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In this paper, we consider the demand for multiple successive generations of products and develop
a population growth model that allows demand transitions across multiple product generations,
and takes into consideration the effect of competition. We propose an iterative descent method
for obtaining the parameter estimates and the covariance matrix, and show that the method is
theoretically sound and overcomes the difficulty that the units-in-use population of each product
is not observable. We test the model on both simulated sales data and Intel’s high-end desktop
processor sales data. We use two alternative specifications for product strength in this market
– performance, and performance/price ratio. The former demonstrates better fit and forecast
accuracy, likely due to the low price-sensitivity of this high-end market. In addition, the parameter
estimate suggests that, for the innovators in the diffusion of product adoption, brand switchings are
more strongly influenced by product strength than within-brand product upgrades in this market.
Our results indicate that compared to the Bass model, the Norton-Bass model, as well as the
Jun-Park choice-based diffusion model, our approach is a better fit for strategic forecasting which
occurs many months or years before the actual product launch.
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1 Introduction

Marketing, producing, and delivering multiple generations of products is becoming an ever-more

challenging task for manufacturers of technology products. This paper originates from a collab-

orative effort with Intel Corporation to build models to support forecasting when the company

periodically introduces newer generations of products in the presence of competition. The pace

of new product introduction at Intel is driven by advances in both silicon manufacturing technol-

ogy and product architecture design (Shenoy and Daniel, 2006). Every new product introduces

changes in many dimensions: speed, cache size, power consumption, price, and so on. Not only

do a product’s characteristics affect its own demand, they also dramatically influence the sales

of adjacent generations of products, all of which complicate the task of demand forecasting. To
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deliver its technology roadmap to the market, Intel develops and synchronizes plans for investing

in factories, equipment, production and distribution, each with a different planning time horizon

but all depending critically on a good demand forecast.

We focus on long-range forecasting, for which the company needs to model the demand of

multiple successive generations of products. Several elements of the forecast are critical. First,

long-range planning, which includes building new factories and procuring expensive equipment,

occurs many months or even years before the actual products are released to the market. These

decisions require information on the aggregate demand of each product over its life cycle, as well

as details such as when the demand begins, how fast it ramps, when it peaks, and the peak-level

demand. Next, the model needs to capture interactions among the products and account for the

competition that Intel faces. Finally, the model should be able to estimate forecast uncertainty

because the primary challenge of long-range planning is to mitigate the risk of future uncertainty

(Peng et al. 2012, Kempf et al. 2013). In this paper, we abstract from the situation at Intel

and develop a general demand model for multiple product generations and show its usefulness in

long-range forecasting.

When products are introduced to a market with multiple previous generations of products, a

multitude of dynamics and interactions are in effect. We consider three major market dynamics

that contribute to demand: (i) existing customers (i.e., those who own an older-version product)

upgrading to newer products, (ii) brand switching by customers, and (iii) market expansion. In

this paper, we develop a model that focuses on product upgrades and brand switchings, while

incorporating market expansion as a trend correction. In other words, we do not model the macro

dynamics driving the total market expansion (such as the state of the economy, the trend of end-

customer consumption, and the changing market appetite for technology), but view our model

as a tool for forecasting the demand curve of each individual product, given the trend of market

expansion.

1.1 Relationship to Prior Research

Bass (1969) characterizes the consumers for durable goods as a combination of innovators, who

adopt the product at a constant rate and imitators whose adoption rate depends on the current

population of adopters. The resulting demand resembles a diffusion process. Compared to the

time-series methods which are primarily data-oriented, the Bass model takes into consideration the

underlying market dynamics to predict demand. Researchers have since extended the Bass model

to incorporate demand-influencing factors such as advertising, price, and product-specific attributes

2



(Bass, 1980; Bass et al., 1994; Kamakura and Balasubramanian, 1988; Jain and Rao, 1990; Kalish,

1985), as well as Bayesian updating of the diffusion parameters using early market data (Wu et al.,

2010). However, these extensions are limited to a single product diffusion model.

Two recent review articles (Meade and Islam, 2006; Peres et al., 2010) summarize related work

on diffusion between technology generations. Fisher and Pry (1971) model the substitution of

a new technology for the old technology assuming that the market share of the new technology

grows with an exponential rate. Their model is limited to two products and captures the demand

during only the transition period instead of each product’s entire life cycle. Norton and Bass (1987)

consider the diffusion of successive generations of products (which we refer to as the Norton-Bass

model hereafter). They combine product substitution with diffusion and allow the adoption of the

next generation product be composed of two parts: those from the untapped market potential, and

those from adopters of the old product upgrading to the newer product. The Norton-Bass model

yields the overlapping bell-shaped demand curves commonly observed when multiple generations of

products are sold concurrently. However, the complexity of this model increases dramatically with

the number of products. Another limitation of this model is that product substitution only occurs

between two adjacent generations, not across multiple generations. For semiconductor products,

customers often leapfrog as they upgrade and the ability to capture such detail allows a firm to

design market strategies that target specific populations (see Gordon, 2009). Moreover, both the

Bass model and its extensions usually require data observations that include the demand peak.

Therefore, these models are more useful if a substantial number of sales observations are already

available for the product to be forecasted. This inevitably limits the prediction window to a much

shorter time period than that required by long-range planning decisions.

Our paper is also related to choice-theory-based demand models such as Melnikov (2001), Song

and Chintagunta (2003), Gordon (2009) and Gowrisankaran and Rysman (2009), in which con-

sumers’ purchasing behavior is modeled as a utility maximization problem. A general drawback of

these models is that parametrization is computationally intensive and often product aggregation

is necessary (see Gordon (2009)). In comparison, our approach reproduces complicated time series

data at the level of individual product with relatively small computational effort.

Jun and Park (1999) combine a choice model with a diffusion model to predict sales of multiple

generations of products. They assume an aggregate Bass diffusion for the entire market and let

the share of sales for each product be determined by a logit choice probability. In particular,

the “type II” model (which we refer to as the Jun-Park model hereafter) described in this paper

can be parameterized in the absence of unit-in-use data. They achieve this by mixing product
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upgrades with first-time-purchases. In contrast, our model differentiates these different sources of

sales, enabling the design of population-specific marketing strategies. The Jun-Park model uses

product-specific parameters and thus its application is restricted to two-step-ahead or three-step-

ahead forecasts, or to naively copy sales of a previous-generation product as the forecast for a new

product. In addition, they model customers’ utility as a linear function of time, thus customers’

valuation of a product is assumed to change monotonically with time throughout its life time.

Consequently, for a new product to replace the older generations, the time coefficient has to always

increase from one product to the next, regardless of product strength. This confounds parameter

interpretation and makes the model difficult to apply (since one cannot predict what the time

coefficient would be for a new product). In contrast, our model provides both clear interpretations

for the parameters and a clear path for how to forecast sales of future products.

Bayus et al. (2000) review a two-product population growth model and show that several pre-

viously studied models, including the Norton-Bass model and the Lotka-Volterra (Murray, 2002)

predator-prey model, can all be considered special cases of this model. The population growth

model, often used in ecology (Pielou, 1977) and sociology (Tuma and Hannan, 1984), has clear ad-

vantages over the Norton-Bass model: It captures product interactions, allows generation leapfrog-

ging, and allows an arbitrary number of products to coexist. However, existing applications are

limited to cases where the population sizes are directly observable or can be easily estimated, for

example, Mahajan and Muller (1996) on the demand for IBM mainframe computers and Kim et al.

(2000) on subscriptions of telecommunication services. In both papers, the population for product-

in-use is easily identifiable by the number of service contracts in place. This is not the case for

most other products. For example, at Intel, a customer who purchases the newest generation i

microprocessor could previously be a user of generation i − 1, i − 2, or a user of the competitor’s

products, which is not observed by Intel. In addition, the sales of generation i product do not reveal

how many customers have left generation i, making it impossible to track the size of population

i. Furthermore, sales data of competition are difficult to obtain. Our approach builds upon a

population-growth model but overcomes the limitation of non-observable population size and the

lack of sales data of the competition.

In this paper, we do not consider supply constraints and use the terms “demand” and “sales”

interchangeably. For new product diffusion models under supply constraints, one may refer to Ho

et al. (2002) and Kumar and Swaminathan (2003), which extend the single-product Bass model. In

addition, we do not consider used or remanufactured products and their impacts on the diffusion

dynamics, which is the subject of a related paper by Debo et al. (2006).
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1.2 Summary of Contribution and Organization

We present a demand model for multiple generations of products and develop a novel parametriza-

tion method that takes advantage of the flexibility afforded by the population growth model even

when the population data cannot be obtained. We show that this method performs well on syn-

thetic data, generated by a known demand obscured by noise. We then apply this method to Intel’s

microprocessor sales data and show that it outperforms other alternatives.

Our model is more appropriate for long-range forecast than existing models because it does

not need product-specific parameters to forecast sales. For instance, the Bass model requires sales

data for a particular product to first derive the diffusion parameters of this product and then

forecast for its remaining life time. With multiple products, the number of parameters grows

combinatorially: Not only does each product add its own set of diffusion parameters, but for

each pair of products, additional parameters are needed to model product interactions. (See, for

example, Mahajan and Muller (1996) and Danaher et al. (2001)). Furthermore, it is not clear how

product-specific differences should be taken into account to modify these parameters for future

products. In comparison, we parameterize the model based on product strength, which enables

forecast for products that are not yet released to the market and even years away from the time of

forecast.

To our knowledge, our model is the first to combine brand switchings and within-brand product

upgrades among multiple product generations into one model framework. Existing work on diffusion

models with competition only considers one product for the focal firm (see, for example, Savin and

Terwiesch 2005, Libai et al. 2009).

Finally, we show in this paper how to estimate the parameter variances which characterize the

confidence of the forecast, as well as how to adjust the variance estimation when the assumption

of independent and identical noise does not hold.

The rest of the paper is organized as follows. Section 2 describes the multi-product demand

model in detail. In Section 3, we present the basic idea for overcoming the problem of unobservable

population size. We examine the identification condition for this model and prove convergence of

the proposed method. In Section 4, we test the model using stochastically generated sales data.

We apply the model to the microprocessor data supplied by Intel in Section 5. We then compare

the model’s fit and forecast performance with the Bass model, the Norton-Bass model, as well as

the Jun-Park model. We conclude in Section 6, summarizing the key assumptions and discussing

the limitations.
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2 Model Description and Assumptions

In this section, we present a discrete-time population growth model for multiple generations of

products. Assume that a company is currently selling a total of n generations of product on the

market, indexed by the order of each product’s market entry. We associate a population xi with

each product i = 1, . . . , n, indicating the current number of units-in-use for this product. We

assume that a customer will never purchase a product that is older (in terms of the product’s

introduction time) than the one he currently owns. In addition, once a customer purchases a new

product, he will scrap the old product he previously owned or downgrade it to a secondary usage.

Therefore, the state of a customer can be represented by i – the latest product he owns. Similar to

the Bass model, we assume that each customer purchases at most one unit of product each time.

We consider H time periods. Let xi(t) be the population of product i at the beginning of time

period t, and si(t) be the sales of product i during period t. At the beginning of the focal time

horizon, we assume that the market starts with an existing population of products-in-use of some

earlier generation(s). These may include product generations that are older than product 1, which

are not selling any more but still have a unit-in-use population. Let K = {−k, . . . ,−1, 0} be the

set of these older products. We assume that xi(0), i = −k, . . . , 0, 1, . . . , n are given, with xi(0) = 0

if product i has not been introduced yet. As we show later in applications on both simulated and

Intel data, the method is robust to perturbations in the initial population size.

2.1 Product Upgrades

As customers of an older product upgrade to a newer product, sales occur and the population xi

evolves. Specifically, the value of xi increases if a customer who previously owned an older product

purchases product i and decreases if a customer who previously owned product i decides to buy

a newer product. Let Pij be the fractional flow rate from population i to j, i.e., the fractional

rate at which a customer of product i will buy product j. The population evolution could then be

described by the difference equation

xi(t + 1) − xi(t) =
∑
j<i

xj(t)Pji − xi(t)
∑
j>i

Pij , i = 1, . . . , n , (2.1)

and the sales rate of product i due to upgrades is given by
∑

j<i xj(t)Pji, which is the first term of

the right side of equation (2.1).
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2.2 Brand Switching

The diffusion of a new product is affected not only by adjacent generations of products sold by

the same firm but also by products from competitors. In many cases, the competing firms also

sell successive generations of products to the same pool of customers. As a result, the population

flow could occur across brands and between any two products on the market. However, modeling

the flow between each product of the focal company and each competing product is not desirable

because product-level sales data from competition are not readily available. In this paper, we

do not differentiate individual products sold by competitors, but instead treat them as one single

population y, which has a time-varying strength fy(t), reflecting the improvement of competitive

products over time. In practice, there may be multiple competing products and one has to determine

fy(t) carefully. For example, one may view fy(t) as either the average strength of competing

products, or the strength of the best competing product at time t. Similar to the assumption of

known xi(0), we assume that y(0) is known.

We assume that the population flow from population j to the competition or from the compe-

tition to population j is determined by the gap of product strength. Specifically, if the strength

of product j is higher (lower) than fy(t), then there is a flow from population y to population j

(population j to y) but none from j to y (y to j). Let J(t)(J(t)) be the set of products stronger

(weaker) than the competition. Clearly the set J may change with time. Denote the fractional flow

rate from xi, i ∈ J(t) to y as Piy and that from y to xi, i ∈ J(t) as Pyi. Therefore, sales of product

i due to brand switching are given by [y(t)PyiI(i ∈ J(t))], where I(·) is an indicator function.

2.3 Market Expansion

A third source of sales comes from “new” customers, i.e., customers who have not previously

purchased a product in this market, whether from the focal company or from competition. As

discussed earlier, this is driven by multi-facet macroeconomic factors such as world economy and

overall development of technology. At Intel, forecast for the total market is a separate process

from that for individual products. In this paper, we follow the Intel practice and propose a simple

approach to correct for the overall market trend. We incorporate this demand source through a

known percentage growth rate α(t), t = 1, ...,H. Let s(t) define the total sales of this market

(including both the focal firm and its competition) in period t. We assume that sales due to market

expansion in period t is given by α(t) · s(t − 1) and that this sales growth is split proportionally

among products of both the focal firm and the competition based on each product’s most recent
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market share. In other words, if the total market grows by α(t) · s(t− 1) in period t where s(t− 1)

is the total sales in the previous period, then product i gains α(t) · si(t − 1). While this is a

simplification, if one can safely assume that market growth is from a population that is similar to

the current adopter population, this proportional split assumption is reasonable. In addition, the

assumption of exogenous market expansion leads to a flexible model that accommodates essentially

any trend of the overall market expansion.

2.4 Resulting Sales

Summarizing the three sources of population flows, we obtain the sales for each product at time t:

si(t) =
∑
j<i

xj(t)Pji + y(t)PyiI(i ∈ J(t)) + α(t)si(t − 1) ∀ t = 1, 2, ...,H , (2.2)

where the three terms on the right represent sales due to upgrade, brand switching and market

expansion respectively.

We assume that, similar to the Bass model, the fractional flow rate from population i to j is

given by

Pij = pij + qijxj , (2.3)

where pij represents an innovation effect and qij the word-of-mouth effect. Furthermore, we assume

that the parameters pij and qij are linearly dependent on product strength:

pij = β1 + β2fij , qij = β3 + β4fij , (2.4)

where fij is the difference in product strength between product i and product j measured in per-

centage improvement. The parameters β2 and β4 characterize the importance of product strength

whereas β1 and β3 incorporate transitions that are independent of product strength. A linear rela-

tionship is commonly adopted by researchers for estimating the impact of influencing factors due

to its simplicity (e.g., Bass et al. 1994). We take a similar approach for including product strength.

Let fiy (fyi) represent the percentage improvement of product i over product y (product y over

product i), we assume that the diffusion parameters piy, pyi, qiy and qyi satisfy

piy = β5 + β6fiy , qiy = β7 + β8fiy , ∀i ∈ J , (2.5)

pyi = β5 + β6fyi , qyi = β7 + β8fyi , ∀i ∈ J . (2.6)

Note that the flows from xi to y and from y to xi have the same coefficients βk, k = 5-8. This is based

on the observation at Intel that customers who switch brands tend to have similar characteristics.
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In the rare case where this is not true, the model could be extended at the cost of additional

parameters.

We obtain the sales of product i by substituting equations (2.4), (2.5) and (2.6) into equation

(2.2):

si(t) = β1

⎡
⎣∑

j<i

xj(t)

⎤
⎦+ β2

⎡
⎣∑

j<i

fjixj(t)

⎤
⎦+ β3

⎡
⎣∑

j<i

xi(t)xj(t)

⎤
⎦+ β4

⎡
⎣∑

j<i

fjixi(t)xj(t)

⎤
⎦

+ β5 [y(t)I(i ∈ J)] + β6 [fyiy(t)I(i ∈ J)] + β7 [xi(t)y(t)I(i ∈ J)]

+ β8 [fyixi(t)y(t)I(i ∈ J)] + α(t)si(t − 1) . (2.7)

Therefore, conditional on x(t) = (x1(t), . . . , xn(t)) and y(t), si(t) − α(t)sy(t − 1) is a linear

function of the parameter vector β= (β1, . . . , β8). We define a matrix X with dimension nH × 8

such that

Xt+(i−1)H =

⎛
⎝∑

j<i

xj(t),
∑
j<i

fjixj(t),
∑
j<i

xi(t)xj(t),
∑
j<i

fjixi(t)xj(t), y(t)I(i ∈ J),

fyiy(t)I(i ∈ J), xi(t)y(t)I(i ∈ J), fyixi(t)y(t)I(i ∈ J)

⎞
⎠ , (2.8)

where Xt+(i−1)H is the [t + (i − 1)H]th row vector of X.

Then we can rewrite equation (2.7) as

s = Xβ , (2.9)

where s =
(
{si(t) − α(t)si(t − 1)}i=1,2,...,n; t=1,2,...,H

)
(2.10)

is a vector with its [t + (i − 1)H]th element equal to si(t) − α(t)si(t − 1), representing the sales of

product i during period t “corrected” for the market trend. Throughout the rest of the paper, we

assume that the matrix X has full rank.

To ensure that the discrete time model is well behaved, we assume β is small such that sales

in and out of each population are small relative to the current population size. Consequently the

values of xi(t) are finite and nonnegative. From an implementation perspective, this is equivalent

to keeping the discrete time unit sufficiently small.

Suppose we know the values of xi(t), y(t) and the sales si(t) ∀ i, t, then we can solve the linear

system of equations given by (2.9) to obtain the parameter β. In the case with measurement error

in sales, one can obtain the estimate for β using the linear regression model

s = Xβ + ε . (2.11)
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where ε is a vector of independent and normally distributed noises. Unfortunately, as discussed

earlier, xi(t) are in most cases not available and therefore we cannot use linear regression methods

to estimate β. Rather, the model we need to estimate is

s = X(β)β + ε , (2.12)

where X is a function of β.

3 Solving the Nonlinear Regression

The conventional nonlinear regression method for estimating β in equation (2.12) involves mini-

mizing the sum of squares

v(β) ≡ (X(β)β − s)T (X(β)β − s) (3.1)

by optimizing β. Substituting equation (2.3) into equations (2.1) and (2.2), we obtain the popula-

tion and sales as quadratic recursive equations (see Online Appendix A.1 for details), which implies

that si(t), xi(t) (similarly, sy(t) and y(t)) are polynomial functions of the parameter vector β with

order 2t. Hence the problem of minimizing v(β) over the parameter vector β is of polynomial order

22t, which is practically infeasible to solve for any reasonably large t.

Given the special structure of this problem, we propose an iterative procedure that takes advan-

tage of the linear structure of equation (2.7) to obtain the optimal parameter estimates. Although

the population paths xi(t) and y(t), t = 1, ...,H are not known, we can construct them based on the

current parameter estimates. Then, from the constructed population paths, we obtain an updated

estimate of the parameter vector using the constructed data matrix and the actual sales vector. In

particular, we perform linear regression using equation (2.11). We then repeat this process until

the parameter estimates converge. In other words, we use the constructed data matrix X(β) as the

“pseudoregressor.” The following is a step-by-step description of the procedure.

• Step 1: Assume that we know the values of xi and y at time t = 0. In the kth iteration, we

use the current estimate βk for the parameter vector β to construct the population path x̂i(t)

and ŷ(t) for t = 1, . . . ,H following equations (A.1) – (A.3) (note that ŝy(t) is also constructed

as an intermediary), and then derive the sales path ŝi(t) using equation (2.7).

• Step 2: Construct the matrix X(βk) and the column vector s(βk) as defined in equations

(2.8) and (2.10). Next, run linear regression of s(βk) against X(βk) to obtain an updated set
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of parameters given by

βk+1 ≡ (βk+1
1 , βk+1

2 , . . . βk+1
8 )T = [X(βk)T X(βk)]−1X(βk)T s(βk). (3.2)

• Repeat steps 1 and 2 using the updated parameters βk+1 until convergence, i.e, when the

percentage improvement of the residual sum of square (which approximates the scaled norm

of the gradient) falls below a very small number.

The iterative method described above is conceptually similar to a fixed-point iteration method

for solving a system of nonlinear equations. This can be seen by omitting the error term ε and

rewriting equation (3.2) as β = [X(β)TX(β)]−1X(β)T s. For a fixed point method to work, the

mapping from βk to βk+1 needs to be a contraction. However, this is not generally true, even

without the error term ε. Therefore, the method described above does not always converge. In-

deed, we observe both cases of convergence and cases of local divergence where the sequence βk

oscillates around the fixed point but never converges. In the next two subsections, we examine the

mathematical conditions required for the model in equation (2.12) to be identifiable and show that

convergence can be achieved by modifying equation (3.2).

Before we proceed, we note that this iterative approach is analogous to the well-known Gauss-

Newton nonlinear regression method (Amemiya, 1985), in which the nonlinear model is linearized

based on the Taylor series approximation at an initial parameter estimate, and then a new set of

parameter estimate obtained from the linear regression is used as the new starting parameter value

for subsequent iterations. In our model, we also take advantage of a linear regression step but it

is based on the special structure of this multi-product demand model instead of the Taylor series

approximation. In addition, our method bears some resemblance to the Expectation-Maximization

(EM) method (Dempster et al., 1977) which obtains the maximum likelihood estimate under in-

complete data. In the EM method, one uses an initial estimate of the parameter to compute

conditional distributions of the missing data and then a new estimate of the parameter is derived

by maximizing the expected log likelihood function. In our problem, we derive the expected values

of the “missing data”, namely, the population sizes, based on the current parameter estimate so as

to reduce a complex nonlinear regression to a series of simple linear regressions.

3.1 Model Identification

In the iterative approach described above, we circumvent the problem of unobservable population

paths by constructing them using current best estimates of the parameters. Because of the missing

information, we encounter the problem of parameter identifiability.
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A set of model parameters is identifiable if no other set of parameter values leads to the same

probability distribution of the dependent variables, in which case the two parameter points are

observationally equivalent (Rothenberg, 1971). If two parameter points are observationally equiv-

alent, then we cannot statistically distinguish one from the other. In this problem, this would

imply that there might be multiple sets of β parameter values that could generate the same sales

distribution. In the special case where the measurement error is zero, identifiability is equivalent

to the existence of a unique fixed point.

In our problem, if the population paths xi(t), t = 1, ...,H are observable, then the model de-

scribed by equation (2.7) is a linear model, s = Xβ + ε, which is identifiable if the error term εi is

zero mean, independent of X, and the matrix X is of full rank (Greene, 2003).

However, the observation of X is in general not readily available and the true model is s =

X(β)β + ε, which is non-linear. Rothenberg (1971) shows that a non-linear model is locally iden-

tifiable if the information matrix as defined by R(β) = [rij(β)] = E
[

∂logf
∂βi

· ∂logf
∂βj

]
, where f is the

probability density of the dependent variable for a given set of parameter values β, is non-singular

at any regular point of the matrix R(β). In addition, if f belongs to a special class of the expo-

nential family (e.g., multivariate normal), then the parameter vector β is globally identifiable. A

straightforward application of the Rothenberg result leads to the following proposition.

Proposition 3.1. Assume that a noise term εi(t) is added to the sales si(t) (equation (2.7)),

where εi(t), i = 1, ..., n are of independent normal distributions. Then global identification requires

[∇β(X(β)β)]T to be of full rank.

As pointed out by Amemiya (1985), nonlinearity generally helps identification so that the full

rank requirement does not imply that the number of variables needs to be greater than or equal

to the number of parameters. Therefore, the condition that [∇β(X(β)β)]T be of full rank is not

restrictive but in fact is easier to satisfy than in an entirely linear system.

3.2 Model Convergence

The identification condition ensures that no two parameter sets generate the same probability

distribution of sales. However, it does not guarantee that for any given set of sales data, the

procedure converges or that it converges to a stationary point of the optimization problem β =

arg minβ v(β) where v(β) is defined in equation (3.1).

In this section, we present a modification of equation (3.2) that leads to convergence. Specif-

ically, the parameter values used in the next iteration βk+1 is determined as follows: Let X(βk)
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be the population matrix constructed using the parameter vector βk and let bk be the opti-

mal parameter values obtained through the linear regression using equation (2.11), i.e., bk =

[X(βk)TX(βk)]−1X(βk)T s. We define the direction vector dk = bk−βk and update the parameter

estimates by βk+1 = βk + λkdk where λk ∈ (0, 1] represents a scalar step size.

To fix ideas, we follow the definition in Bertsekas (2003) regarding a descent direction in gradient

descent algorithms.

Definition 1. Let f(β) be a continuously differentiable function of the vector β. A sequence

{dk}k∈κ is gradient related to βk if {dk}k∈κ is bounded and limk→∞ supk∈κ ∇f(βk)T dk < 0.

Lemma 3.2. Define the sequence {dk} and {βk} such that dk = bk − βk and βk+1 = βk + λkdk.

Assume that
[
∇β(Xβk)

]T [
XTX

]−1 XT is positive definite. Then the sequence {dk} is gradient

related to {βk}.

The proof of Lemma 3.2 is provided in the Online Appendix. Employing a result in Bertsekas

(2003) (Prop. 1.2.1, page 43), we show that the sequence {βk} converges to a stationary point of

v(β) if βk is sufficiently small and the step size λk is properly chosen.

Corollary 3.3. Assume that the positive definiteness condition in Lemma 3.2 is satisfied. If the

step size λk is chosen by the Armijo rule or any step size rule that yields a larger cost reduction,

i.e., a larger reduction in v(β), at each iteration step than the Armijo rule, the sequence {βk}
converges to a stationary point of v(β).

The Armijo rule is a successive reduction rule such that a sufficiently large cost reduction is

achieved (see Bertsekas (2003) for more details). The proof of the above corollary is straightforward:

The positive definiteness condition leads to a gradient-related sequence {dk}. According to Prop.

1.2.1 in Bertsekas (2003), if the step size is determined by the Armijo rule or one with higher cost

reduction than the Armijo rule in each step, then every limit point of {βk} is a stationary point.

A direct consequence of Corollary 3.3 is that the estimator obtained using this approach is the

nonlinear least squares estimator by definition (see Greene (2003)).

Corollary 3.4. Suppose that the positive definiteness condition in Lemma 3.2 holds. Then the

iterative approach described in Corollary 3.3 yields the nonlinear least squares estimator.

We refer to the iterative approach in Corollary 3.3 as the “iterative descent” approach hereafter.

In general, the condition in Lemma 3.2 is difficult to verify even for a given βk. However, we show

that this condition is always satisfied asymptotically when βk → 0.
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Proposition 3.5. The matrix limβ→0[∇(Xβ)]T (XT X)−1XT is positive definite and thus the it-

erative descent approach converges to a stationary point of v(β), i.e., the nonlinear least squares

estimator of β, if βk → 0.

The proof of Proposition 3.5 is given in the Online Appendix A.3.

Next, we remark that as β → 0, our method not only converges, but also converges fast. Since

X is full rank, XTX is invertible. Thus we can rewrite dk as

dk = −(βk − bk) = −
[
βk − (XTX)−1XT s

]
= −(XTX)−1XT (Xβk − s) ,

where we omit the argument βk of X for brevity. From the definition of v(β), we have ∇v(βk) =

2[∇(Xβk)](Xβk − s) . Therefore, as βk → 0, the descent direction dk = −(XT X)−1XT (Xβk −
s) → −1

2(XT X)−1XT (XXT )−1X∇v(βk). Due to the full rank assumption of X, the matrix

(XTX)−1XT (XXT )−1X is positive definite (see Online Appendix A.4). Therefore, our method

is a Quasi-Newton method, which typically converges fast (Bertsekas 2003, Page 148) when used in

combination with the Armijo rule or the minimization rule (in which a search along the direction

of dk is performed to find the step size that maximizes cost reduction).

3.3 Estimate the Covariance

When the condition in Proposition 3.5 is satisfied, the method converges to the set of parameter

values that minimizes the sum of squared errors, i.e., the nonlinear least squares estimator. Conse-

quently, it retains the asymptotic properties of nonlinear least squares estimator, i.e., consistency

and asymptotic normality under very general conditions.

Proposition 3.6. Suppose the parameter space of β is compact. Further, suppose limN→∞ v(·)
is a continuous and differentiable function and has a unique minimum at the true parameter β,

where N ≡ nH. In addition, assume that the errors ε are independent and homoscedastic, i.e.,

E[εεT ] = σ2I where σ2 is a scalar and I is the identity matrix. Let β̂ be the estimator obtained

from the iterative descent approach. Then β̂ is consistent, i.e., limN→∞β̂ = β, and asymptotically

normal , i.e., limN→∞ β̂ ∼ Normal
(
β, σ2

N Q−1
)

where σ2 is the variance of ε and

Q = lim
N→∞

1
N

N∑
i=1

(
∂[χi(β̂)β̂]

∂β̂

)(
∂[χi(β̂)β̂]

∂β̂
T

)

where χi(β̂) is the ith row of X(β̂).
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The result follows from Greene (2003) (Theorems 9.1 and 9.2). A useful consequence of this

is that we can estimate the asymptotic variance of the estimator β̂. It is easy to show that
∂χi(

ˆβ)

∂
ˆβ

is bounded (see the proof of Proposition 3.5 in the Online Appendix). Since ∂[χi(β̂)β̂]

∂β̂
=

χi(β̂) + β̂
∂χi(β̂)

∂β̂
, we have limβ→0 Q = limN→∞(XT X). In addition, σ2 can be estimated with

eTe/N where e is the residual vector. Therefore, when β is small, we can estimate the covariance

matrix of β by eT e
N (XTX)−1.

Correction for Heteroscedasticity and Autocorrelation

While Proposition 3.6 suggests a straightforward method to estimate the covariance matrix of the

parameter estimator, it relies on the assumption that the error term ε is spherical, i.e., E[εεT ] = σ2I

where I is the identity matrix. If one could assume that the error term ε is independent of the

underlying demand generating process, but rather just a book-keeping error of sales, this would be

a reasonable way to estimate the covariance. In general, it is difficult to argue that the error term

has constant variance over time. To deal with heteroscedasticity, we can use the White estimator

(White, 1980) to estimate the asymptotic variance:

1
N

(
ZTZ
N

)−1
(

1
N

N∑
i=1

e2
i zizT

i

)(
ZTZ
N

)−1

,

where Z =
∂
[
X(

ˆβ)
ˆβ
]

∂
ˆβ

and zi is the ith row of Z. As β → 0, we estimate the covariance matrix of β

with N(XTX)−1S0(XT X)−1 where S0 = 1
N

∑N
i=1 e2

i χiχ
T
i .

For more general cases in which autocorrelation in the data cannot be ignored, one can use the

Newey-West (Newey and West, 1988) covariance estimator N(XT X)−1Q̂(XT X)−1, in which the

matrix Q̂, when applied to our problem, is estimated with

S0 +
1
N

n∑
i=1

n∑
j=1

L∑
�=1

H∑
t=�+1

w�eκ(i,t)eκ(j,t−�)

(
χκ(i,t)χ

T
κ(j,t−�) + χκ(j,t−�)χ

T
κ(i,t)

)
, (3.3)

where the subscript κ(i, t) = t + (i− 1)H, the weight w� = 1− �
L+1 and L is typically set such that

L ≈ H1/4.

To summarize the results in Section 3, we show that if the true β values are sufficiently small,

which can be enforced by restricting the discrete time unit to a small interval, the iterative descent

approach always converges to a stationary point of v(β). With the assumption of full rank (Propo-

sition 3.1), the model is identifiable. Moreover, we show that our method yields an estimator that

is consistent and asymptotically normal. We also show how the covariance matrix can be estimated
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and corrected in the presence of heteroscedasticity and autocorrelation. In the next section, we

apply this iterative descent approach to sales data that are stochastically generated from the model

given by equation (2.12) and demonstrate its performance. We have applied both the Armijo rule

and a “limited” minimization rule which searches along the direction dk but within a bounded in-

terval between βk and bk. Both work well for the simulated data while the latter appears to work

better for the Intel application. We present the results obtained with the limited minimization rule.

4 Performance on Simulated Demand Data

In this section, we assume that the underlying model is s = X(β)β + ε where ε is normally

distributed with zero mean. We assume that errors are uncorrelated but allow them to be het-

eroscedastic. For the ease of reference, denote the variance of observation i with σ2
i and define

vector σ = (σ1, σ2, . . . , σN ). We apply the iterative descent procedure described in Section 3.2 to

solve for the optimal β that minimizes the mean squared error.

4.1 Estimation and Fit

We present an example where sales are generated from a model described in equation (2.11) with

β = (0.005, 0.02, 0.01, 0.30, 0.002, 0.01, 0.005, 0.2). All three sources of demand identified in Section

2 are present and we correct for a market expansion of 0.1% per period. At the start of the

time horizon (time 50), there are four existing generations of products (sales of the first product

has already dropped to zero) with known population sizes 0.0156, 0.0399, 0.2744, 0.1131 and the

competition population is 1.56. The focal firm introduces new product at a constant pace (one

product every 20 time periods). We generate sales data during time [50, 200] which includes sales

of ten products, seven of which are new product introductions. The focal firm and competition

start at about the same performance level. Product improvement is 10%, 11%, ..., 19% (over the

immediate predecessor) respectively for the ten products of the focal firm and a constant 5% for the

competition (improvement occurs at the same time for both the focal firm and its competition).

In this section, we choose the sales data for the time window [50, 150] (which includes sales of

three existing products and five new products) to estimate the parameters, assuming that we have

an accurate estimate of the population mix at time 50. In Section 4.2, we use the remaining

sales data (which includes sales of three existing products and two new products) to test forecast

performance; we also vary the initial population sizes and the size of the fit/forecast window to test

forecast sensitivity.
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To validate the iterative procedure, we first test the case with σ = 0 to confirm that it converges

to the true parameters. See Figure 1. In the presence of noise (σ 	= 0), the procedure in general does
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Figure 1: Convergence to the True Parameter Values

not converge to the true parameter value that is used to generate the sales, but rather the nonlinear

least squares estimator of the model s = X(β)β + ε, as expected. See Table 1 for three examples

generated at different noise levels where we use σ = 5%, 10%, 20% to loosely denote the case that

the noise term ε has a standard deviation that is 5%, 10%, 20% of the mean sales, respectively.

Note that “std. err.” and “White err.” are respectively the standard error of parameters without

and with correcting for heteroscedasticity. Also, ∗ and ∗∗ denote significance at the 90% and 95%

level respectively, computed based on the White error estimate.

σ = 5% σ = 10% σ = 20%

Parameters estimate
std.
err.

White
err.

estimate
std.
err.

White
err.

estimate
std.
err.

White
err.

β1 0.0052∗∗ 0.0035 0.0007 0.0048∗∗ 0.0058 0.0012 0.0042∗∗ 0.0106 0.0024
β2 0.0209∗∗ 0.0141 0.0026 0.0230∗∗ 0.0229 0.0043 0.0260∗∗ 0.0421 0.0088
β3 0.0178∗∗ 0.0053 0.0030 0.0135∗∗ 0.0079 0.0041 0.0192∗∗ 0.0152 0.0073
β4 0.2547∗∗ 0.0366 0.0183 0.2650∗∗ 0.0553 0.0259 0.2280∗∗ 0.1025 0.0439
β5 0.0017∗∗ 0.0009 0.0003 0.0029∗∗ 0.0014 0.0006 0.0010 0.0032 0.0014
β6 0.0110∗∗ 0.0047 0.0019 0.0039∗ 0.0075 0.0032 0.0109 0.0178 0.0090
β7 0.0064∗∗ 0.0026 0.0009 0.0015 0.0042 0.0018 0.0059∗ 0.0095 0.0040
β8 0.1889∗∗ 0.0163 0.0044 0.2237∗∗ 0.0260 0.0089 0.2583∗∗ 0.0619 0.0240

Table 1: Parameter Estimates and Errors for Various Levels of Noise

The statistical significance of the parameters drops as the uncertainty level increases. The

smaller parameters tend to lose statistical significance fast (i.e., drop below 90% significance) with

increasing uncertain levels. This suggests that, like most other methods, our model is not appro-

priate for drawing statistical inferences for data sets with high noise. However, as we show next

in this section and Section 4.2, it works reasonably well for the purpose of fitting and forecasting
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sales even at a high noise level.

To examine the model fit, we generate stochastic sales data for a given set of parameter values

and apply the iterative descent procedure to obtain the corresponding parameter estimates. We then

generate the fitted sales curve and compare it with the 95% confidence level sales band predicted

by the true parameters. Figure 2(a) illustrates such a comparison. The true parameters for the

underlying model are the same as in Figure 1. The noise term (ε) has a standard deviation that is

20% of the mean sales. (i.e., σ = 20% of mean sales). We generate 500 sets of sales data and apply

the iterative descent method to each data set. We observe that the majority of the fitted curves

(solid curves) centers around the “true” curve (the dashed curve on the top is the upper bound

of the 95% confidence interval and the dotted curve on the bottom is the lower bound). More

importantly, this observation stays true even as the uncertainty level increases: As the band for

the fitted sales curve becomes wider, the confidence intervals of the true sales curve also broadens.

Further, we examine how well the true population variables xi(t) are recovered. We predict the

population path from the parameter estimates for each of the 500 simulated data sets and compute

the Mean Absolute Percentage Error (MAPE) of the population for each set of predictions. Figure

2(b) shows the error distribution of the predicted population sizes for σ = 20%. We observe that

the iterative approach recovers the true population well (the population deviations are well within

10%, in most cases 3% or 4%).
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Figure 2: Fitted Sales Curves and Population Deviation

4.2 Forecast Performance and Sensitivity

Next, we illustrate the forecast accuracy of the model using a portion of the data to calibrate the

model and the remaining to test forecast performance. In particular, for each randomly generated
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data set, we parameterize the model with sales during time period [50, 150] and then forecast the

sales for time [151, 200]. We compute forecast errors for each data set and Table 2 presents the

mean forecast errors averaged over the 500 data sets: RMSE is the root mean squared error; MAE

is the mean absolute error; MAPE is the mean absolute percentage error.

Because RMSE is the measure that least square regression optimizes, we use the RMSE (instead

of other error measures) to compare the model fit and forecast performance of different methods.

We present the MAE and MAPE to provide additional information.

We remark that the observations shown in Table 2 and Figure 3 both demonstrate that our

model is well-behaved: in the majority of the simulated cases, the forecast largely replicates the

inherent uncertainty of sales data generated at each noise level and we do not observe significant

amplifications as noise level increases.

Error Measure σ = 5% σ = 10% σ = 20%

average RMSE 0.0030 0.0054 0.0102
average MAE 0.0022 0.0038 0.0069
average MAPE 9.71% 15.36% 28.01%

Table 2: Forecast Performance Averaged over 500 Data Sets
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Figure 3: Forecast Error Distribution (s.d. of ε = 20%)

Sensitivity to Initial Population

We have assumed that the initial population sizes are known. In the following, we experiment with

cases where the company may over or under estimate these values. Table 3 illustrates forecast

performance of the model when the population sizes are overestimated by 10% (case 1), underesti-

mated by 10% (case 2), as well as in cases in which some products are overestimated while others

are underestimated (“mixed”) – in case 3, the first two products are overestimated by 10% and the

next two products are underestimated by 10% whereas in case 4 the opposite is true. The results
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are averaged over 100 data sets.

Case base case 1(over 10%) 2(under 10%) 3(mixed) 4(mixed)

average RMSE 0.00531 0.00533 0.00535 0.00533 0.00531
average MAE 0.0038 0.0039 0.0038 0.0037 0.0038
average MAPE 15.10% 17.35% 14.48% 14.54% 16.31%

Table 3: Forecast Sensitivity to Initial Population (σ = 10%, fit/forecast window=[50, 150]/[151, 200])

Performance resilience to perturbations in the initial population estimation is evident, which

appears counterintuitive but is indeed an explainable characteristic of this method. Specifically, the

method can self-correct with respect to errors in the initial population estimation: as time elapses

and new sales occur, the memory of the initial population and its effect fades away rather quickly.

Sensitivity to Fit/Forecast Time Window

Table 4 demonstrates the sensitivity of forecast errors to the number of time periods (or similarly,

the number of products) used to parameterize the model (data are generated with σ = 10%;

forecasts are averaged over 100 random data sets). As expected, forecast accuracy decreases as the

training set becomes smaller; nevertheless, one still obtains reasonable forecasts when the size of

the training data is at least comparable to the test data.

fit/forecast window [50, 100]/[101, 150] [50, 125]/[126, 175] [50, 150]/[151, 200]

average RMSE 0.0056 0.0052 0.0053
average MAE 0.0041 0.0038 0.0038
average MAPE 23.85% 16.72% 15.10%

Table 4: Sensitivity of Forecast Errors to the Number of Time Periods (σ = 10%)

Constrained versus Unconstrained Regression

We interpret the parameters β as nonnegative because the gap of product strength between product

i and product j, Δfij, has a nonnegative effect on the transition parameters pij and qij. In the

presence of noise, it is possible that an unconstrained linear regression may result in negative

value(s) for some component(s) of the estimated parameter vector. Therefore, in our numerical

studies, we have constrained the parameters to be nonnegative. Using unconstrained regression

may allow one to achieve better fit to the training data; however, it inevitably leads to poorer

forecasting performance. Table 5 demonstrates the fit and forecast performance of the constrained

and unconstrained models (data are generated with σ = 10%; fit and forecast errors are averaged

over 100 random data sets). The RMSE for the training data is roughly the same for the constrained

and unconstrained cases, however, the forecast RMSE of the unconstrained model is worse than the
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constrained model. Similar observations are made in the Intel application in Section 5. Therefore,

one is better off taking advantage of the knowledge on the underlying dynamics by constraining the

parameters to nonnegative values to avoid a false model which provides better fit but poor forecast.

Constrained (Fit) Constrained
(Forecast)

Unconstrained
(Fit)

Unconstrained
(Forecast)

average RMSE 0.0034 0.0053 0.0034 0.0056
average MAE 0.0021 0.0038 0.0022 0.0040
average MAPE 11.57% 15.10% 13.52% 18.36%

Table 5: Fit and Forecast Comparison (σ = 10%, fit/forecast window=[50, 150]/[151, 200])

In summary, the iterative descent approach works well for simulated data. In Section 5, we

apply the proposed method to Intel data and compare against the Bass, Norton-Bass and Jun-

Park models (such a comparison would not be appropriate in Section 4 since the simulated data is

generated using our model).

5 Application to the Extreme Edition Microprocessor Market

In this section, we apply our model to the sales data of Intel’s “extreme edition” microprocessors.

These high-end desktop processors are sold primarily to end users who participate in sophisticated

computer games - the “extreme gamers.” Therefore, this is also referred to as the extreme gamers

market.

5.1 Data Description

Included in the data are the introduction date, performance score, and price for each product sold

by Intel, as well as those for a major competitor. Weekly sales data cover a 4-year time window

with a total of 11 products from Intel. (We include in the Online Appendix the masked data set,

as well as a plot of the masked sales for Intel products).

Performance scores for both Intel and competition products are obtained from the Standard

Performance Evaluation Corporation (SPEC) based on both integer and floating point benchmarks

(SPEC Website, 2010), which are commonly-adopted industry standards. The extreme gamers

market is generally perceived as price-insensitive. Nevertheless, we apply the method in two set-

tings: one in which product strength is given by performance score alone, one in which product

strength is given by performance/price ratio. The latter is commonly adopted at Intel as a measure

of product strength for markets that are price-sensitive. We compare these two alternatives for the

extreme gamers market. The data span a time period that is characterized by a performance race

between Intel and its competitor with the performance gap between the two companies widening
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rapidly over time despite the initial performance lead and steady improvement by the competitor

(Figure 4(a)). Figure 4(b) shows the performance/price ratio of the two firms. The competitor

priced its product much lower than Intel and was thus leading on performance/price ratio. In ad-

dition, the total market during this time was growing over time, reflecting a known market trend.

As mentioned earlier, such trend is assumed to be known. Our focus is on how the total market

is split between Intel and competition and among the products within Intel. We use 120 weeks

of data to parameterize the model (which includes sales of nine products) and the remaining 96

weeks of data (which includes sales of six products, two of which introduced after week 120) to test

the forecast accuracy of the proposed model. The forecast is based on a “frozen” fit sample of 120

weeks, which differs from the rolling-horizon forecast typically seen in the literature of diffusion

models. The rolling-horizon forecast is unfit for strategic planning decisions, which are often made

long before the actual sales.
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Figure 4: Performance and Performance/Price

First, we adjust for the aggregate market trend. Note that α(t) is the sales growth due to

market expansion as a percentage of the most recent sales. Ideally we would use the original

“forecasted” α(t) for this purpose. However, we do not have data of the forecasted sales growth

for new expansion. Therefore, to calibrate the model, we use the actual sales (which is available)

to estimate the growth trend of total sales, and use it as a proxy for the growth trend of new

expansion. This is reasonable if the growth trend due to new market expansion and the growth

trend of total sales follow similar pattern. For the extreme gamers market, the total market during

this time window was on a logistic growth path. We thus fit a logistic growth curve to the estimated

total sales and the growth rate α(t) is obtained through this fitted curve. Figure 5(a) shows the

fitted logistic curve.
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Before applying the iterative descent approach, we need to estimate the initial population mix.

The extreme gamers market is initially dominated by the competition, so we set xi(0) to zero and

y(0) to the size of the initial market. Experts at Intel estimate this to be around 7.5 Million at the

start of this time window. We show with additional sensitivity analysis that, the model is robust

to fluctuations in this estimate due to the reasons discussed in Section 4. (see Tables 14 to 15

provided in the Online Appendix).
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Figure 5: Application of Extreme Gamers Market

5.2 Estimation and Forecast

In addition to the two alternatives of product strength measure, namely, performance alone (“perf-

only”) and performance/price ratio (“perf/price”), we also explore two options for determining

product strength of the competition, fy(t): one defined as the strength of the strongest product

of the competition (“best-comp”), the other defined as the mean product strength of the com-

petition (“mean-comp”). Moreover, as in Section 4, we examine the forecast performance with

(“constrained”) and without (“unconstrained”) nonnegativity constraint on the parameters.

Figure 5(b) shows the convergence path of the parameters for the “constrained, perf-only, best-

comp” case. Similar convergence pattern is observed for other cases.

Table 6 and Table 7 summarize the parameter estimates, standard errors, as well as the White

and Newey-West errors obtained using sales data from the first 120 weeks (first 9 products). The

model fit and forecast performances are reported in Tables 8 and 9. In addition to the RMSE,

MAE, MAPE, we also compute the median absolute percentage error (MdAPE), MAPE of the

cumulative sales (cumMAPE), MAPE of the peak sales (peakMAPE), mean absolute error of

peak time (timeMAE), as well as the R2 value. (Note that for nonlinear regression, R2 value is
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not necessarily between 0 and 1.) Again, ∗ and ∗∗ denote significance at the 90% and 95% level

respectively, computed based on the White error estimate. With the exception of peakMAPE and

timeMAE, errors are averaged over all available data points (which includes sales for each product

at each time period during its selling window). To compute the error for model fit (Table 8), we

use data points within the first 120 weeks; to compute the forecast error (Table 11), we use data

points in the 96 weeks starting week 121. Due to the life-cycle effect, predicted and actual sales

may differ by a small absolute amount but a high percentage amount near the tail regions of each

product. This is particularly true in a real data application, in which the predicted and the actual

sales window may differ significantly near the tails (possibly due to companies enforcing end-of-life

for a product instead of letting it follow the course of a diffusion); thus for the Intel application

we also report the MdAPE, which partially offsets this problem. Each Intel product has a sales

peak in its life cycle and peakMAPE and timeMAE respectively measure error in the peak volume

and error in the peak time of the products, which are important for Intel because the company

needs to plan capacity appropriately to accommodate peak sales. These values are averaged over

the number of products (for the training data, averaged over all products which peaked during the

first 120 weeks; for the test data, averaged over all products which peaked after week 120).

Parameters β1 β2 β3 β4 β5 β6 β7 β8

Perf
only

Estimate 0.0034∗ 0 0.00045 0 0.0037∗∗ 0.0089∗ 0.00091 0.0022
std. err. 0.0011 0.0019 0.0012 0.0038 0.0008 0.0028 0.0008 0.0041

White err. 0.0025 0.0032 0.0018 0.0035 0.0015 0.0059 0.0010 0.0055
Newey-West err. 0.0048 0.0073 0.0038 0.0066 0.0025 0.0092 0.0016 0.0077

Perf
Price
Ratio

Estimate 0.0150∗∗ 0 0.0310∗∗ 0.0806∗∗ 0.0039∗∗ 0.0045 0 0
std. err. 0.0020 0.0095 0.0061 0.0298 0.0012 0.0035 0.0028 0.0093

White err. 0.0021 0.0088 0.0052 0.0268 0.0018 0.0062 0.0027 0.0097
Newey-West err. 0.0033 0.0124 0.0075 0.0432 0.0030 0.0092 0.0043 0.0144

Table 6: Parameter Estimates for the Extreme Gamers Market (“constrained, best-comp”)

Parameters β1 β2 β3 β4 β5 β6 β7 β8

Perf
only

Estimate 0.0092∗ −0.0135 −0.0059 0.0180∗ 0.0013 0.0124∗ 0.0014∗ 0.0067∗∗

std. err. 0.0011 0.0018 0.0011 0.0034 0.0008 0.0025 0.0008 0.0037
White err. 0.0027 0.0035 0.0019 0.0028 0.008 0.0047 0.0008 0.0053

Newey-West err. 0.0046 0.0063 0.0032 0.0048 0.0011 0.0067 0.0012 0.0076

Perf
Price
Ratio

Estimate 0.0113∗ −0.0091 0.0105∗ 0.0202∗ 0.0001 0.0179∗ 0.0031∗ −0.0062
std. err. 0.0013 0.0039 0.0025 0.0093 0.0010 0.0030 0.0019 0.0068

White err. 0.0017 0.0034 0.0029 0.0095 0.0010 0.0057 0.0018 0.0092
Newey-West err. 0.0028 0.0052 0.0052 0.0161 0.0013 0.0075 0.0022 0.0116

Table 7: Parameter Estimates for the Extreme Gamers Market (“unconstrained, best-comp”)

As discussed earlier, we use the RMSE to compare model fit and forecast performance because

our method is a least squares method. We make several observations from Tables 8 and 9. First,
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Method RMSE MAE MAPE MdAPE
cum
APE

peak
MAPE

time
MAE

R2

constrained, perf-only, best-comp 0.0176 0.0121 67% 41% 49% 3.44% 5.4 0.40
constrained, perf/price, best-comp 0.0202 0.0153 74% 82% 42% 2.93% 6.3 0.22
unconstrained, perf-only, best-comp 0.0163 0.0115 62% 42% 42% 2.94% 5.3 0.49
unconstrained, perf/price, best-comp 0.0183 0.0138 70% 64% 55% 3.35% 7.1 0.35
constrained, perf-only, mean-comp 0.0182 0.0128 125% 41% 81% 3.51% 5.7 0.36
constrained, perf/price, mean-comp 0.0193 0.0149 122% 69% 75% 3.15% 8.1 0.28

Table 8: Comparison of Model Fit

Method RMSE MAE MAPE MdAPE
cum
MAPE

peak
MAPE

time
MAE

constrained, perf-only, best-comp 0.0111 0.0089 94% 38% 61.0% 0.69% 13.7
constrained, perf/price, best-comp 0.0154 0.0131 78% 88% 67.0% 1.90% 10.7
unconstrained, perf-only, best-comp 0.0167 0.0132 128% 60% 71.6% 0.24% 31.3
unconstrained, perf/price, best-comp 0.0333 0.0254 187% 94% 150.1% 4.08% 10.0
constrained, perf-only, mean-comp 0.0113 0.0090 95% 39% 62.7% 0.63% 13.7
constrained, perf/price, mean-comp 0.0140 0.0119 84% 85% 66.3% 0.89% 12.0

Table 9: Comparison of Forecast Performance

although the unconstrained regression yields better RMSE in the training data, the forecast RMSE

is much worse than the constrained regression, indicating that the constrained regression is more

appropriate. This is consistent with the findings from the test on the simulated data. Second,

whether one defines fy(t) as the strength of the strongest competing product or as the mean product

strength of competition at time t does not lead to dramatic changes in the forecast performance,

with the former performing slightly better (smaller RMSE). This could be easily explained by

the fact that the latter is roughly a moving average of the former and, in the absence of drastic

trend change in the product strength of the competition, one should not expect major differences.

Lastly, we observe that the performance-only alternative generally achieves better results. This is

consistent with our earlier expectation that customers in the “extreme” edition processor market

are less sensitive to price changes. To further verify that it is safe not to consider price in this

particular application, we also test the model by incorporating a separate price term into product

strength, i.e., we let fij be a linear combination of performance improvement and price improvement

from product i to product j. The best fit is obtained with zero weight on price (see more details

in the Online Appendix). Summarizing the above evaluation, the “constrained, perf-only, best-

comp” model specification demonstrates overall better performance and we recommend this model

specification for the high-end gamer market. We focus our discussion in the remainder of the paper

on this specification.

Parameter and Forecast Interpretation
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As discussed in Section 4.1, the parameters obtained using our method shows low statistical sig-

nificance at high noise levels. In the Intel application, for the “constrained, perf-only, best-comp”

model, only β1, β5, and β6 are above the 90% significance level, therefore, one cannot make defini-

tive parameter inferences since it is difficult to establish whether a low significance level is due to

low influence or high noise in the data. Nonetheless, the higher significance level of β6 than β2 seems

to suggest that the influence of performance improvement on the innovators may be stronger for

between-brand switching than for within-brand upgrades. One plausible interpretation is that for

within-brand product upgrades, customers are less concerned with the exact performance improve-

ment, as long as Intel passes some expected improvement hurdle (which Intel delivers as shown in

Figure 4(a)). However, this is not the case for between-brand switchings. Since processors of differ-

ent brands are not compatible, switching brand means replacing many other major components in

the computer, or buying an entire new system. Therefore, for a customer to switch from one brand

to another, he/she needs to be convinced that the performance improvement justifies this move. As

a result, we observe stronger influence of performance on brand switchings than on within-brand

upgrades.

Figure 6 shows the predicted and actual sales for the product with the best (product 3) and

worst (product 7) fit in terms of RMSE. Note that the predicted sales before time 120 are fitted

values and sales after time 120 are forecast. The fitted sales curves largely replicate the asymmetric

pattern of the recorded sales (i.e., sales usually peak early in a product’s life cycle, shown by the left-

skewed sales curve), as well as the relative magnitude of sales across products, with the exception of

product 7 in Figure 6(b). Close examination of the data reveals that even though product 7 only has

a marginal performance improvement over its predecessor, it marks a major silicon technology shift

and customers’ purchasing decision might be influenced by factors not captured in the performance

data, which may help explain the dramatic sales spike in spite of the performance. To maintain

simplicity and generality, we did not specifically account for this effect, although adjustment for

such technology shift should certainly improve the fit.

5.3 Comparison to Existing Models

Lastly, we compare the forecast performance of our method with the Bass, Norton-Bass and Jun-

Park models. As discussed previously, these models require product-specific parameters and are

difficult to apply in long-range forecasting. In order to use them and draw a comparison, we let the

market potential parameters be linearly-dependent on product strength. The diffusion parameters

are assumed to be the same across all the products following the argument made in Norton and
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Figure 6: Actual vs. Predicted Sales

Bass (1987). In addition, in the Jun-Park model, we let the linear coefficient which describes how

fast the utility for each product grows with time be dependent on product strength as well. We

use generalized versions of these models and in the absence of such linear dependence, they simply

reduce to the original version in the literature.

Tables 10 and 11 illustrate the performance of each method. Our method outperforms the Bass,

Norton-Bass and Jun-Park models in terms of the RMSE and also along most other dimensions

that Intel is interested in. The ability of our model to capture both product upgrades and brand

switching has clearly contributed to its improvement over existing models, making it more suitable

for long-range forecasting in a market with frequent product introductions and competition. More

importantly, we note that our approach accomplishes this without using actual sales data from the

competition.

Method RMSE MAE MAPE MdAPE
cum
MAPE

peak
MAPE

time
MAE

R2

Iterative Descent (perf only) 0.0176 0.0121 67% 41% 49% 3.44% 5.4 0.40
Bass 0.0243 0.0201 518% 178% 167% 4.14% 20.7 −0.14
Norton-Bass 0.0217 0.0169 282% 137% 129% 3.66% 11.3 0.09
Jun-Park 0.0227 0.0174 383% 133% 120% 4.50% 4.8 0.004

Table 10: Comparison of Model Fit

Method RMSE MAE MAPE MdAPE cumMAPE peakMAPE timeMAE

Iterative Descent (perf only) 0.0111 0.0089 94% 38% 61% 0.69% 13.7
Bass 0.0208 0.0195 182% 141% 141% 0.58% 13.7
Norton-Bass 0.0645 0.0259 188% 191% 190% 3.00% 9.0
Jun-Park 0.0141 0.0122 129% 95% 92% 0.60% 14.0

Table 11: Comparison of Forecast Performance

Lastly, we remark that the forecast errors in the Intel application are high and the same level
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of error might be unacceptable for a one-step ahead or two-step ahead forecast, which is often

used in the empirical applications of the Norton-Bass model or the Jun-Park model. However, for

long-range forecast of products to be released years later, and given the high uncertainties inherent

to this market and the fact that we forecast weekly sales instead of quarterly (e.g., Norton and Bass

1987) or yearly (e.g., Mahajan and Muller 1996) sales, high forecast uncertainty is expected. More

importantly, high uncertainty does not diminish the value of a forecast. To the contrary, being able

to characterize the demand and corresponding uncertainty enables the company to appropriately

hedge against future risk. For example, Intel has implemented a method to use the knowledge of

future demand uncertainty to optimally design option contracts with its equipment suppliers in

order to reduce excess capacity (Peng et al. 2012, Kempf et al. 2013).

5.4 Sensitivity to Fit/Forecast Time Window

We have shown in Section 4.2 that, the forecast accuracy decreases with the amount of historical

data used for parametrization. For the Intel data set, we perform a similar sensitivity analysis. We

vary the size of the fit sample among 100, 120 and 140 weeks while fixing the forecast window to

the next immediate 76 weeks. We also change the forecast window while fixing the fit window to

120 weeks. Tables 12 and 13 illustrate how the forecast accuracy changes with these variations.

fit/forecast window [1, 100]/[101, 176] [1, 120]/[121, 196] [1, 140]/[141, 216]

RMSE 0.0308 0.0116 0.0098
MAPE 199% 103% 93%
MdAPE 85% 41% 35%

Table 12: Sensitivity of Forecast Errors to the Amount of Historical Data

forecast window [121, 140] [121, 160] [121, 180] [121, 200] [121, 216]

RMSE 0.0114 0.0108 0.0119 0.0115 0.0111
MAPE 59% 71% 106% 101% 94%
MdAPE 31% 30% 37% 41% 38%

Table 13: Sensitivity of Forecast Errors to the Forecast Window (Fit Window = [1, 120])

It appears that increasing the fit window slightly improves the forecast accuracy, while reducing

it lowers the accuracy dramatically. As we fix the fit window and vary the forecast window, the

forecast accuracy changes significantly but there does not appear to be any clear trend. While it

may be tempting to make inferences from the above, any trend (or the lack of it) observed from a

single data set could be anecdotal to this particular data set. The trend derived from the simulated

data might be more general since it is averaged over 100 data sets.

28



In summary, the application of the proposed method on the sales of Intel’s high-end gamers

market demonstrates some appealing features as well as some less satisfying aspects: It requires

no data on the unit-in-use population (compared to conventional population-growth models) and

accounts for the effect of competition. It converges quickly and compared to alternative methods

can be more easily applied to long-range forecasting. However, at a high noise level, low statistical

significance of the parameters precludes conclusive inferences of the causal effects and the forecast

accuracy is sensitive to the size of the training data set. Since results from a single data set could

be anecdotal, more real data applications by researchers and practitioners are required for further

evaluation of the method.

6 Conclusion

We have proposed a method for parameterizing and forecasting the demand for multiple successive

generations of products. Our model is based on a population growth model. The usual application

of a population growth model requires data on the population size. However, for many companies

who can not track the “units-in-use” for each product, a direct application of the growth model is

not possible. We overcome this difficulty by an iterative approach that constructs the units-in-use

population for each product based on current parameter estimates, and then use the constructed

population size and sales observations to improve the parameter estimates. We show that this

method is theoretically sound so long as we restrict the discrete time interval to a small value.

The method performs well for the synthetic data, and outperforms other available methods when

applied to the sales data of Intel’s high-end microprocessors.

Using synthetic data, we test sensitivity of the method (model fit and forecast performance)

against noise levels, sample size (the number of time periods or products), as well as perturbations

in the initial population sizes, and show that the model is well-behaved. In the Intel application,

we test several alternate model specifications based on how product strength is determined, how

the competition strength is determined, and whether or not to restrict the parameters to be non-

negative. In particular, we use two alternative specifications for product strength in the extreme

gamers market – performance, and performance/price ratio. The former fits the data better and

also shows better forecast accuracy, which is most likely due to the low price-sensitivity of this

high-end market where processors cost 5 to 10 times time that of a mainstream processor product.

In addition, the dependence on product performance appears to be stronger for brand switchings

than for the within-brand product upgrades, in terms of the innovator effect. This is intriguing,
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however, the special characteristics of the extreme gamers market may help explain the observation.

The parametrization method we propose is a nonlinear least squares method and therefore it

suffers from some common limitations of nonlinear regression: the optimization may yield a local

optimum (as the objective function is a high-order polynomial which may have multiple roots); if

the noise level in the data is high, convergence may be slow and errors in the parameter estimates

will be high. A limitation unique to our approach is the restriction to small coefficients. This is

driven by (i) the need to ensure nonnegative and finite population size in the discrete time model,

and (ii) exploitation of the asymptotic result for convergence in Proposition 3.5. In both (i) and (ii),

it is difficult to define a priori an analytical bound for β. However, when applying the method, it is

easy to spot cases when β is chosen to be too large (one either encounters negative or extremely high

population sizes, or observes oscillation instead of convergence). Therefore, lack of an analytical

bound does not become an impediment for implementation. In practice, small β can be enforced

by restricting the time unit to a small interval. This, however, may place a higher requirement on

the temporal granularity of the data. With smaller time unit, the noise in the data may become

larger. Hence, there is a tradeoff and identifying the optimal data collection time interval may be

a trial-and-error process specific to each application.

Moreover, we have made several assumptions in this multi-generation diffusion model, some

of which are similar to the Bass model; others pertain to the inter-generational effect: (i) the

products are consumer durables and each customer purchases only one unit, i.e., there is no repeat

purchase of the same product; (ii) we assume that customers only buy a product that is newer

than the one that is currently owned; (iii) customers switch from and to competitors’ products

only if doing so results in a performance increase; (iv) the initial population mix at the start of the

forecast window and the trend of the total market growth and/or decline can be estimated with

high confidence. Clearly these assumptions do not hold in every industry and for every company.

Lastly, as mentioned earlier, our approach targets multiple product generations with incremental

positive improvement between successive generations, and does not apply to the diffusion of a single

radically innovative product such as the first-ever electric refrigerator.

We show in this paper how this demand model can be parameterized and employed at Intel as

an input to long-range planning in the extreme gamers market. To expand to other markets, the

model may need to be adjusted. For example, the market for servers is also known to be relatively

insensitive to price, like the extreme gamers market. But the market for mainstream consumer

laptops is very sensitive to price fluctuations. Nonetheless, it does not require fundamental model

change and one may simply extend the interpretation of “product strength” to a measure appro-
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priate for the specific market. In the case of multi-dimensional product strength, for example, with

price being one of the dimensions in addition to performance, there may be additional data and

parameter-related requirements: with one more dimension in the product strength measure, the

number of coefficients increases from eight to twelve, thus additional data may be needed to ensure

identification. Also, convergence could become more difficult since our method requires all coeffi-

cient to be small and this is harder to ensure with more parameters. This problem could, however,

be remedied by more careful scaling of the performance and price data. Although the model is

motivated and developed based on a particular company, coexistence of multiple generations of

products is common in the technology industry and we hope that researchers and practitioners

may find it useful in other contexts as well.
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A Online Appendix

A.1 Equations of Population Evolution and Competition Sales

xi(t + 1) = xi(t) + β1
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]
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+α(t)sy(t − 1) . (A.3)

A.2 Proof of Lemma 3.2

Proof. For brevity we omit the argument βk of X in the proof. Since X is full rank, XT X is invertible.
Thus we can rewrite dk as

dk = (XT X)−1XT X[(XT X)−1XT s− βk]
= (XT X)−1(XT s− XT Xβk) = −(XT X)−1XT (Xβk − s) .

From the definition of v(β), we have

∇v(βk) = 2[∇(Xβk)](Xβk − s) .

Thus

1
2
[∇v(βk)]Tdk = −

{
[∇(Xβk)](Xβk − s)

}T [
(XT X)−1XT (Xβk − s)

]
= −(Xβk − s)T [∇(Xβk)]T (XT X)−1XT (Xβk − s) < 0 ,
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where the last inequality holds because [∇(Xβk)]T (XTX)−1XT is positive definite.
We have made the assumption earlier that xi(t) is always nonnegative and bounded from above. There-

fore, as long as we start with a βk that is bounded, bk = (XT X)−1XT s is bounded; and thus βk+1 is
bounded. As a result, the sequence {dk} is bounded and {dk} is gradient related to {βk}.

A.3 Proof of Proposition 3.5

Proof. From equation (A.1), we have:

∂xi(t + 1)
∂β1

=
∂xi(t)
∂β1

+
∑
j<i

xj(t) −
∑
j>i

xj(t) + β1
∂

∂β1

⎡
⎣∑

j<i

xj(t) −
∑
j>i

xj(t)

⎤
⎦

+ β2
∂

∂β1

⎡
⎣∑

j<i

fjixj(t) −
∑
j>i

fijxi(t)

⎤
⎦ + β3

∂

∂β1

⎡
⎣∑

j<i

xi(t)xj(t) −
∑
j>i

xi(t)xj(t)

⎤
⎦

+ β4
∂

∂β1

⎡
⎣∑

j<i

fjixi(t)xj(t) −
∑
j>i

fijxi(t)xj(t)

⎤
⎦ + β5

[
∂y(t)
∂β1

I(i ∈ J) − ∂xi(t)
∂β1

I(i ∈ J̄)
]

+ β6

[
∂y(t)
∂β1

fyiI(i ∈ J) − ∂xi(t)
∂β1

fiyI(i ∈ J̄)
]

+ β7
∂xi(t)y(t)

∂β1
(I(i ∈ J) − I(i ∈ J̄))]

+ β8
∂xi(t)y(t)

∂β1
[fyiI(i ∈ J) − fiyI(i ∈ J̄)] + α(t)

∂si(t − 1)
∂β1

.

Since xi(t) y(t), and si(t) are bounded ∀i, t, it is easy to show by induction that
∂xi(t)
∂β1

,
∂y(t)
∂β1

and
∂si(t)
∂β1

are bounded ∀i, t. Since
∂xi(t)xj(t)

∂β1
= xi(t)

∂xj(t)
∂β1

+ xj(t)
∂xi(t)
∂β1

and
∂xi(t)y(t)

∂β1
= xi(t)

∂y(t)
∂β1

+ y(t)
∂xi(t)
∂β1

, it follows that
∂xi(t)xj(t)

∂β1
and

∂xi(t)y(t)
∂β1

are also bounded. We

can show similarly that
∂xi(t)
∂βm

,
∂y(t)
∂βm

,
∂si(t)
∂βm

,
∂xi(t)xj(t)

∂βm
, and

∂xi(t)y(t)
∂βm

where m = 2, . . . , 8 are bounded.

Consequently, lim
β→0

(∇βX)β → 0. Therefore,

lim
β→0

[∇(Xβ)]T (XT X)−1XT = lim
β→0

[X + (∇X)β](XT X)−1XT

= lim
β→0

X(XT X)−1XT + lim
β→0

(∇X)β(XTX)−1XT = lim
β→0

X(XT X)−1XT ,

where the last equality follows from lim
β→0

(∇βX)β → 0. Since X is full rank, the term lim
β→0

X(XT X)−1XT

is positive definite. (To see that X(XTX)−1XT is positive definite, consider any a 	= 0. Define b =
(XT X)−1XT a; thus a = Xb. We then have aTX(XT X)−1XTa = aT Xb = aT a > 0.) Hence the matrix
limβ→0[∇(Xβ)]T (XT X)−1XT is positive definite. From Corollary 3.3, the augmented iterative approach
converges to a stationary point of v(β).

A.4 Proof of Positive Definiteness of (XTX)−1XT (XXT )−1X

Proof. To see this, consider any y 	= 0. Define b = (XXT )−1Xy; thus y = XTb.
Therefore, yT (XT X)−1XT (XXT )−1Xy = yT (XTX)−1XTb = bTX(XT X)−1XTb > 0, where the first
equality holds by the definition of b, the second equality holds because yT = bTX, and the last inequality
holds due to positive definiteness of X(XT X)−1XT as shown in the proof of Proposition 3.5.

A.5 Plot of Intel’s Sales

Figure 7 shows Intel’s sales (data are masked).
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Figure 7: Intel Sales

A.6 Additional Implementation Details of the Intel Application

In this part of the appendix, we provide additional details on the implementation of our method. The
masked data set is made available with this online appendix. To ensure small β values, we scale down
the sales by 106. The trend curve estimated for total market sales (including sales by Intel and estimated
sales for competition), denoted by S(t), has the form S(t) = a

1+e−kt+b where a = 0.885, b = 1.474 and

k = 0.04818, and we estimate the percentage expansion α(t) using α(t + 1) = S(t+1)−S(t)
S(t) . The iterative

descent method is implemented in Matlab, using the procedure described in Section 3 and Corollary 3.3.
We use the limited maximization rule (as described at the end of Section 3.2) for determining the step size.
The initial parameter estimates are obtained using the cumulative sales as approximates for population path
and running a linear regression as in equation (2.11). We then apply the iterative descent method to obtain
the parameter estimate using the training data. This parameter estimate is then used to compute various
fit and forecast errors according to the following equations. We use t(i) and t(i) to denote the introduction
and ending time periods for product i. Let F be the set of products that has sales during the training data
window (the first 120 weeks), and let F p be the set of products that peaked during the training window. Let
G be the set of products that have sales during the test window (the 96 weeks starting from week 121) and
Gp be the set of products that peaked during the test window. Note that the set F and set G may overlap.
The errors for model fit are computed as

RMSE =

√√√√∑i∈F

∑t(i)
t=t(i)(ŝi(t) − si(t))2∑

i∈F

(
t(i) − t(i) + 1

) ,

MAE =

∑
i∈F

∑t(i)
t=t(i) |ŝi(t) − si(t)|∑

i∈F (t(i) − t(i) + 1)
,

MAPE =

∑
i∈F

∑t(i)
t=t(i)(ŝi(t) − si(t))/si(t)∑
i∈F (t(i) − t(i) + 1)

,

MdMAPE = median{(ŝi(t) − si(t))/si(t)}i∈F,t=t(i),...,t(i) ,

cumAPE =

∑
i∈F

∑t(i)
t=t(i)(ĉsi(t) − csi(t))/csi(t)∑
i∈F (t(i) − t(i) + 1)

,

peakMAPE =
∑
i∈F p

(ŝp
i (t) − sp

i (t))/sp
i (t))/|F p| ,

timeMAE =
∑
i∈F p

(t̂pi − tpi ))/|F p| ,

where si(t) and ŝi(t) (csi(t), ĉsi(t)) represent the actual and predicted sales (cumulative sales), and |F p|
denotes the size of set F p. Note that if the sales of product i ∈ F started before week 1 or ended after
week 120, we revise the values of i(t) and i(t) accordingly (i.e., set t(i) = 1 or t(i) to 120) when computing
the fit error. Using the parameter obtained from the training data set, we generate sales forecast based on
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equation (2.7), as well as equations in the online appendix A.1. We do not update the parameter estimates
when making forecast, so the forecasts are not based on a rolling horizon. The forecast errors are similarly
computed as for the fit errors by replacing sets F and F p with sets G and Gp respectively.

For the alternative methods, Bass, Norton-Bass and Jun-Park methods, data fitting is performed in SAS.
The parameter estimates are then imported to Matlab to generate forecast and compute fit and forecast
errors, following the same error measure equations shown above.

A.7 Sensitivity to Initial Population Size

Tables 14 to 15 illustrate how the model fit, and forecast are affected when the estimate of the initial
population size fluctuates. We illustrate with the “constrained, perf-only, best-comp” specification and vary
the initial population of the competition, y(0), and the initial population of product 1, x1(0).

y(0) x1(0) RMSE MAE MAPE MdAPE cum
MAPE

peak
MAPE

time
MAE R2

6M 0M 0.0175 0.0122 67% 42% 49% 3.45% 5.6 0.41
7M 0M 0.0176 0.0121 67% 41% 49% 3.43% 5.6 0.41
7.5M 0M 0.0176 0.0121 67% 41% 50% 3.44% 5.4 0.40
8M 0M 0.0177 0.0121 67% 41% 50% 3.45% 5.7 0.40
9M 0M 0.0178 0.0121 67% 41% 50% 3.47% 5.7 0.39
6M 1M 0.0175 0.0120 66% 39% 53% 3.43% 5.3 0.41
7M 1M 0.0177 0.0120 66% 39% 53% 3.45% 5.7 0.40
7.5M 1M 0.0177 0.0120 66% 40% 53% 3.46% 5.7 0.39
8M 1M 0.0178 0.0121 66% 40% 53% 3.47% 5.7 0.39
9M 1M 0.0179 0.0121 66% 38% 53% 3.49% 4.6 0.38

Table 14: Sensitivity of Model Fit to Initial Population Size

y(0) x1(0) RMSE MAE MAPE MdAPE cumMAPE peakMAPE timeMAE
6M 0M 0.0134 0.0110 112% 46% 75% 0.44% 5.0
7M 0M 0.0118 0.0095 99% 39% 66% 0.60% 13.3

7.5M 0M 0.0111 0.0089 94% 38% 61% 0.69% 13.7
8M 0M 0.0105 0.0083 88% 35% 57% 0.77% 13.7
9M 0M 0.0095 0.0074 78% 31% 48% 0.92% 13.7
6M 1M 0.0118 0.0095 100% 39% 66% 0.61% 7.0
7M 1M 0.0105 0.0084 88% 35% 57% 0.77% 13.7

7.5M 1M 0.0100 0.0079 83% 34% 53% 0.84% 13.7
8M 1M 0.0096 0.0075 78% 32% 49% 0.90% 13.7
9M 1M 0.0089 0.0069 70% 28% 42% 1.02% 13.7

Table 15: Sensitivity of Forecast to Initial Population Size

A.8 Product Strength as a Weighted Sum of Performance and Price

Let the gap of product strength between product i and product j be given by fij = gij + wrij , where gij

represents performance improvement and rij represents the price improvement from product i to product j.
Therefore, the “perf-only” specification, in which fij = gij , is a special case with weight w = 0. Tables 16
and 17 show the fit and forecast performance respectively as the weight w increases.
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w RMSE MAE MAPE
0.00 0.017607 0.01210 66.7%
0.01 0.017607 0.01210 66.7%
0.05 0.017612 0.01212 66.9%
0.10 0.017625 0.01215 67.2%
0.20 0.017666 0.01223 67.8%
0.30 0.017719 0.01232 68.3%
0.40 0.017773 0.01240 68.6%
0.50 0.017809 0.01241 68.6%

Table 16: Model Fit as the Weight of Price Increases (“constrained, best-comp”)

w RMSE MAE MAPE
0.00 0.0111 0.0089 94%
0.01 0.0112 0.0090 94%
0.05 0.0115 0.0093 98%
0.10 0.0119 0.0097 101%
0.20 0.0127 0.0104 108%
0.30 0.0135 0.0112 115%
0.40 0.0146 0.0122 124%
0.50 0.0155 0.0131 130%

Table 17: Forecast Performance as the Weight of Price Increases (“constrained, best-comp”)
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