1, t2) = (φ(rq1), φ(rq2)) for some q1, q2 ≥ 0 su
h that q1 + q2 = Q; (t′1, t
′
2) =

(φ(rq′1), φ(rq′2)) for some q′1, q
′
2 ≥ 0 su
h that q′1 + q′2 = Q′; and (t′′1, t

′′
2) = (λφ(rq1) + (1 −

λ)φ(rq′1), λφ(rq2) + (1 − λ)φ(rq′2)).Be
ause φ(·) is stri
tly 
on
ave, we have λφ(rq1) + (1 − λ)φ(rq′1) < φ(λrq1 + (1 − λ)rq′1) and
λφ(rq2) + (1 − λ)φ(rq′2) < φ(λrq2 + (1 − λ)rq′2). Be
ause φ−1(·) is in
reasing, we have

φ−1(t′′1) + φ−1(t′′2) = φ−1(λφ(rq1) + (1 − λ)φ(rq′1)) + φ−1(λφ(rq2) + (1 − λ)φ(rq′2))

< φ−1(φ(λrq1 + (1 − λ)rq′1)) + φ−1(φ(λrq2 + (1 − λ)rq′2))

= λrq1 + (1 − λ)rq′1 + λrq2 + (1 − λ)rq′2

= λrQ+ (1 − λ)rQ′ = rQ′′.By the de�nition of T (Q′′), the point (t′′1 , t
′′
2) lies below the 
urve T (Q′′) in the (t1, t2) plane.Now, we prove the theorem:Proof. [Proof of Theorem B2℄ Given the total volume Q, Theorem 1 states that: (1) The manu-fa
turer's 
ontinuation value (1−δ)−1(πLQ−g(Q)) 
an be a
hieved over the suppliers' 
ontinuationutility set S∞

LL(Q) = (1−δ)−1[conv(T (Q))−(ψL, ψL)]∩R
2
+, i.e., V∞

LL(u;Q) = (1−δ)−1(πLQ−g(Q))for u ∈ S∞
LL(Q); (2) For any u ∈ S∞

LL(Q), an optimal 
hoi
e of the future utility ve
tor U = u; (3)For any u ∈ S∞
LL(Q) = (1 − δ)−1[T (Q) − (ψL, ψL)] ∩ R

2
+, the optimal U is unique and the optimalvolume allo
ation q satis�es φ(rq1)/φ(rq2) = u1/u2.Now, letQ vary in the interval [Qm, QM ]. De�ne S∞

LL([Qa, Qb]) = ∪Q∈[Qa,Qb]S
∞
LL(Q), S∞

LL([Qa, Qb]) =

∪Q∈[Qa,Qb]S
∞
LL(Q), S∞

LL([Qa, Qb]) = ∪Q∈[Qa,Qb]S
∞
LL(Q), et
. Then, the suppliers' 
ontinuation util-ity set is given by S∞

LL([Qm, QM ]) = (1 − δ)−1[conv(T ([Qm, QM ])) − (ψL, ψL)] ∩ R
2
+. Be
ause

g(Q) =

{
rQ+ βm(Q0 −Q), if Q ∈ [Qm, Q0),
rQ+ βM (Q−Q0), if Q ∈ [Q0, QM ],

the manufa
turer's one-period pro�t from totalvolume Q is πLQ− g(Q) =

{
(πL − r + βm)Q− βmQ0, if Q ∈ [Qm, Q0),
(πL − r − βM )Q+ βMQ0, if Q ∈ [Q0, QM ].

Thus, given a �xed Qfrom the interval [Qm, QM ], the manufa
turer's value fun
tion V∞
LL(·;Q) has three 
ases:

V∞
LL(u;Q) =





(1 − δ)−1[(πL − r + βm)Q− βmQ0], if Q ∈ [Qm, Q0),
(1 − δ)−1(πL − r)Q0, if Q = Q0,
(1 − δ)−1[(πL − r − βM )Q+ βMQ0], if Q ∈ (Q0, QM ],

(B.5)for all u ∈ S∞
LL(Q). When Q varies in [Qm, QM ], the manufa
turer's value fun
tion V∞

LL(·) is formedby the upper 
onvex hull of the 
olle
tion of fun
tions {V∞
LL(·;Q)}Q∈[Qm,QM ]. The shape of this
onvex hull depends on the sign of πL − r + βm as follows:(1) Assume πL − r + βm > 0. Consider three regions of u.(i) Re
all that πL − r − βM < 0. Thus, we have V∞

LL(·;Q0) > max{V∞
LL(·;Qm), V∞

LL(·;QM )}.It follows that V∞
LL(·) has a �at top over the set S∞

LL(Q0), i.e., V∞
LL(u) = V∞

LL(u;Q0) for all u ∈
S∞
LL(Q0), as illustrated in Figure 15. 19



(ii) Consider the region S∞
LL((Q0, QM ]) = (1 − δ)−1[T ((Q0, QM ]) − (ψL, ψL)] ∩ R

2
+. Any uin S∞

LL((Q0, QM ]) must belong to the set S∞
LL(Q) = (1 − δ)−1[T (Q) − (ψL, ψL)] ∩ R

2
+ for some(unique) Q ∈ (Q0, QM ], whi
h 
an be denoted by Q(u). Intuitively, the 
ontinuation utility ve
tor

u is 
reated by splitting the total volume Q(u) in a spe
i�
 (deterministi
) way forever. We showthat V∞
LL(u) = V∞

LL(u;Q(u)) for all u ∈ S∞
LL((Q0, QM ]). It su�
es to verify that the fun
tion

V∞
LL(·) so de�ned is 
on
ave over S∞

LL((Q0, QM ]). Consider any points uA,uB ∈ S∞
LL((Q0, QM ]) and

uλ = λuA + (1 − λ)uB for some λ ∈ (0, 1). By Lemma B2, uλ lies below the 
urve S∞
LL(Q̂) in the

u plane, where Q̂ = λQ(uA) + (1 − λ)Q(uB). Thus, Q(uλ) < Q̂. Be
ause V∞
LL(·;Q) is de
reasingand linear in Q ∈ (Q0, QM ] (by equation (B.5), V∞

LL(u;Q) is �at in u for a given Q), we have
V∞
LL(uλ;Q(uλ)) > V∞

LL(·; Q̂) = λV∞
LL(uA;Q(uA)) + (1 − λ)V∞

LL(uB ;Q(uB)). By the de�nition of
on
ave fun
tions, the fun
tion V∞
LL(u) = V∞

LL(u;Q(u)) is 
on
ave in the domain S∞
LL((Q0, QM ]).(If uλ lies below S∞

LL(Q0), the total volume Q(uλ) is out of the range (Q0, QM ]. But in that 
asewe must have uλ ∈ S∞
LL(Q0) and, as shown before, V∞

LL(uλ) = V∞
LL(uλ;Q0). We just need to repla
e

Q(uλ) with Q0 in the above argument.)(iii) The lower boundary of ea
h set S∞
LL(Q) is the line segment S∞

LL(Q) = {u : u1 + u2 =

(1 − δ)−1φ(rQ);u1, u2 ≥ 0}. For ea
h u, there is a unique Q su
h that u ∈ S∞
LL(Q), or Q =

φ−1((1 − δ)(u1 + u2))/r. Thus, over the set S∞
LL([Qm, Q0)), whi
h 
onsists of the lower boundarieswhen Q ∈ [Qm, Q0), the surfa
e of the 
olle
tion of fun
tions {V∞

LL(·;Q)}Q∈[Qm,Q0) is given by
Ṽ∞
LL(u) = (1−δ)−1[(πL−r+βm)Q−βmQ0] = (1−δ)−1[(πL−r+βm)φ−1((1−δ)(u1+u2))/r−βmQ0].Be
ause πL − r+ βm > 0 and φ−1(·) is 
onvex in
reasing, the fun
tion Ṽ∞

LL(u) is 
onvex in
reasingin u1 + u2, as illustrated by the dashed line in Figure 15(b). Thus, over the set S∞
LL([Qm, Q0)), the
onvex hull of Ṽ∞

LL(·), whi
h gives V∞
LL(·), is the 
onvex 
ombination of Ṽ∞

LL(u)'s at the two edges
S∞
LL(Qm) and S∞

LL(Q0), with weights φ(rQ0)−(1−δ)(u1+u2)
φ(rQ0)−φ(rQm) and (1−δ)(u1+u2)−φ(rQm)

φ(rQ0)−φ(rQm) , respe
tively. Asa result,
V∞
LL(u) =

(1 − δ)(u1 + u2) − φ(rQm)

φ(rQ0) − φ(rQm)
· (πL − r + βm)(Q0 −Qm)

1 − δ
+

(πL − r + βm)Qm − βmQ0

1 − δfor any u ∈ R
2
+ su
h that u1 + u2 ∈ (1 − δ)−1[φ(rQm), φ(rQ0)).(2) Assume πL− r+βm < 0. Then, we have V∞

LL(·;Qm) > V∞
LL(·;Q0) > V∞

LL(·;QM ), and thus
V∞
LL(·) has a �at top over the set S∞

LL(Qm), i.e., V∞
LL(u) = V∞

LL(u;Qm) for all u ∈ S∞
LL(Qm), as illus-trated in Figure 16. By equation (B.5), V∞

LL(·;Q) is de
reasing in Q ∈ (Qm, QM ] and linear in both
(Qm, Q0] and (Q0, QM ]. Thus, similar to the 
ase (1.ii) above, the fun
tion V∞

LL(u;Q(u)) is 
on
avein the sub-domains S∞
LL((Qm, Q0]) and S∞

LL((Q0, QM ]) separately, where Q(u) is the (unique) totalvolume Q su
h that u ∈ S∞
LL(Q). Be
ause πL−r−βM < πL−r+βm < 0, the slope of V∞

LL(u;Q(u))in the sub-domain S∞
LL((Q0, QM ]) is steeper than that in the sub-domain S∞

LL((Qm, Q0]), as illus-trated in Figure 16(b). So, when pie
ed together, V∞
LL(u;Q(u)) is still 
on
ave, over the entire set

S∞
LL((Qm, QM ]). Therefore, V∞

LL(u) equals V∞
LL(u;Q(u)) over S∞

LL((Qm, QM ]).The proof is 
omplete. 20



Optimal Solution near the Upper and Lower Boundaries of S∗. Now, 
onsider themanufa
turer's optimal value fun
tion V ∗(·) and its domain S∗. Theorem 2 still holds after aminor modi�
ation: the upper boundary of S∗ 
oin
ides with the upper boundaries of S∗
LL and

S∞
LL, i.e., S∗ = (1 − δ)−1[T (QM ) − (ψL, ψL)] ∩ R

2
+, and the manufa
turer's optimal value V ∗(u) =

(1 − δ)−1[(πL − r − βM )QM + βMQ0] for any u ∈ S∗. Re
all that V ∗(·) is the 
onvex hull ofthe optimal obje
tive fun
tions of the four subproblems, V ∗
LL(·), V ∗

HL(·), V ∗
LH(·), and V ∗

HH(·), withdomains S∗
LL, S∗

HL, S∗
LH , and S∗

HH , respe
tively. If the sets S∗
HL, S∗

LH , and S∗
HH are relatively faraway from S∗ (e.g., when ψH ≫ ψL), V ∗(·) may 
ontain a substantial portion of the de
lining partof V∞

LL(·) dis
ussed above. Thus, on (and possibly near) S∗, V ∗(·) is made up of all trapping points.Next, 
onsider the lower boundary of S∗, S∗. De�ne the set (line segment)
L∞
HH(Q) =





{u : u1 + u2 = φ(rQ)−2ψH
1−δ , u1, u2 ≥ δpH(1)µ−ψH

1−δ }, if ψL
ψH

≤ pL(1)
pH(1) , φ(rQ) ≥ 2(1 − δpH(0))µ,

{u : u1 + u2 = φ(rQ)−2ψH
1−δ , u1, u2 ≥ 0}, if ψL

ψH
> pL(1)

pH(1) , φ(rQ) ≥ 2((1 − δ)µ+ ψH),

∅, otherwise.Theorem 3 
an be summarized as follows: given a �xed total volume Q, the (H,H) e�ort pair 
anbe sustained and the manufa
turer's value V∞
HH(u;Q) = (1 − δ)−1(πHQ − g(Q)) 
an be a
hievedover the set L∞

HH(Q) (if it is nonempty). The result still holds when Q varies in [Qm, QM ], andthe (H,H) e�ort pair 
an be sustained over the set L∞
HH([Qm, QM ]) = ∪Q∈[Qm,QM ]L

∞
HH(Q). Inaddition, the manufa
turer's values 
an be improved by randomization. Let Q(u) be the (unique)

Q su
h that u ∈ L∞
HH(Q). The value fun
tion V∞

HH(u;Q(u)) is not 
on
ave in u and 
an be improvedby taking its upper 
onvex hull, denoted by V∞
HH(u). The set L∞

HH([Qm, QM ]) and fun
tion V∞
HH(u)are illustrated in Figure 17 (assuming L∞

HH(Qm) 6= ∅). The dashed 
urves in panels (b) and (
)represent the fun
tion V∞
HH(u;Q(u)) along the 45◦-se
tion.We have the following result:Theorem B3. (1) If πH−r−βM < 0, the manufa
turer's optimal value is V ∗(u) = (1−δ)−1(πH−

r)Q0 for u ∈ L∞
HH(Q0) and the line segment L∞

HH(Q0) is self-generated under the (H,H) e�ortpair. If, further, L∞
HH(Qm) is nonempty, it must belong to S∗ and V ∗(u) = V∞

HH(u) for u ∈
L∞
HH([Qm, Q0]). (2) If πH − r − βM ≥ 0, V ∗(u) = (1 − δ)−1[(πH − r − βM )QM + βMQ0] for

u ∈ L∞
HH(QM ) and L∞

HH(QM ) is self-generated under the (H,H) e�ort pair. If, further, L∞
HH(Qm)is nonempty, it must belong to S∗ and V ∗(u) = V∞

HH(u) for u ∈ L∞
HH([Qm, QM ]).The �exibility in Q enlarges the re
urrent region near the lower boundary of S∗. When πH −

r − βM < 0, as under the base model, the line segment L∞
HH(Q0) (if nonempty) is a re
urrent set,although it may lie in the interior of S∗ now; if the line segment L∞

HH(Qm) is nonempty, it must bepart of S∗ and the larger set L∞
HH([Qm, Q0]) is re
urrent. When πH − r− βM ≥ 0, the existen
e ofa re
urrent set is implied by a weaker 
ondition that L∞

HH(QM ) 6= ∅; if L∞
HH(Qm) 6= ∅ in addition,the whole set L∞

HH([Qm, QM ]) is a re
urrent set. Intuitively, when πH−r−βM ≥ 0, a larger volumeleads to higher pro�t for the manufa
turer and, in the meantime, dynami
ally allo
ating a larger21
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Figure 17: (a) The set L∞
HH([Qm, QM ]), (b) the 45◦-se
tion of fun
tion V∞

HH(·) when πH−r−βM < 0,and (
) the 45◦-se
tion of V∞
HH(·) when πH − r − βM > 0.volume 
an 
reate stronger in
entives for the suppliers, so it is not only more appealing but alsoeasier for the manufa
turer to indu
e high e�ort from both suppliers.A proof of the theorem is provided below.Proof. [Proof of Theorem B3℄ We prove part (1) of the theorem below, i.e., assuming πH − r −

βM < 0. Part (2) 
an be shown in the same way.By Theorem 3, for a given total volume Q in the interval [Qm, QM ], if the set L∞
HH(Q) isnonempty, the (H,H) e�ort pair 
an be sustained and the manufa
turer's value V∞

HH(u;Q) =

(1 − δ)−1(πHQ− g(Q)) 
an be a
hieved over L∞
HH(Q). More spe
i�
ally, 
onditional on Q,

V∞
HH(u;Q) =





(1 − δ)−1[(πH − r + βm)Q− βmQ0], if Q ∈ [Qm, Q0),
(1 − δ)−1(πH − r)Q0, if Q = Q0,
(1 − δ)−1[(πH − r − βM )Q+ βMQ0], if Q ∈ (Q0, QM ],

(B.6)for u ∈ L∞
HH(Q). Let Q(u) be the (unique) total volume Q su
h that u ∈ L∞

HH(Q).Be
ause πH − r+ βm > 0 (implied by πH − r > 0) and πH − r− βM < 0 (the assumption), themanufa
turer's value (1 − δ)−1(πHQ− g(Q)) is maximized at Q = Q0. Thus, (1 − δ)−1(πH − r)Q0is the highest a
hievable value for the manufa
turer and his optimal value fun
tion must satisfy
V ∗(u) = (1 − δ)−1(πH − r)Q0 for u ∈ L∞

HH(Q0).If, in addition, the line segment L∞
HH(Qm) is nonempty (as in Figure 17), the set L∞

HH([Qm, Q0])is in
luded in the domain S∗ of the optimal value fun
tion. Following the proof of Theorem 3, we
an show that if the total volume is �xed at Qm, no u ve
tor 
an be sustained below (or to the leftof) the line L∞
HH(Qm) by any e�ort pair. Be
ause a lower volume redu
es the suppliers' utilities,the minimum value of u1 +u2 must be 
reated from the minimum volume Qm. Thus, even when the22



total volume varies in [Qm, QM ], no u ve
tor 
an be sustained below (or to the left of) L∞
HH(Qm).As a result, L∞

HH(Qm) must be part of S∗. To show that the optimal value fun
tion V ∗(·) 
oin
ideswith V∞
HH(·) (the 
onvex hull of the fun
tion V∞

HH(u;Q(u))) over the set L∞
HH([Qm, Q0]), we needto show that for any u ∈ L∞

HH([Qm, Q0]) the highest value obtainable from any other e�ort pair,
(L,L), (H,L) or (L,H), 
annot ex
eed V∞

HH(u).The argument is similar to the proof of Theorem 3. De�ne a line segment L(k) = {u : u1 +u2 =

k, u1, u2 ≥ 0}, indexed by k. Let km = (1−δ)−1(φ(rQm)−2ψH) and k0 = (1−δ)−1(φ(rQ0)−2ψH).Then L(km) and L(k0) 
ontain the line segments L∞
HH(Qm) and L∞

HH(Q0), respe
tively. Considerany ve
tor u′ 
reated under the (L,L) e�ort pair from a total volume Q′ ∈ [Qm, Q0] in the �rstperiod and a 
ontinuation utility ve
tor U′ ∈ L(k′) from the se
ond period onward, for some
k′ ∈ [km, k0]. (The 
ase Q′ ∈ (Q0, QM ] 
an be shown similarly.) By equations (4.9)-(4.10), we have

u′1 + u′2 = δ(U ′
1 + U ′

2) + φ(rq′1) + φ(rq′2) − 2ψL

≥ δk′ + φ(rQ′) − 2ψL

> δk′ + (1 − δ)
φ(rQ′) − 2ψH

1 − δ
, (B.7)where the �rst inequality follows from the 
on
avity of φ(·) and the assumption φ(0) = 0 (theinequality still holds when randomized allo
ation (q̃′1, q̃

′
2) is 
onsidered). By expression (4.8) (withthe 
ost rQ repla
ed by g(Q)), the manufa
turer's 
ontinuation value at u′ is

VLL(u′) = δV∞
HH(U′) + (πL − r + βm)Q′ − βmQ0

< δV∞
HH(U′) + (1 − δ)

(πH − r + βm)Q′ − βmQ0

1 − δ

= δV∞
HH(U′) + (1 − δ)V∞

HH(·;Q′). (B.8)Therefore, the point (u′, VLL(u′)) is dominated by the 
onvex 
ombination of the points (U′, V∞
HH(U′))(with weight δ) and (w′, V∞

HH(w′;Q′)) (with weight 1 − δ), for some w′ ∈ L∞
HH(Q′). Be
ause

V∞
HH(w′;Q′) ≤ V∞

HH(w′), (u′, VLL(u′)) is dominated by the 
onvex 
ombination of (U′, V∞
HH(U′))and (w′, V∞

HH(w′)). Be
ause V∞
HH(·) is 
on
ave, (u′, VLL(u′)) lies below the graph of V∞

HH(·).Similarly, under the (H,L) or (L,H) e�ort pair, any point 
reated by a future 
ontinuationutility ve
tor U′ ∈ L(k′) for some k′ ∈ [km, k0] lie below the graph of V∞
HH(·) as well. Thus, theoptimal value fun
tion V ∗(u) = V∞

HH(u) for all u ∈ L∞
HH([Qm, Q0]).B.4 Multiple E�ort LevelsIn the base model, the suppliers' e�ort level 
an be either H or L. In this extension, we add anintermediate level, M . More e�ort levels 
an be treated similarly.As in the two-e�ort-level 
ase, assume that the disutilities of the e�ort levels and 
orrespondingprobabilities of the good out
ome are ordered su
h that ψH > ψM > ψL and pH(1) > pM (1) >23



pL(1). De�ne the e�e
tive marginal 
osts of e�ort as µHM = δ−1(ψH − ψM )/(pH(1) − pM(1)),
µML = δ−1(ψM − ψL)/(pM (1) − pL(1)), and µHL = δ−1(ψH − ψL)/(pH (1) − pL(1)).Now we have nine possible e�ort pairs. After eliminating symmetri
 
ases, six pairs are left,whi
h are (H,H), (H,M), (H,L), (M,M), (M,L), and (L,L). As a result, we have more sub-problems to solve. For ea
h e�ort pair (a1, a2), the manufa
turer's subproblem (4.1)-(4.6) is more
omplex as well be
ause there are two IC 
onstraints for ea
h supplier. For instan
e, to indu
e
a1 = M , the IC 
onstraints for supplier 1, denoted by (IC1,MH) and (IC1,ML), would prevent thesupplier from deviating to e�ort H or L. Nevertheless, the subproblems 
an be simpli�ed throughthe following generalized version of Lemma 1:Lemma B3. If µHM < µML, e�ort M will never be 
hosen by the suppliers and 
an be removedfrom the problem formulation without loss of optimality. If µHM > µML, given any 
on
ave fun
tion
V (·) and 
ontinuation utility ve
tor u, there exists an optimal solution to problem (4.1)-(4.6) su
hthat: (1) if ai = L, the IC 
onstraints for supplier i do not bind; (2) if ai = M , 
onstraint (ICi,ML)binds while (ICi,MH) does not; (3) if ai = H, 
onstraint (ICi,HM ) binds while (ICi,HL) does not.If µHM = µML, the two IC 
onstraints mentioned in 
ase (2) or (3) above bind simultaneously.Furthermore, in all 
ir
umstan
es, the future 
ontinuation utility ve
tors {U(x)} are independentof xi if and only if ai = L, for i ∈ {1, 2}.Proof. Be
ause of the symmetry between the suppliers, it su�
es to 
onsider i = 1. Without lossof generality, suppose that the manufa
turer wants to indu
e e�ort a1 from supplier 1 through
ontinuation utility ve
tors {U(x)} that depends on both x1 and x2. Let a2 be the e�ort exertedby supplier 2. De�ne U1(x1) = pa2(0)U1(x1, 0) + pa2(1)U1(x1, 1), for x1 ∈ {0, 1}. The expe
ted
ontinuation utility for supplier 1 is given by δE[U 1(x1)

∣∣ a1] + φ(rq1) − ψa1 = δ[pa1(0)U 1(0) +

pa1(1)U 1(1)]+φ(rq1)−ψa1 = δ[U 1(0)+ pa1(1)(U 1(1)−U1(0))]+φ(rq1)−ψa1 . The variable part ofthe 
ontinuation utility related to e�ort a1 is δpa1(1)(U 1(1)−U1(0))−ψa1 . Supplier 1's 
ontinuationutilities under e�orts a1 and â1 di�er by δ(pa1(1)−pâ1(1))(U 1(1)−U1(0))−(ψa1 −ψâ1) = δ(pa1(1)−
pâ1(1))(U 1(1)−U 1(0)−µa1â1). The 
onstraint (IC1,a1â1) that ensures that supplier 1 prefers e�ort
a1 to â1 is equivalent to U1(1) − U1(0) ≥ µa1â1 when pa1(1) > pâ1(1) or U1(1) − U1(0) ≤ µa1â1when pa1(1) < pâ1(1).Now, assume µHM < µML. Be
ause pL(1) < pM (1) < pH(1), the 
onstraints (IC1,MH) and(IC1,ML), whi
h indu
e e�ort M , imply that µMH(= µHM ) ≥ U1(1) − U1(0) ≥ µML. But this
ontradi
ts the assumption and therefore, supplier 1 will never 
hoose e�ort M .Next, assume µHM > µML. (1) The 
ase ai = L 
an be shown by the same argument as inLemma 1. (2) Consider the 
ase ai = M . By the argument above, the 
onstraints (IC1,MH) and(IC1,ML) are equivalent to µMH ≥ U1(1)−U1(0) ≥ µML. A

ording to the proof of Lemma 1, thegap U1(1)−U1(0) should be minimized at optimality. Thus, we have µMH > U1(1)−U1(0) = µMLat optimality, whi
h implies that (IC1,ML) binds and (IC1,MH) holds with stri
t inequality. (3)24



Consider the 
ase ai = H. The assumption µHM > µML, or ψH−ψM
pH(1)−pM (1) >

ψM−ψL
pM (1)−pL(1) , implies that

ψH−ψM
pH(1)−pM (1) >

(ψH−ψM )+(ψM−ψL)
(pH(1)−pM (1))+(pM (1)−pL(1)) >

ψM−ψL
pM (1)−pL(1) , or µHM > µHL > µML. A

ording to theresult at the beginning of the proof, (IC1,HM ) and (IC1,HL) are equivalent to U1(1)−U1(0) ≥ µHMand U1(1)−U 1(0) ≥ µHL, respe
tively. From µHM > µHL and the fa
t that the gap U1(1)−U 1(0)is minimized at optimality, the two 
onstraints imply that U1(1) − U1(0) = µHM > µHL, i.e.,(IC1,HM ) binds and (IC1,HL) holds with stri
t inequality.When µHM = µML, we have µHM = µHL = µML. It follows that (IC1,MH) and (IC1,ML) bindssimultaneously in 
ase (2) and (IC1,HM ) and (IC1,HL) binds simultaneously in 
ase (3).By the same argument as in Lemma 1, we 
an show that to indu
e ai = L, {U(x)} should notdepend on xi at optimality, sin
e no in
entive is needed for supplier i; but to indu
e ai = M or H,

{U(x)} should be positively related to xi, to provide ne
essary in
entive for supplier i.The intuition behind the lemma is similar to the one in the base model: the future 
ontinuationutility ve
tor U(x) should in
rease with xi to motivate supplier i to exert non-trivial e�ort, and thegap between supplier i's expe
ted 
ontinuation utilities U i(1) and U i(0) should be large enough toover
ome the pertinent e�e
tive marginal 
ost of e�ort, where U i(xi) =
∑

xj∈{0,1}
paj (xj)Ui(xi, xj)for j 6= i.By Lemma B3, the manufa
turer's subproblem (4.1)-(4.6) for e�ort pair (a1, a2) 
an be simpli�edas follows: for ai = L, no IC 
onstraint is present for supplier i; and for ai = M or H, the IC
onstraint (ICi,ML) or (ICi,HM ) is present. Due to this simpli�
ation, the (L,L) subproblem is thesame as in the base model; the (H,L) and (M,L) subproblems are similar to the original (H,L)subproblem; and the (H,H), (H,M), and (M,M) subproblems are similar to the original (H,H)subproblem. The de
omposition of these subproblems, and hen
e Propositions 1, 2, and 3, are alsosimilar as before, ex
ept that e�ort H for supplier i in the original propositions 
an be H or Mnow and the 
onstant µ should be µHM or µML, 
orrespondingly. Be
ause the (L,L) subproblemdoes not 
hange, the results about the (L,L)-forever ben
hmark and the upper boundary of S∗, i.e.,Theorems 1 and 2, still hold true. Be
ause the re
urrent segment along the lower boundary of S∗ isdriven by the (H,H) subproblem, whi
h only bears a minor modi�
ation by repla
ing 
onstraints(ICi,HL) with (ICi,HM ), Theorem 3 and Proposition 4 only need minor modi�
ations as well: the
onstant µ be
omes µHM , and the e�ort L in the 
onditions of Theorem 3 be
omes M .In 
on
lusion, the main results in the paper withstand the in
lusion of more e�ort levels.
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