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We consider the problem of pricing multiple differentiated products with the Nested Logit
model and, as a special case, the Multinomial Logit model. We prove that concavity of the
total profit function with respect to market share holds even when price sensitivity may vary
with products. We use this result to analytically compare the optimal monopoly solution
to oligopolistic equilibrium solutions. To demonstrate further applications of the concavity
result, we consider several multi-period dynamic models that incorporate the pricing of
multiple products in the context of inventory control and revenue management, and establish
structural results of the optimal policies.
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1 Introduction and Literature Review

Since Luce (1959) first proposed the logit model for consumer choice half a century ago, it has

received much attention from researchers in several fields including marketing, economics and

operations management, and it has generated a large body of literature for both theoretical

models and empirical validations in a wide range of applications. In this paper, we consider

the pricing problem of a firm offering a set of differentiated products, and study the total

profit under the logit-based framework. One of the main contributions of this paper is to

establish the joint concavity of total profit when the customer choice is modeled using the

Nested Logit model, which includes the standard Multinomial Logit (MNL) model as a

special case. Our contribution also includes the characterization of the difference between

monopoly and oligopoly outcomes. We further show how the concavity result may be applied

to efficiently solve dynamic problems in inventory control and revenue management.
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The Standard MNL Model and the Nested Logit Model with Pricing. To

motivate the Nested Logit model, we first discuss the more commonly known standard MNL

model. The MNL model describes the decision process of a customer who makes a selection

from an array of products. This model has been used in marketing and econometric appli-

cations for predicting consumer choices (McFadden, 1986), for analyzing aggregate market

shares (Berry, 1994), and for estimating price sensitivities in several industries (Guadagni

and Little, 1983; Train et al., 1987; Greene, 1991). The often-cited book by Anderson et al.

(1992) provides a detailed presentation of the MNL model based on consumer choice theory

and demonstrates its desirable properties.

In the MNL model with M ≥ 2 products, the representative customer associates a utility

ui with product i ∈ {1, . . . , M} defined by ui = αi + εi, where αi relates to a measure of

attractiveness for product i based on known attributes such as quality and price, and εi is

a random term representing unobserved utility. Under the condition that the random terms

{εi} are IID with Gumbel distribution, it is well known (Luce, 1959; McFadden, 1974) that

the customer selects product i with probability

exp αi

1 +
∑M

j=1 exp αj

. (1)

(The probability that the customer decides to purchase none of the products is 1/[1 +
∑M

j=1 exp αj].) By aggregating customer decisions, we obtain (1) as the proportion of total

potential demand captured by product i. That is, it is the expected sales quantity of product

i normalized by the total number of potential customers, including those who purchase

nothing. For brevity, we refer to it as the market share of product i in the remainder of the

paper.

One of the criticisms for the standard MNL model, which serves as a motivation for the

nested model, is the Independence-from-Irrelevant-Alternatives (IIA) property – that the

ratio of the purchase probabilities for any two alternatives is independent of the presence

of other alternatives. This is often explained with the famous “red bus/blue bus” example

(see Train (2003) for a detailed explanation). The IIA property not only limits empirical

applications of the standard MNL model, but also weakens the conclusions and insights

of model-based papers obtained under the premise of standard MNL. For example, Chen

and Hausman (2000) recognize that their analysis of the product line selection and pricing

problem cannot be applied if the IIA property does not hold. To address this drawback,
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McFadden (1978, 1980) have generalized the MNL model of Luce (1959) to a Generalized

Extreme Value (GEV) model with a nested choice structure, which is also known as the

Nested Logit model. Under this model, a consumer first chooses a group of products among

several possible groups, and then limits her subsequent selection within the chosen group.The

Nested logit model is found empirically to be more widely applicable than a standard MNL

model (see for example, Dubin (1986), Kannan and Wright (1991), Bhat (1995), and Gold-

berg (1995)). However, the use of the Nested Logit model has primarily been limited to the

context of descriptive representation rather than prescriptive optimization.

In the pricing and revenue management literature, the Nested Logit model with pric-

ing as a lever has not been used, to our knowledge. Instead, the price-dependent MNL

model has been one of the standard methods for modeling consumer behavior and optimiz-

ing prices for a firm offering multiple products (for example, Dong et al. (2009) and Song

and Xue (2007)). While our paper fits into the larger context of the multi-product pricing

and revenue management literature, we deviate from prior methodological treatments (for

example, Gallego and van Ryzin (1997), and Maglaras and Meissner (2006)), which typically

focus on mathematical reduction or heuristics. Instead we focus on pricing solutions for a

particular family of choice models, the Nested Logit models, and explore their theoretical

properties in detail. We note one particular paper that studies multi-product pricing using

a nested structure in the demand model, which has characteristics similar to the Nested

Logit model. Bitran et al. (2010) consider a demand model where the customers first make

a decision among “subfamily” groups which are differentiated by quality (i.e., a vertically

differentiated assortment), and then choose at the product level, which is a horizontally dif-

ferentiated assortment. Although the second level customer decision is modeled as a MNL

model, the top level customer decision is, however, more aligned with the “reservation price”

interpretation: The customers have fixed valuations for the top-level product groups, but

are segmented based on budget and non-purchasing utility. They formulate the problem as

a stochastic control problem, allowing consumer substitution based on both price and inven-

tory availability, and show that the optimal prices follow the same ordering as the utility

levels of the product choices.

Profit Maximization Objective. The objective function of our interest is the total

profit, which is given by the difference between revenue and cost. The most common way

of incorporating prices into the MNL model in this literature stream and previous empirical
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applications of the MNL model is to adopt a demand model in which the attractiveness is a

linear function of price. Assuming a known cost function, the total profit is then a function

of the price vector. It turns out that this profit function is not concave in prices. The

results of this paper apply equally well to revenue management settings in which marginal

costs are negligible relative to fixed costs, and the objective is maximization of expected

revenue (In the literature, such profit maximization has not been considered in the Nested

Logit framework, and we are aware of only those in the standard MNL setting). Hanson

and Martin (1996) are the first to show that the logit profit function is not concave in

prices. They identify a path-following approach for finding a globally optimal solution.

This method was the first viable approach for circumventing the difficulty of non-concavity.

Other approaches presented by subsequent papers in the literature consider the revenue

maximization problem as part of a more complex problem such as product line selection,

inventory control or revenue management. Chen and Hausman (2000) study a product line

selection problem under the MNL model, restricting price to one of several discrete price

points. They formulate an integer program and show that the linear program relaxation has

a quasi-concave revenue function. When the prices are not restricted, Aydin and Porteus

(2008) establish that the optimal price vector satisfying the first-order condition is unique.

Several other papers use the first-order condition to find optimal prices including Aydin and

Ryan (2000), Hopp and Xu (2005), Akçay et al. (2010), and Maddah and Bish (2007). While

the objective function is not concave in the price vector, it turns out that it is concave with

respect to the market share vector, which is a one-to-one transformation of the price vector.

This result is established by Dong et al. (2009) and Song and Xue (2007), for the standard

MNL model. In this paper, we show the concavity property in more generalized settings,

characterized by the Nested Logit model.

Note first that incorporating the nested model into the optimization framework has been

perceived to be important but difficult:

The environments where product dissimilarity is asymmetric . . . can be modeled by a
nested MNL model. However, the nested MNL model introduces substantially complex
expressions and obscures the fundamental underlying driving forces of the optimal price
behavior . . . (Dong et al., 2009)

However, showing the concavity of the total profit is one of the key contributions of this

paper. Furthermore, we derive a single dimension search solution for the optimal prices and

market shares under the Nested Logit model (Theorem 1 and Theorem 2).
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Second, we remark that our result provides an important generalization even in the

non-nested setting. The concavity result of Dong et al. (2009) and Song and Xue (2007)

was established for the standard MNL model under the condition that the price sensitivity

parameter is uniform across all products; in all of the papers mentioned above, with the

exception of Hanson and Martin (1996) and Aydin and Porteus (2008), the price-dependent

MNL models assume identical price sensitivity parameters, i.e., bi = b for all i’s, and that in

most cases the value of b is restricted to 1. Fixing the value of this parameter at 1 limits

the applicability of the models. Empirical fittings of the MNL have shown that the value

of b varies widely (see Berry et al. (1995) and Nevo (2001)). Furthermore, identical price

sensitivity implies that the impact of each price on the market share vector is the same across

all products. Several empirical papers recognize the importance of allowing different price

sensitivity parameters in the MNL model (for example, Erdem et al. (2002) and Luo et al.

(2007)).

In this paper, we use a different proof approach (Theorem 1) from Dong et al. (2009)

and Song and Xue (2007) and generalize the concavity result to the nested choice structure,

as well as to general asymmetric price sensitivity parameters, broadening the applicability

of the choice model in pricing problems.

Monopoly and Oligopoly Solutions. While our preceding discussion was on the

maximization of total profit as a monopolist’s problem, there are a number of papers in the

literature taking a game-theoretical decentralized approach. Many pricing papers on product

line selection consider the assortment decisions under competition (Anderson and de Palma,

1992; Besanko et al., 1998, 2003; Hopp and Xu, 2008; Cachon and Kok, 2007; Cachon et al.,

2008). The theoretical focus in these papers is often to establish the uniqueness of the

Nash equilibrium and study the impact of competition on equilibrium assortment decisions

including price. For example, Anderson and de Palma (1992) show that when all products

have equal quality, the equilibrium prices are an equal mark-up over the product cost. Cachon

and Kok (2007) study retail assortment competition using a Nested Logit demand model and

show how prices and variety levels are affected under various duopoly competition scenarios.

Cachon et al. (2008) consider how the consumer search cost affects assortment competition

using a standard MNL model.

In this paper, in addition to solving a centralized optimal pricing problem, we derive

oligopoly equilibrium prices and market shares when the products are owned by separate
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revenue-maximizing firms. We consider both quantity competition (Cournot) and price

competition (Bertrand) equilibria. In the quantity competition, each firm determines its

own production quantities, and equilibrium prices are given by the inverse demand function

of the Nested Logit model. In the price competition, each firm determines its own price(s)

and demand is given by the Nested Logit model. Farahat and Perakis (2008) consider

both price-competition and quantity-competition for multiple differentiated products where

each product is sold by a separate company. They study the non-nested MNL model. The

usefulness of studying these equilibrium outcomes, as Farahat and Perakis (2008) point out, is

that the Cournot and Bertrand outcomes are equivalent to the equilibrium solutions of more

prevalent two-stage scenarios where firms make price and quantity decisions sequentially

(Friedman, 1988): either a make-to-stock situation where the production decisions precede

the pricing decisions (Cournot), or a make-to-order situation where the pricing decisions

precede the production decisions (Bertrand). In comparison with Farahat and Perakis (2008),

we consider oligopolies under the more general Nested logit model and obtain comparisons

of the centralized optimal pricing solution with oligopoly equilibria.

To our knowledge, we are the first to characterize the quantity competition equilibrium

price and market share solutions in a “closed” form in the Nested Logit model (Theorem 3).

This is achieved by employing the Lambert W function. Further, for the price-competition

model, we characterize the equilibrium price and market share solutions by defining a modi-

fied version of the Lambert W function. We compare these two oligopoly solutions with the

centralized optimal pricing solution (which we also refer to as the “monopoly” solution since

all products are owned by a single firm), and show how the price and the market share for

each product change from the centralized solution to the oligopoly solutions (Corollary 2 and

Corollary 3). We find that, although competition drives up the total market share (in the

sense that more consumers choose to buy one of the products instead of not purchasing) and

drives down the prices, the market share and revenue for a particular product may increase

or decrease due to competition. Specifically, the direction of change has a predictable pat-

tern based on an ordering of product-specific parameters, namely the product quality and

the price-sensitivity parameter. The findings of this paper provide a general framework for

studying the optimal pricing and assortment decisions either with or without competition

even when a nested structure exists in the customer choice model.

Applications of the Concavity Result. Furthermore, we explore the implications
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of the concavity result in a number of multi-period dynamic models arising in inventory

control and revenue management. For assemble-to-order products with a single critical

component and a fixed ordering cost, we show that the optimal replenishment policy for the

component in this joint pricing-inventory model is the well-known (s, S) policy. The (s, S)

policy has proven to be optimal in several single-product inventory control settings (e.g.,

Scarf (1959) and Chen and Simchi-Levi (2004)), and this paper generalizes the applicability

of the (s, S) policy with multiple products under the logit models. For an inventory model

that maintains the inventory of finished products, Song and Xue (2007) have shown structural

results of the optimal policy when the fixed ordering cost is absent, under a number of demand

models including the standard MNL model with identical price sensitivity parameters. We

show that the Song and Xue (2007) results are applicable to the general MNL model (with

asymmetric price sensitivity parameters) and the Nested Logit choice model. In addition,

Dong et al. (2009) have studied dynamic pricing of multiple products without replenishment

and have shown the property of equal mark-up across all products in any given period.

We find that the equal mark-up property no longer holds in more general settings (such

as the Nested Logit model), and the optimal mark-up may depend on the price sensitivity

of products and dissimilarity indices of product groups. These examples show that the

concavity result allows tractable analysis and optimization of dynamic systems.

The remainder of this paper is organized as follows. In Section 2, we study the profit

maximization problem under the Nested Logit model, and present the concavity property of

profit, a computationally efficient method for finding the optimal solution, and a comparison

of the optimal solution and the equilibrium outcome. The applications of the concavity result

to multi-period inventory control and revenue management problems are shown in Section

3, and we conclude in Section 4.

2 Analysis: Nested Logit Model

We focus the analysis of this section to the more general Nested Logit model. All the results

in this section are also applicable to the special case of the standard MNL model, allowing

for non-identical price sensitivity parameters.

We adopt the general Nested Logit model defined in Greene (2003). Suppose that there

are a total of M alternatives (or products), which can be divided into K ≥ 1 groups (also

known as branches). Let Mk denote the number of alternatives that belong to branch k.
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Thus,
∑K

k=1 Mk = M . Let Qk denote the probability that the customers select branch k

among K possible branches, and let qj|k denote the probability for product j conditional on

branch k. We use ajk − bkpjk to represent the attractiveness of product j in group k, which

is a decreasing function of the price pjk. Here, the price-independent component (quality) is

specific to each product and given by ajk while the price-sensitive component is dependent on

the group to which the product belongs and is denoted by bk. This is a reasonable modeling

assumption since the set of products that belong to the same group are likely to have similar

attributes. Let pjk and qjk denote the price and market share of product j within group k,

respectively. We define the conditional market share of product j within group k, and the

market share of group k as the following:

qj|k =
eajk−bkpjk

∑Mk

`=1 ea`k−bkp`k

and Qk =
eτkIk

1 +
∑K

`=1 eτ`I`

, (2)

where Ik = log
∑Mk

j=1 eajk−bkpjk represents the aggregate attractiveness of branch k, and τk ∈
[0, 1] represents an index for the degree of dissimilarity among products in branch k. Then,

qjk = qj|k ·Qk and

Mk∑
j=1

qjk = Qk . (3)

We remark that this model is a generalization of the standard MNL model, which corresponds

to the case where each group contains exactly a single alternative, i.e., Mk = 1 and τk = 1

for all k’s. (When referring to the standard MNL model, we suppress the first subscript

provided that there is no ambiguity.)

In this section, we first show that the problem of maximizing the total profit is concave

with respect to the vector of market shares which can be thought of as a one-to-one transfor-

mation of the price vector (Section 2.1). Furthermore, we present a computationally efficient

method for finding the optimal solution for the profit maximization problem, which can be

accomplished by searching a single dimensional space regardless of the number of products

(Section 2.2). We then compare the optimal solution to the outcome of oligopoly models in

which each product branch is managed by a separate firm or manager, and conclude that

competition decreases the price of each product and increases the total demand (Section

2.3).
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2.1 Concavity of Total Profit

The objective of Section 2.1 is to show that the total profit, i.e., the difference between the

total revenue and the total cost, is a concave function of the market share vector. We will first

express the total revenue in terms of the market share vector q = (q11, q21, . . . , qM11, . . . , q1K ,

q2K , . . . , qMKK), where qjk represents the market share of product j in group k. We model

the cost based on cjk, the per-unit cost of product j in group k. Then, we prove the concavity

of total profit in terms of q.

Given a price vector p = (p11, p21, . . . , pM11, . . . , p1K , p2K , . . . , pMKK), the Nested Logit

model determines market share vector q according to (2) and (3). Conversely, we can

construct a mapping from market share vector q to price vector p(q), where

pjk(q) =
ajk

bk

+
1

bk

[
log(1−

K∑

`=1

Q`)− log qjk

]
+

1

bk

1− τk

τk

[
log(1−

K∑

`=1

Q`)− log Qk

]
, (4)

and Q` =
∑M`

j=1 qj`. (For the proof of (4), see the appendix.)

Now, we can express the total revenue also in terms of q:

R(q) =
K∑

k=1

Mk∑
j=1

pjk(q)qjk . (5)

Furthermore, the total profit is given by Γ(q) = R(q) − C(q), where the total cost is

C(q) =
∑K

k=1

∑Mk

j=1 cjkqjk. Establishing the concavity property of total revenue R(q) and

total profit Γ(q) with respect to q (Theorem 1) is one of the main results of this section.

One standard approach to show the concavity of R(q) under the standard MNL model is

to compute the Hessian matrix and show its negative semi-definiteness. This is the approach

taken by both Song and Xue (2007) and Dong et al. (2009). However, their results are

limited to the case of identical price sensitivity parameters, which we further explain below.

Under the standard MNL model (i.e., Mk = 1 and τk = 1 for each k), Song and Xue (2007)

rewrite the total revenue function in (5) as

R(q) =
M∑
i=1

ai

bi

· qi −
(

1−
M∑
i=1

qi

bi

)
log

[
1−

M∑
j=1

qj

]
+ log

[
1−

M∑
j=1

qj

]
−

M∑
i=1

qi

bi

· log qi ,

and consider each of the four terms on the right-hand side separately. It is straightforward

to show the concavity of these terms except for the second term. Suppose bi = b for all i’s.
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Then, the first derivative of the second term is given by

∂

∂qj

{
−

(
1−

M∑
i=1

qi

b

)
log

[
1−

M∑
i=1

qi

]}
=

1−∑M
i=1 qi/b

1−∑M
i=1 qi

+
1

b
log

[
1−

M∑
i=1

qi

]
,

and the Hessian matrix of the second term is given by
{

−1

1−∑M
`=1 q`

}
·
(

2

b
− 1−∑M

`=1 q`/b

1−∑M
`=1 q`

)
· [1]

where [1] is the unit matrix with all elements equal to 1. Since the first scalar factor (in the

curly bracket) is non-positive and [1] is positive semi-definite, the negative semi-definiteness

of the Hessian matrix depends on the sign of the second scalar factor (within the round

bracket). In Song and Xue (2007) where b = 1, this factor becomes 1 and thus the Hessian

matrix is negative semi-definite. This result can be extended if 0 < b ≤ 1; however, the

above Hessian matrix is not negative semi-definite if b ≥ 2. Thus their approach cannot

be generalized for all values of b’s, let alone the non-identical price sensitivity parameter

case. Dong et al. (2009) consider the (M + 1)-dimensional function where an additional

dimension is introduced by q0 = 1−∑M
i=1 qi and verify the negative semi-definiteness of the

Hessian matrix using the first principle. They consider the case of identical price sensitivity

parameters only and it is not straightforward how one could generalize the proof given in

their paper.

We now discuss other approaches based on the first-order condition on prices. Akçay

et al. (2010) use the Lambert W function to solve the first-order-condition price in the MNL

model with identical price sensitivity parameters and show that the solution is unique and

that the revenue function is unimodal. Their approach does not extend to the Nested Logit

model or the MNL model with product-specific price sensitivity, because as we illustrate in

our paper, the optimal price is not easily reduced to a form of the Lambert W function

and the line of proof in Akçay et al. (2010) does not carry through. In Farahat and Perakis

(2008), each firm maximizes its own revenue in the oligopoly, and thus their analysis can

be limited to the first order derivative of each firm’s revenue with respect to its own price

and they show that the first order derivative yields a unique Nash equilibrium. This does

not easily generalize to the concavity of total monopoly revenue or profit with respect to the

market share vector.

In Theorem 1 below, we present a different approach to establish the concavity of R(q)

and Γ(q) which we believe is simpler than those found in the literature.
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Theorem 1. In the Nested Logit model, R(q) and Γ(q) are jointly concave in q.

Proof. From (4) and (5),

R(q) =
K∑

k=1

Mk∑
j=1

ajk

bk

· qjk +
K∑

k=1

Mk∑
j=1

1

bk

· qjk

[
log(1−

∑

`

Q`)− log qjk

]

+
K∑

k=1

Mk∑
j=1

1

bk

1− τk

τk

· qjk

[
log(1−

∑

`

Q`)− log Qk

]
.

Consider the right side of the above expression. The first term is linear in q. The concavity

of the second term can easily be established (using Lemma 2 in the appendix and the

preservation of concavity in Boyd and Vandenberghe (2004)). Finally, the third term can be

expressed as

K∑

k=1

1

bk

1− τk

τk

·Qk

[
log(1−

∑

`

Q`)− log Qk

]
,

which is also concave in q by a similar argument.

The concavity of Γ(q) = R(q)− C(q) now follows from the linearity of C(q).

We remark that the price sensitivity parameter bk is based on the group, not on each

product in a group. Without this assumption – if the price sensitivity parameter depends

on each product within a group – then showing the concavity of R(q) would have required

to prove the concavity of qjk [log(1−∑
` Q`)− log Qk] given in the proof of Theorem 1.

However, it can be verified that this is not concave. Hence, our modeling assumption on the

price sensitivity parameter is necessary for the proof of Theorem 1. Since multiple products

belong to the same group based on similarity, it is reasonable to assume that all the products

within a given group have the same price sensitivity parameter.

2.2 Maximization of Total Profit

An immediate implication of Theorem 1 is that we can use the first-order condition to identify

the optimal solution of the profit maximization problem. Finding the optimal solution for

a problem such as this one typically requires performing descent steps in M -dimensional

space, where M is the number of products. However, we show in this section how to find

the optimal solution and the optimal profit based on a single dimensional search, regardless

of the number of products.
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Before doing this, it is convenient to define the following quantity which represents an

aggregate measure of branch k’s overall quality, which depends on (a1k, . . . , aMkk):

Ak = e−1

[
Mk∑
j=1

eajk

]τk

. (6)

We comment that the aggregate quality Ak is higher if the quality of individual products

in the group denoted by ajk is strong, and firm k offers a wide range of products (high

dissimilarity index τk). In addition, we note that, compared to the aggregate attractiveness

Ik, Ak is independent of prices. We also define a cost-adjusted aggregate quality Ak which

signifies the attractiveness of branch k if the customers are only charged the cost of a product

(without any mark-up):

Ak = e−1

[
Mk∑
j=1

eajk−bkcjk

]τk

. (7)

Note that Ak is the same as Ak if each cost cjk is zero for any j and k. This quantity will

prove useful in stating and proving the analytical results of this paper.

Let q∗ and p∗ denote the optimal market share vector and the optimal price vector,

respectively. Let ρ∗ denote the optimal expected profit, which we recall is the profit after

normalizing the total potential demand to 1. (In other words, ρ∗ is the expected profit scaled

down by a constant that corresponds to total potential demand.)

Theorem 2. In the Nested Logit model, the optimal expected profit ρ∗ is the unique value of

ρ satisfying

ρ =
K∑

k=1

Ake
−bkτkρ

bkτk

. (8)

Furthermore,

p∗jk = ρ∗ +
1

bkτk

+cjk and q∗jk =
Ake

−bkτkρ∗

1 +
∑K

`=1 A`e−b`τ`ρ∗
· eajk−bkcjk

∑Mk

i=1 eaik−bkcik

.

Theorem 2 is useful in computationally finding the optimal solution because it reduces the

multi-product pricing problem to a single-variable root-finding problem. Equation (8) has a

single unknown, ρ, and its left-hand side is increasing and its right-hand side is decreasing

in r. Thus, it is straightforward to find ρ∗, for example by a bisection algorithm. Once the
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optimal profit ρ∗ is found, one can readily obtain the optimal price vector and the optimal

market share vector.

When the price sensitivity parameters and the dissimilarity indices are identical for all

products, all the prices are marked up by the same amount – this observation has already

been made in the literature by Aydin and Ryan (2000) and Hopp and Xu (2005) in the case

of the standard MNL model. However, when the bk values are not identical, Theorem 2

characterizes how the optimal price vector depends on bk’s, and shows that the price mark-

up for a product with a high price sensitivity should be set low. From Theorem 2, we also

note that the optimal price for a product of group k decreases not only in its own price

sensitivity bk, but also in the price sensitivities of products in other groups, bj, where j 6= k;

furthermore, it increases in Ak and Aj, j 6= k. (The proof of this statement is straightforward

and available from the authors upon request).

In the special case of the standard MNL model with identical price sensitivity parameters,

we can express the optimal profit (and thus the optimal price and market share vectors) in

a closed-form expression involving the Lambert W function (Corless et al., 1996). For any

nonnegative z, W (z) is the solution w satisfying

z = wew . (9)

The W function is positive, increasing and concave in the interval of our interest, [0,∞].

The use of the Lambert W function to characterize the optimal price under the standard

MNL model can be found in Li (2007), Li and Graves (2010), and Akçay et al. (2010).

Corollary 1. In the standard MNL model, if bk = b for all k ∈ {1, . . . , K}, then ρ∗ =

W
(∑K

k=1 exp(ak − bkck − 1)
)

/b.

Proof. Suppose Mk = 1 and τk = 1 for each k. If bk = b, equation (8) implies that

ρ∗ =
∑K

k=1 eak−1−bkck−1−bρ∗/b. Then,

bρ∗ =
K∑

k=1

exp(ak − bkck − 1− bρ∗) = exp(−bρ∗)
K∑

k=1

exp(ak − bkck − 1) .

Thus, it follows that bρ∗ = W (
∑

k exp(ak − bkck − 1)), which implies the required result.
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2.3 Comparison to the Oligopoly Equilibrium

We have computed the optimal monopoly solution for the problem of maximizing total profit.

Below, we compare it to the outcome of a corresponding oligopolistic setting where multiple

firms compete with one another. The oligopolistic competition with the MNL model has

been extensively studied in the literature. The existence of the unique equilibrium has been

established (for example, Gallego et al. (2006), Bernstein and Federgruen (2004) and Allon

et al. (2010)), and the coefficients for the models have been estimated in various settings

(for example, Berry (1994), Berry et al. (2004) and Goldberg (1995)). However, most of the

analytical results are for the standard MNL model. In this section, we study the more general

Nested Logit model. Our focus is to develop closed-form expressions for the equilibrium,

and then to make a comparison with the optimal solution. Such a comparison between the

oligopoly equilibrium solution and the optimal monopoly solution has been made in the

literature for other types of demand (for example, see Farahat and Perakis (2010) for the

nonnegative affine demand), but not in the context of standard MNL or Nested Logit models,

to our knowledge.

We now consider an oligopoly model using the Nested Logit model, where each branch

corresponds to a set of products offered by one of several competing firms. In this section,

we consider both quantity competition and price competition.

Quantity Competition

The market share of a particular product j of firm k is given by qjk. For a company indexed

by k, Qk given in (2) represents the total market share for firm k. The objective of firm k is

to maximize its profit, given by

Γk(q) = Rk(q)− Ck(q) , where Rk(q)=

Mk∑
j=1

pjk(q) · qjk and Ck(q) =

Mk∑
j=1

ck · qjk .

Above, firm k’s decision is the set of market-shares for its products, (q1k, . . . , qMkk). Let q̂

denote the equilibrium market share vector under quantity competition, and let p̂ denote

the price vector associated with the equilibrium. Recall that p∗ and q∗ are the optimal

monopoly price and market share vectors.

In the next theorem, we present expressions for quantity-competition equilibrium solu-

tions. Recall that the Lambert W function is a mapping from z to w such that z = wew.
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Theorem 3. In the quantity competition oligopoly with the Nested Logit model,

p̂jk =
1 + W (Ak)

bkτk

+ cjk , and

q̂jk = Q̂k · eajk−bkcjk

∑Mk

`=1 ea`k−bkc`k

where Q̂k =
W (Ak)

1 +
∑K

`=1 W (A`)
.

We make a few remarks on Theorem 3. First, both the equilibrium prices and market

shares are expressed as closed-form expressions in terms of the W function, and therefore

they are easy to compute. Even for the special case of the standard MNL model, Farahat

and Perakis (2008) present the equilibrium solution as a solution to a system of several

equations. Second, the mark-up (p̂jk − cjk) does not depend on product index j, and firm k

charges the same mark-up for all of its products. This occurs since we have assumed that

the price sensitivity parameter bk is the same for all products of firm k, and this observation

is consistent with the existing literature. However, the market share q̂jk depends on each

product j within the firm k – in a manner that is proportional to the exponent of its cost-

adjusted quality (ajk−bkcjk). In comparison to the optimal monopoly price, which depends on

the quality and price-sensitivity of all product groups, the quantity-competition equilibrium

price for each product depends only on the characteristics of its own product group.

Third, we comment on the impact of the dissimilarity index τk for products offered by

firm k. Under a technical condition (that the market share of firm k is bigger than that

of the “no-purchase” option when firm k charges only the cost for its products), firm k’s

equilibrium market share Q̂k always increases in its own dissimilarity index τk and decreases

in other firm’s dissimilarity index τ`, ` 6= k. In addition, if the dissimilarity index increases

for firm k, then it can be shown that the equilibrium price for firm k decreases unless Ak is

very large; but the price for other firms remain unchanged. To see why the price may change

in different directions with respect to τk as Ak becomes very large, let us also interpret bkτk

as the “aggregate price sensitivity” measure for each firm. We note that the equilibrium

price is influenced by both the aggregate price sensitivity bkτk and the aggregate quality

Ak, both of which are affected by τk. Clearly, an increased τk increases the aggregate price

sensitivity and can cause price to fall. But it also leads to a higher overall quality. When Ak

is very large, the impact of τk is primarily reflected in an increase of Ak and thus causes the

equilibrium price to increase. Managerially, as a company’s product offerings become more

diverse (larger τk), the overall “quality” of its product portfolio increases, which allows it to

obtain a larger market share and also may cause price to increase. However, as the product
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offering becomes more diverse, customers have more distinctive choices within the same

company, and thus become effectively more price sensitive, which may result in a decrease

in the equilibrium price.

Price Competition

We now consider the price competition oligopoly, where each firm k’s decision is the set of

prices for its products (p1k, p2k, . . . , pMkk). The objective of firm k is to maximize its profit,

which is now given by

Γk(p) = Rk(p)− Ck(p) , where Rk(p) =

Mk∑
j=1

pjk · qjk(p) , Ck(p) =

Mk∑
j=1

ck · qjk(p) ,

and qjk(p) denotes the market share associated with product j of firm k as a function of

price vector p (according to equations (2) and (3)). Let p̃ denote the equilibrium prices

under price competition, and let q̃ denote the vector of market shares at the equilibrium.

Recall that the Lambert W function has been very useful in expressing the monopoly

optimal solution and the quantity-price equilibrium solution. While this function is no longer

directly useful for analyzing the price competition oligopoly, it turns out that a variant of

the W function, which we call the Modified Lambert W function, is applicable. Let V be a

mapping from (0,∞) to (0, 1) such that, for any x ∈ (0,∞), V (x) is the unique solution v

in (0, 1) satisfying

v · exp

(
v

1− v

)
= x .

(By comparison, recall that the Lambert W function satisfies W (x) · exp(W (x)) = x; see

(9).) It is easy to verify, for example using calculus, that V is a strictly increasing and

concave function. Figure 1 shows the shapes of the W and V functions.

We first prove a property of how the V function compares to the Lambert W function.

Lemma 1. Let x ∈ (0,∞). If λ ≥ W (x), then

V (x) < W (x) ≤ (1 + λ) · V
(

x

1 + λ

)
≤ x .

The next theorem gives a closed-form expression for the price-competition equilibrium

solution in terms of the V function. Let Q̃0 be the unique solution to the single-variable
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Figure 1: The Lambert W Function and the Modified Lambert W function, denoted by V.

equation

Q0 +
K∑

k=1

V (AkQ0) = 1 . (10)

The choice of Q̃0 is unique since the V function is strictly increasing from 0 to 1.

Theorem 4. In the price competition oligopoly with the Nested Logit model, the proportion of

non-purchasers in the total potential market is Q̃0 as given by equation (10). The equilibrium

price and market share for each product are given by

p̃jk =
1

bkτk

· 1

1− V (AkQ̃0)
+ cjk and

q̃jk = Q̃k · eajk−bkcjk

∑Mk

`=1 ea`k−bkc`k

where Q̃k = V (AkQ̃0) .

Since p̃jk is independent of j, we can write it as p̃k.

Comparison of Oligopoly Equilibrium Outcomes and Monopoly Optimal Solution

Next, we draw a comparison between the oligopoly equilibrium solutions and the monopoly

optimal solution. As before, we use hat and tilde to indicate the quantity competition and

price competition, respectively, and we use star to denote the monopoly optimal solution.

Corollary 2. In the Nested Logit model, Q∗
0 ≥ Q̂0 ≥ Q̃0 and p∗jk ≥ p̂jk ≥ p̃jk.

Corollary 2 qualitatively establishes the relationship between the optimal monopoly price

vector and the equilibrium price vector. Competition decreases the price of all the products,
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and the equilibrium price under the price competition oligopoly is the lowest among all

three cases. These findings are consistent with insights obtained from standard Cournot

and Bertrand competition models (see, for example, Mas-Colell et al. (1995), Propositions

12.C.1 and 12.C.2). In addition, competition also increases the total market share across

all M products, and from this we can deduce that at least one product has an increase

in its market share due to competition; however, it is possible that the market share of

each individual product may increase or decrease. Farahat and Perakis (2008) compare the

two types of oligopoly equilibria, namely quantity competition and price competition, under

the standard MNL model and show that price competition yields lower prices and higher

total market shares, which is a special case of Corollary 2. In addition, they suggest that

the relationship between the equilibrium quantities of an individual product under the two

types of competitions is more complex. In what follows, we explore this relationship under

the more general Nested Logit model.

Recall that Ak is the cost-adjusted “aggregate quality” measure for each firm k that

produces multiple differentiated products (see equation (6)), and that bkτk is the “aggregate

price sensitivity” measure for each firm. In the statement of Corollary 3 below, we assume

that it is possible to order the firms based on the dominance of the cost-adjusted “aggregate

quality” Ak and the “aggregate price sensitivity” bkτk. This corollary shows that, under

perfect coordination between the firms, brands with weaker market power (i.e., the firm

with smaller Ak value and higher bkτk value) would receive smaller market shares than under

oligopolistic competition. This can be explained by the fact that the firm of the lowest brand

power does not need to be concerned with the effect of cannibalization (which is an issue for

the monopolist managing multiple product groups.) By comparison, the market shares of

products belonging to the firm with strong brand power may decrease due to competition.

Corollary 3. In the Nested Logit model, suppose A1 ≤ · · · ≤ AK and b1τ1 ≥ · · · ≥ bKτK.

Then, (a) there exist k̂∗Q ∈ {1, 2, · · · , K} such that

{
q∗jk ≤ q̂jk for any j ∈ {1, . . . , Mk} if k ∈ {1, . . . , k̂∗Q}
q∗jk ≥ q̂jk for any j ∈ {1, . . . , Mk} if k ∈ {k̂∗Q + 1, . . . , K} .

(b) Furthermore, there exist ˆ̄kQ ∈ {0,1, 2, · · · , K} such that

{
q̂jk ≥ q̃jk for any j ∈ {1, . . . , Mk} if k ∈ {1, . . . , ˆ̄kQ}
q̂jk ≤ q̃jk for any j ∈ {1, . . . , Mk} if k ∈ {ˆ̄kQ + 1, . . . , K} .
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Before we close this section, we show by an example that it is indeed possible that com-

petition may decrease the market share of a product, and also increase the profit associated

with a product. For simplicity, we let each branch contain a single product, i.e., we use the

standard MNL model. Suppose that there are two products, i.e., M = 2. We consider a

family of problems parameterized by σ. Suppose a1 = a2 = σ, and let b1 > b2. We assume

that all costs are zero; thus, revenue and profit are the same. We compare the prices, market

shares and revenues under the monopoly setting and under the duopoly setting as we vary the

value of σ. In Figure 2(a), we see that the prices under the monopoly are always higher than

prices under the quantity-competition (Cournot) duopoly, which is higher than prices under

the price-competition (Bertrand) duopoly. In Figure 2(b), we observe that with increasing

quality σ, the market share becomes dominated by the low price-sensitivity product (product

2) under the monopoly but shared evenly between the two products under the duopolies.

Further, the monopolist generates most of its revenue from the low price-sensitivity product

(product 2) and the other product (product 1) plays little role in the market; but under both

duopoly settings, the firm producing the high price-sensitivity product (product 1) prices

more aggressively to obtain a more significant market share and revenue (Figure 2(c)). This

is consistent with Corollary 3 that the market share of the product with higher price sensi-

tivity is more likely to increase as a result of competition.

This observation becomes even more evident when the number of products increases.

Figure 3 illustrates a 5-product example that satisfies the conditions in Corollary 3. In

addition to the behavior predicted by the corollary, we notice that competition increases

product variety; compared to the oligopoly equilibrium, the revenue-maximizing monopolist

effectively prices out the less attractive products and increases the price for the more attrac-

tive ones. A common finding in the literature of product line selection problems has been

that when limited by the number of products within an assortment, firms should choose an

assortment based on the ordering of product “attractiveness”(Cachon and Kok, 2007; Aydin

and Ryan, 2000; Hopp and Xu, 2008). Although we do not limit the number of products

in an assortment, the results shown in Figure 3 seem to provide the same insight that firms

should exclude products that rank low on attractiveness (i.e., with lower ai and higher bi

values).

Revenue Implications for Joint versus Decentralized Pricing
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Another interesting interpretation of the oligopoly results is to think of each product as a

separate business unit within a firm that acts autonomously and hence makes its own pricing

decisions. With this interpretation, the difference between the total revenue of the oligopoly

context and the monopoly context can shed light on the benefits of coordinate/joint pricing

for product assortments. Using the same two-product example in Figure 2, we show in Figure

4 the differences in total revenue as product quality increases.
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Figure 4: Total Revenue of All Products as Quality Increases (b1 = 2, b2 = 1, and c1 = c2 =
0).

In both oligopolies, as the quality increases, the total revenue deviates more from the

optimal joint-pricing revenue, suggesting that the loss due to decentralized decision making

increases with quality. It is clear that the price-competition (Bertrand) oligopoly results in

the worst total revenue. Moreover, as the quality exceeds a certain level, improved quality

does not bring any increase in the total revenue under price competition, all suggesting that

price competition is a more fierce competition. We also observe this from Figures 2(b) and

2(c), which indicate that the equilibrium price and market share both plateau as quality σ

improves above a certain level. Therefore, if product lines that belong to the same customer

choice structure are managed by different business units, production decisions and pricing

decisions should be made jointly, especially in a make-to-order scenario (which corresponds

to the price competition oligopoly as explained earlier).
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3 Applications

3.1 Joint Inventory-Pricing Control: Make-To-Assemble

In this section, we suppose that the set of differentiated products shares a critical common

component in a make-to-assemble setting. We ignore all other components. We consider a

periodic-review inventory control of the common component when demands are stochastic

and based on the logit models. While the results of this section are valid for both the standard

MNL model and the Nested Logit model, we use the notation of the standard MNL model for

expositional simplicity. The manager decides the inventory level of the critical component

and the vector of prices for the set of differentiated products.

In each period t, the following sequence of events occur. (1) The manager observes

the inventory level of the common component denoted by xt, where the negative value of

xt represents the backlog. (2) The manager orders the component. We use yt to denote

the inventory level after ordering, where yt ≥ xt. If any positive quantity is ordered, i.e.,

yt > xt, then the fixed cost of K ≥ 0 is charged. Replenishment is instantaneous. (3) The

manager sets prices for all M products, pt = (pt
1, . . . , p

t
M), or equivalently qt = (qt

1, . . . , q
t
M).

(4) Stochastic demand vector for period t, Dt(q) = (Dt
1(q), . . . , Dt

M(q)), is realized. We

suppose that Dt is given by

Dt(qt) = qtΛt + L(qt)εt

where Λt represents the customer arrival rate, L(q) is an M -by-M matrix where each entry

is a linear function of q, and both {Λt} and {εt = (εt
1, . . . , ε

t
M)} are random and IID. This

demand model is adopted by Song and Xue (2007) and encompasses many commonly used

stochastic demand models in the literature. (5) Demands are satisfied to the extent possible.

Any excess demand is backlogged at the cost of b per unit, and any excess inventory is carried

over to the next period at the cost of h per unit. Thus, xt+1 = yt −∑
i D

t
k(q

t).

In the literature that addresses joint price-inventory control with the MNL model, Song

and Xue (2007) are the closest to our model in this section, and indeed our demand model is

taken from their paper. While we consider the stocking of a single common component, they

consider the problem of managing multiple stockpiles of inventory, one for each product.

Since their problem is more complex, they can show only a partial structural result, even

when the fixed order cost K = 0. In this section, we allow positive K, and characterize the
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optimal inventory policy of the common component. Related to this section, Dong et al.

(2009) also consider a dynamic system, but they do not allow inventory replenishment.

Denote the expected single-period profit by

π(y,q) = R(q)− h · E[y −
∑

i

Di(q)]+ − b · E[
∑

i

Di(q)− y]+ .

(Because of the IID assumption, we suppress the superscript t.) We consider the infinite-

horizon discounted cost criteria, i.e., minimizing
∑∞

t=1 βtπ(yt,qt). For this problem, we show

that the structure of the optimal inventory policy is a simple two-threshold policy.

Theorem 5. For the joint inventory-pricing control problem of Section 3.1, an (s, S) policy

is optimal. Furthermore, if K = 0, then a base-stock policy is optimal, i.e., s = S.

Proof. This proof is based on Huh and Janakiraman (2008), who provide a sufficient con-

dition for the optimality of an (s, S) policy. In our context, their condition is satisfied if

we could verify two sufficient conditions. The first condition is the concavity of π, which

follows from the concavity of R (Theorem 1). Let (y∗,q∗) be the maximizer of π. The second

condition is that, for any yA and yB satisfying y∗ ≤ yA < yB and qB, there exists qA such

that (a) π(yA,qA) ≥ π(yB,qB), and (b) yA −∑
i D

t
i(q

A,t) ≤ max{yB −∑
i D

t
i(q

B,t), y∗} for

any realization of Λ and ε. Since yA is a convex combination of y∗ and yB, we choose qA

such that the vector (yA,qA) is a convex combination of (y∗,q∗) and (yB,qB). Since π is

concave and is maximized at (y∗,q∗), we obtain that π(yA,qA) is bounded below by the

convex combination of π(y∗,q∗) and π(yB,qB); thus, (a) holds. Also, since D(q) is a linear

function of q, it follows that yA − ∑
i D

t
i(q

A,t) is a convex combination of y∗ − ∑
i D

t
i(q

∗)

and yB −∑
i D

t
i(q

B,t), implying (b). This completes the verification of the sufficient condi-

tions.

We note that the exact form of the MNL demand model is not used in the proof of

Theorem 5 except through the concavity of R(q) in q. Thus, it can also be shown that

the optimality of the (s, S) policy remains valid if we adopt a more general demand model

described in Song and Xue (2007) since their demand model satisfies the concavity require-

ment.
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3.2 Joint Inventory-Pricing Control: Make-To-Stock

In the joint inventory-pricing model of Song and Xue (2007), the inventory is stocked not

at the common component level but at each individual finished product level. Furthermore,

the fixed cost of ordering K is negligible. The sequence of events is similar to Section 3.1,

except that the before-ordering and after-ordering inventory levels are now specified for each

product which we can denote by xt = (xt
1, . . . , x

t
M) and yt = (yt

1, . . . , y
t
M).

For this problem, Song and Xue (2007) have shown the concavity of the dynamic pro-

gramming value function, and established that the structure of the optimal ordering policy

is an order-up-to policy where the order-up-to level depends on a subset of products that can

be identified by an algorithm. The requirement for their result to hold is the concavity of

the single-period revenue function with respect to the market-share vector, which they have

shown to hold in the case of the standard MNL model where all price sensitivity parameters

are one, i.e., bi = 1 for all i’s. The concavity results of this paper (Theorem 1) imply that

all the results of Song and Xue (2007) also hold for the standard MNL model with general

price sensitivity parameters as well as for the Nested Logit model.

3.3 Dynamic Pricing Model with Non-Replenishable Inventory

Now, consider a multi-period price control model with a finite horizon without inventory

replenishment. The model is similar to the model of Section 3.2 except that inventory cannot

be replenished. Furthermore, at most one customer arrives in each period, and λ denotes the

probability that a customer shows up. Dong et al. (2009) have studied this setting when the

price sensitivity parameters are identical and shown that the optimal prices in each period

have identical profit margins. In this section, we extend their model to include the standard

MNL model with non-identical price sensitivity parameters and the Nested Logit model.

Let T be the planning horizon, and let t ∈ {1, . . . T} index time periods in a forward

manner. Let xt = (xt
1, . . . , x

t
M) ≥ 0 denote the vector of initial inventory levels. We present

a dynamic programming formulation for the optimal pricing problem, assuming that the

standard MNL model is used. (The extension to the Nested Logit model is similar.) It can
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be written as

V t(xt) = max
qt

{
J t(xt,qt) | qt ∈ [0, 1]M , qt

1 + · · ·+ qt
M ≤ 1

}

J t(xt,qt) = λ

M∑
i=1

qt
i · {pi(q

t)−∆iV
t+1(xt)} + V t+1(xt) (11)

where

∆iV
t+1(xt) = V t+1(xt)− V t+1(xt − ei) if xt

i ≥ 1 ,

and ∆iV
t+1(xt) = ∞ otherwise (which ensures that the inventory remains nonnegative).

Above, ei is an all-zeros vector except the entry of 1 corresponding to index i. We assume

the zero salvage value by setting V T (x) = 0, for the simplicity of exposition.

The decision in each period is to choose qt that maximizes J t(xt,qt). Since R(q) =
∑M

i=1 qt
i · pi(q

t) is concave in qt (Theorem 1), it follows easily that J t(xt,qt) is concave in

qt. Thus, we can use the first-order conditions to identify the optimal market share vector,

which we denote by q̌t(x). We note that although J t(xt,qt) may not be jointly concave in

both inventory and price, the optimization problem within each time period t is a concave

problem since the inventory position at the beginning of the next period, xt+1, is limited to

a finite set given by (xt − ei)i=1,...,M . It can be shown that

pk(q̌
t(x)) = ∆kV

t+1(x) + ř(x, q̌t(x)) +
1

bk

(12)

where

ř(x, q̌t(x)) =
M∑

k=1

{
pk(q̌

t(x))−∆kV
t+1(x)

} · q̌t
k(x) ≥ 0 .

(See the appendix for the proof of (12).) This shows that the optimal price is higher than

the future value of the unit represented by ∆kV
t+1(x). The mark-up has two components:

ř(x, q̌t(x)) which is common across all the products, and 1/bk which depends on each product

k. We observe that the mark-up is higher for the product that is less price sensitive. This

insight is a generalization of Dong et al. (2009) who have identified that the mark-up is the

same for all products when the price sensitivity parameters are identical for all products.

With the Nested Logit model of consumer choice, the above results can be extended to

pjk(q̌
t(x)) = ∆jkV

t+1(x) + ř(x, q̌t(x)) +
1

bkτk

(13)
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where

ř(x, q̌t(x)) =
K∑

k=1

Mk∑
j=1

{
pjk(q̌

t(x))−∆jkV
t−1(x)

} · q̌t
jk(x) ≥ 0 .

Note that in the case of the Nested Logit model, the product-specific component of the

mark-up also depends on the dissimilarity index τk. The proof for equation (13) is similar

to that of equation (12) and is available from the authors upon request.

4 Concluding Remarks

We have shown the concavity of the revenue and profit functions with respect to the market

share vector when a firm sells multiple differentiated products with demand given by the

Nested Logit models, which include the standard MNL model as a special case. Using this

property, we derive the optimal solution of the profit maximization problem for a monopolist

selling multiple differentiated products, and the equilibrium solution for price-competition

and quantity-competition oligopolies where each firm sells multiple differentiated products.

The comparison of the monopoly and the oligopolies yields several interesting insights for

the nested choice structure. First, the price for any individual product is always the highest

under the monopoly and the lowest under the price-competition (Bertrand) oligopoly. Sec-

ond, while the total market share for all the products is always the lowest under the monopoly

and the highest under the price-competition oligopoly, the market share for each individual

product does not follow the same trend. Rather, whether a product’s market share improves

or worsens with competition depends on the brand power of the product group, as character-

ized by its aggregate quality and the customer’s price sensitivity toward this product group:

Products with stronger (weaker) brand power will have a smaller (larger) market share under

competition than under a monopoly. Third, a comparison of the monopoly and oligopolies

reveals the impact of joint versus decentralized decision making. Our results show that

profit loss due to decentralized decision is greater under the price-competition (Bertrand)

oligopoly than under the quantity-competition (Cournot) oligopoly. This implies that the

joint pricing decision is the most critical in a make-to-order manufacturing environment,

which corresponds to the price-competition oligopoly (see Friedman (1988) and Farahat and

Perakis (2008)).

The application of the concavity property extends to joint inventory and pricing control

problems, and provides theoretical justifications for using first-order conditions to derive the
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optimal pricing and market share solutions for dynamic models in which customer demand

can be modeled with a Nested Logit model. For example, by extending the multiple-product

dynamic pricing problem with non-replenishable inventory introduced by Dong et al. (2009),

we show that the optimal mark-up may not be uniform but may include a product-specific

component. For dynamic pricing problems with replenishable inventory, we extend the opti-

mality of the (s, S) policy to a make-to-assemble scenario where a common critical component

of multiple differentiated products is stocked (Huh and Janakiraman, 2008). Furthermore,

we show that the structure of the optimal policy for the joint inventory-pricing problem in a

make-to-order setting (a la Song and Xue (2007)) continues to hold even for a more general

nested choice model.

Given the flexibility and empirical validity of the Nested Logit model, we hope the the-

oretical properties and applications shown in this paper prove useful for future research in

operations, marketing and economics employing this family of price-dependent demand mod-

els. One interesting research direction relates to more concrete interpretations of the nested

choice structure within a specific market and operations context. For example, exploiting

the theoretical results derived from a general nested structure presented in this paper, we

can study pricing and other decisions for product assortments that are both vertically and

horizontally differentiated. Another direction to explore is the impact of demand uncertainty

on pricing and market share solutions.
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Appendix

Proof of Equation (4)

To see (4), note from equation (2),

1−
K∑

`=1

Q` = 1−
∑K

`=1 eτ`I`

1 +
∑K

`=1 eτ`I`

=
1

1 +
∑K

`=1 eτ`I`

.

Thus, from the above equation and again from (2),

Qk

1−∑K
`=1 Q`

=

(
eτkIk

1 +
∑K

`=1 eτ`I`

)
·
(

1 +
K∑

`=1

eτ`I`

)
= eτkIk =

[
Mk∑
i=1

eaik−bkpik

]τk

,

where the last equality follows from the definition of Ik = log
∑Mk

j=1 eajk−bkpjk . Also, from the

definition of qj|k = eajk−bkpjk/
∑Mk

`=1 ea`k−bkp`k in (2),

qjk

Qk

=
qjk∑Mk

i=1 qik

=
qj|k∑Mk

i=1 qi|k
= qj|k =

eajk−bkpjk

∑Mk

i=1 eaik−bkpik

,
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for any product j in group k. From the two above equations, we obtain

eajk−bkpjk =
qjk

Qk

Mk∑
i=1

eaik−bkpik =
qjk

Qk

[
Qk

1−∑K
`=1 Q`

] 1
τk

=
qjk

1−∑K
`=1 Q`

[
Qk

1−∑K
`=1 Q`

] 1
τk
−1

.

Hence, by taking a logarithm to the above equation, we can write pjk as a function of q as

given in equation (4).

Additional Argument in the Proof of Theorem 1

Lemma 2. Let φ(zA, zB) = zA · [log zA − log (1− zB)]. Then, φ is jointly convex in (zA, zB)

in the region {(zA, zB) | 0 < zA, zB < 1}.

Proof. We can obtain that the Hessian of φ is Hφ(zA, zB) =

[ 1
zA

1
1−zB

1
1−zB

zA

(1−zB)2

]
. Then, for

any real numbers γ and δ, we obtain

(
γ δ

) ·Hφ(zA, zB) ·
(

γ
δ

)
=

γ2

zA

+
γ · δ

1− zB

+
γ · δ

1− zB

+
δ2 · zA

(1− zB)2
=

(
γ√
zA

+
δ
√

zA

1− zB

)2

,

which is nonnegative for 0 < zA, zB < 1. Thus, the Hessian of φ is positive semi-definite,

and φ is jointly convex.

Other Proofs

All other proofs appear in the online appendix.
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A.1 Proof of Theorem 2

Proof. Taking first order partial derivative of the revenue function (5) with respect to qjk,

∂R(q)
∂qjk

= pjk(q) +
K∑

m=1

Mm∑

`=1

qlm · ∂plm(q)
∂qjk

.

Taking a partial derivative of pjk(q) given in equation (4),

∂plm(q)
∂qjk

= − 1
bm

[
1

1−∑
i Qi

]
− 1

bm

1− τm

τm

[
1

1−∑
i Qi

]

− 1
bm

1
qlm

1{m=k and `=j} −
1
bm

1− τm

τm

1
Qm

1{m=k} , (14)

where 1 represents a binary indicator function. Thus,

∂R(q)
∂qjk

= pjk(q) −
[

1
1−∑

i Qi

] K∑

m=1

∑Mm
`=1 qlm

bm
−

[
1

1−∑
i Qi

] K∑

m=1

1− τm

τm

∑Mm
`=1 qlm

bm

− 1
bk

− 1
bk

1− τk

τk

∑Mk
`=1 q`k

Qk

= pjk(q) −
[

1
1−∑

i Qi

] K∑

m=1

Qm

bm
−

[
1

1−∑
i Qi

] K∑

m=1

1− τm

τm

Qm

bm
− 1

bkτk

= pjk(q) −
[

1
1−∑

i Qi

] K∑

m=1

Qm

bmτm
− 1

bkτk
, (15)

where the second inequality follows from
∑Mm

`=1 qlm = Qm. Also, recall ∂C(q)
∂qjk

= cjk. Since Γ(q) =
R(q)−C(q) is concave (Theorem 1), we equate the partial derivative of Γ at q∗ to zero, and obtain

pjk(q∗) =
[

1
1−∑

i Q
∗
i

] K∑

m=1

Q∗
m

bmτm
+

1
bkτk

+ cjk . (16)
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Now, substituting (16) into R(q∗) =
∑K

k=1

∑Mk
j=1 pjk(q∗)q∗jk given in (5), it follows

Γ(q∗) =
K∑

k=1

Mk∑

j=1

[
q∗jk

1−∑
i Q

∗
i

] K∑

m=1

Q∗
m

bmτm
+

K∑

k=1

Mk∑

j=1

q∗jk
bkτk

+
K∑

k=1

Mk∑

j=1

cjkq
∗
jk −

K∑

k=1

Mk∑

j=1

cjkq
∗
jk

=
[ ∑

k Q∗
k

1−∑
i Q

∗
i

] K∑

m=1

Q∗
m

bmτm
+

K∑

k=1

Q∗
k

bkτk
=

[
1

1−∑
i Q

∗
i

] K∑

m=1

Q∗
m

bmτm
.

Since ρ∗ = Γ(q∗), we obtain

ρ∗ =
[

1
1−∑

i Q
∗
i

] K∑

k=1

Q∗
k

bkτk
. (17)

Thus, substituting this expression into (16), we obtain p∗jk = pjk(q∗) = ρ∗ + 1
bkτk

+cjk , which is
the required expression for p∗jk.

Let I∗k = log
∑Mk

j=1 exp(ajk − bkp
∗
jk) represent the optimal aggregate attractiveness of branch k.

Using the above expression for p∗jk, it follows that I∗k = log
∑Mk

j=1 exp(ajk − 1/τk − bkρ
∗ − bkcjk).

Then, the optimal aggregate market share for branch k is, from (2),

Q∗
k =

eτkIk

1 +
∑K

`=1 eτ`I`

=

[∑Mk
j=1 exp(ajk − 1/τk − bkρ

∗ − bkcjk)
]τk

1 +
∑K

`=1

[∑M`
j=1 exp(ajl − 1/τ` − b`ρ∗ − bkcjk)

]τ`
. (18)

Therefore, we obtain

1−
K∑

k=1

Q∗
k =

1

1 +
∑K

`=1

[∑M`
j=1 exp(ajl − 1/τ` − b`ρ∗ − b`cj`)

]τ`
,

and it follows from (17) and (18),

ρ∗ =
K∑

k=1

[∑Mk
j=1 exp(ajk − 1/τk − bkρ

∗ − bkcjk)
]τk

bkτk
= e−1

K∑

k=1

[∑Mk
j=1 exp(ajk − bkρ

∗ − bkcjk)
]τk

bkτk
,

where the last equality follows from [exp(−1/τk)]
τk = e−1. Thus, from (7), we obtain (8). The

value of ρ∗ satisfying (8) is unique since the left side is increasing and the right side is decreasing
in ρ∗.

Finally, let q∗j|k = eajk−bkp∗jk/
∑Mk

`=1 ea`k−bkp∗`k as in (2). From (18), as well as p∗jk = ρ∗+ 1
bkτk

+cjk,

q∗jk = Q∗
k · q∗j|k =

[∑Mk
i=1 eaik−1/τk−bkρ∗−bkcik

]τk

1 +
∑K

`=1

[∑M`
i=1 eai`−1/τ`−b`ρ∗−b`ci`

]τ`
· eajk−1/τk−bkρ∗−bkcjk

∑Mk
i=1 eaik−1/τk−bkρ∗−bkcik

=
e−1

[∑Mk
i=1 eaik−bkρ∗−bkcik

]τk

1 + e−1
∑K

`=1

[∑M`
i=1 eai`−b`ρ∗−b`ci`

]τ`
· eajk−bkcjk

∑Mk
i=1 eaik−bkcik

,

which yields the required expression for q∗jk.
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A.2 Proof of Theorem 3

Proof. Taking a partial derivative of Rk(q) with respect to qjk,
∂Rk(q)

∂qjk
= pjk +

∑Mk
`=1 q`k

∂p`k(q)
∂qjk

.

Recalling the expression of ∂p`k(q)/∂qjk given in (14), we obtain

q`k
∂p`k(q)

∂qjk
= − 1

bk

[
q`k

1−∑
i Qi

]
− 1

bk

1− τk

τk

[
q`k

1−∑
i Qi

]
− 1

bk
1{`=j} −

1
bk

1− τk

τk

q`k

Qk

= − 1
bkτk

[
q`k

1−∑
i Qi

]
− 1

bk
1{`=j} −

1
bk

1− τk

τk

q`k

Qk
.

Since
∑Mk

`=1 q`k = Qk, it follows

∂Rk(q)
∂qjk

= pjk − 1
bkτk

[
Qk

1−∑
i Qi

]
− 1

bk
− 1

bk

(
1− τk

τk

)

= pjk − 1
bkτk

{[
Qk

1−∑
i Qi

]
+ 1

}
.

By setting the partial derivative of Γk(q) = Rk(q)− Ck(q) to zero at p̂ and q̂, we obtain

p̂jk =
1

bkτk

(
1 +

Q̂k

1−∑
i Q̂i

)
+ cjk . (19)

The above identity (19) is expressed in terms of both the equilibrium price and the equilibrium
quantity vector. We use the relationship between the price vector and the market share vector given
in (4) to express it in terms of the equilibrium quantity vector q̂ only. By equating two expressions
of p̂jk = pjk(q̂) given in (4) and (19),

1
bkτk

(
1 +

Q̂k

1−∑
i Q̂i

)
+cjk =

ajk

bk
+

1
bk

[
log(1−

∑

`

Q̂`)− log q̂jk

]
+

1
bk

1− τk

τk

[
log(1−

∑

`

Q̂`)− log Q̂k

]
.

Multiplying both sides by bk and rearranging terms,

ajk − 1
τk
−bkcjk =

1
τk
· Q̂k

1−∑
i Q̂i

−
[
log(1−

∑

`

Q̂`)− log q̂jk

]
−

(
1
τk
− 1

) [
log(1−

∑

`

Q̂`)− log Q̂k

]

=
1
τk

[
log

Q̂k

1−∑
i Q̂i

+
Q̂k

1−∑
i Q̂i

]
+ log

q̂jk

Q̂k

.

Exponentiate the above equation and sum over j to obtain
Mk∑

j=1

eajk−1/τk−bkcjk =
∑Mk

j=1

(
exp

[
log Q̂k

1−∑
i Q̂i

+ Q̂k

1−∑
i Q̂i

]) 1
τk q̂jk

Q̂k
=

(
exp

[
log Q̂k

1−∑
i Q̂i

+ Q̂k

1−∑
i Q̂i

]) 1
τk ,

where the last equality follows from
∑Mk

j=1 q̂jk = Q̂k. Thus,



Mk∑

j=1

eajk−1/τk−bkcjk




τk

= exp

[
log

Q̂k

1−∑
i Q̂i

+
Q̂k

1−∑
i Q̂i

]
=

Q̂k

1−∑
i Q̂i

· exp

[
Q̂k

1−∑
i Q̂i

]
.

Since the leftmost side of the above equality is Ak (see equation (7)), it follows from the definition
of the Lambert W function that

W
(
Ak

)
=

Q̂k

1−∑
i Q̂i

. (20)
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By substituting this expression into (19), we obtain the required expression for p̂jk.
Now, from (20),

1 +
K∑

i=1

W (Ai) = 1 +
∑K

i=1 Q̂i

1−∑K
i=1 Q̂i

=
1

1−∑K
i=1 Q̂i

.

Applying this to (20), we obtain

Q̂k = W (Ak) ·
(

1−
∑

i

Q̂K
i=1

)
=

W (Ak)

1 +
∑K

i=1 W (Ai)
,

which is the required expression for Q̂k. To get the expression for q̂jk, (2) and (3) imply

q̂jk = Q̂k · q̂j|k = Q̂k · eajk−bkp̂jk

∑M`
`=1 ea`k−bkp̂`k

= Q̂k · eajk−bkcjk

∑M`
`=1 ea`k−bkc`k

,

where the last equality follows from the fact that p̂1k = · · · = p̂Mkk (which follows from the first
part of this theorem).

A.3 Proof of Lemma 1

Proof. We first show that V (x) < W (x). For any x ∈ (0,∞), let w = W (x) and v = V (x). Then,
w exp(w) = x = v exp(v/(1 − v)). Since v ∈ (0, 1), we have v/(1 − v) > v. Thus, w exp(w) =
v exp(v/(1− v)) > v exp(v). Since yey is strictly increasing in y, we conclude that w > v.

Next we show that W (x) ≤ (1 + λ)V (x/(1 + λ)) for λ ≥ W (x). For any x ∈ (0,∞), now let
w = W (x) and v = V (x/(1 + λ)). Then, w exp(w) = x = (1 + λ) · v exp(v/(1 − v)). We wish to
show that w ≤ (1 + λ)v. Let λ ≥ w. Then, by rearranging terms, we obtain w/(1 + λ − w) ≤ w,
which implies

w exp(w/(1 + λ− w)) ≤ w exp(w) = (1 + λ) · v exp(v/(1− v)) .

Assume, by way of contradiction, that w > (1+λ)v. Then, the above inequality implies exp(w/(1+
λ− w)) ≤ exp(v/(1− v)), i.e., w/(1 + λ− w) ≤ v/(1− v). However, the assumption w > (1 + λ)v
implies both v < w/(1+λ) and (1− v) > 1−w/(1+λ) = (1+λ−w)/(1+λ). By dividing the first
inequality with the second inequality, we obtain v/(1−v) < w/(1+λ−w), which is a contradiction.
Thus, we conclude w ≤ (1 + λ)v, as required.

Finally, we show that (1+λ)V (x/(1+λ)) ≤ x. Again let v = V (x/(1+λ)). Since exp(v/(1−v)) ≥
1, it follows that x = (1 + λ) · v exp(v/(1− v)) ≥ (1 + λ) · v.

A.4 Proof of Theorem 4

Proof. Since qjk = qj|kQk, it follows from (2) and the definition of Ik = log
∑Mk

j=1 eajk−bkpjk ,

∂qjk

∂pjk
=

∂qj|k
∂pjk

·Qk + qj|k ·
∂Qk

∂pjk
=

∂qj|k
∂pjk

·Qk + qj|k ·
∂Qk

∂Ik
· ∂Ik

∂pjk

=
{
bkqjk(qj|k − 1)

}
+ qj|k · [τkQk(1−Qk)] ·

[−bkqj|k
]

= bkqjk(qj|k − 1)− bkτkqjkqj|k(1−Qk) .

iv



Similarly, for i 6= j, obtain ∂qik/∂pjk = bkqi|kqjk−bkτkqi|kqjk(1−Qk). Since Γk =
∑Mk

j=1 (pjk − cjk)qjk,

∂Γk

∂pjk
= qjk +

Mk∑

i=1

(pik − cjk)
∂qik

∂pjk
= qjk − bk(pik − cjk)qjk +

Mk∑

i=1

(pik − cjk)[bkqi|kqjk − bkτkqi|kqjk(1−Qk)] .

Setting this expression to 0 and simplifying it, it follows bk(p̃jk − cjk) = 1 + bk[1 − τk(1 −
Q̃k)]

∑Mk
i=1 (p̃ik − cjk)q̃i|k. (We use tilde to indicate that it is the price-competition equilibrium

solution.) Since the right side of this equation is independent of j, it follows that p̃1k = · · · = p̃Mkk,
which we denote by p̃k. Since q̃1|k + · · · + q̃Mk|k = 1, we obtain bk(p̃k − cjk) = 1 + bk[1 − τk(1 −
Q̃k)] · (p̃jk − cjk). Thus, (p̃k − cjk) = 1/

[
bkτk(1− Q̃k)

]
.

We claim

p̃k =
1
bk

log
Mk∑

i=1

exp(aik) +
1

bkτk

[
log(1−

∑

`

Q̃`)− log Q̃k

]
.

To prove this claim, substitute (2) and (3) into (4) to obtain

p̃jk =
ajk

bk
+

1
bk

[
log(1−

K∑

`=1

Q̃`)− log

(
Q̃k · eajk

∑Mk
i=1 eaik

)]
+

1
bk

1− τk

τk

[
log(1−

K∑

`=1

Q̃`)− log Q̃k

]
.

Then, since ajk = log(exp(ajk)), the above equality implies the claim.
Therefore,

1
bkτk(1− Q̃k)

= p̃k−cjk =
1
bk

log
Mk∑

i=1

exp(aik) +
1

bkτk

[
log(1−

K∑

`=1

Q̃`)− log Q̃k

]
−cjk .

From algebraic transformation and the definition of Ak in (7),

log
Q̃k

1−∑
` Q̃`

+
Q̃k

1− Q̃k

= τk log
∑

i

exp(aik − bkcjk)− 1 = log Ak . (21)

Exponentiating the above equation and using Q̃0 = 1−∑
` Q̃`, we obtain (Q̃k/Q̃0) · exp

(
Q̃k

1−Q̃k

)
=

Ak. Then, from the definition of the V function, we have Q̃k = V ((Ak)Q̃0). From Q̃0 +
∑

` Q̃` = 1,
we verify that Q̃0 satisfies (10).

Finally, for the required expression for q̃jk, use (2) and (3) along with Q̃k = V (AkQ̃0) and the
fact p̃1k = · · · = p̃Mkk. For the required expression for p̃jk, use the above expression for Q̃k as well
as (p̃k − cjk) = 1/[bkτk(1− Q̃k)].

A.5 Proof of Corollary 2

Proof. We first compare the quantity-competition equilibrium solution to the optimal monopoly
solution. It follows from the expressions of p∗jk and p̂jk given in the statements of Theorems 2 and
3 that it suffices to show bkτkρ

∗ > W (Ak).From equation (8) in Theorem 2,

ρ∗ =
K∑

`=1

e−1

b`τ`




M∑̀

j=1

eajl−b`cj`−b`ρ
∗




τ`

>
e−1

bkτk




Mk∑

j=1

eajk−bkcjk−bkρ∗




τk

=
e−1

bkτk




Mk∑

j=1

eajk−bkcjk




τk

e−bkτkρ∗ .
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Thus,

(bkτkρ
∗) · exp (bkτkρ

∗) > e−1




Mk∑

j=1

eajk−bkcjk




τk

= Ak = W (Ak) · exp
(
W (Ak)

)
,

where the first equality follows from the definition of Ak given in (6), and the second equality
follows from the definition of the W function. Now, since yey is increasing in y, we have

bkτkρ
∗ > W (Ak) (22)

where the second inequality above follows since W is increasing. Thus, we conclude p∗jk > p̂jk.

Since p∗jk > p̂jk holds for any j and k, it follows that Îk > I∗k for each k, where Îk =
log

∑Mk
j=1 eajk−bkp̂jk and I∗k = log

∑Mk
j=1 eajk−bkp∗jk . Thus, from the definition of Qk = eτkIk/[1 +

∑K
`=1 eτ`I` ]

in equation (2), it implies that

Q̂0 = 1−
K∑

k=1

Q̂k =
1

1 +
∑K

k=1 eτk Îk

<
1

1 +
∑K

k=1 eτkI∗k
= 1−

K∑

k=1

Q∗
k = Q∗

0 .

Now, we compare the price-competition equilibrium to the quantity-competition equilibrium.
Let ψ(Q0) = Q0 +

∑
` V (A`Q0) − 1. Since V is an increasing function, ψ is also increasing. It

follows from the definition of Q̃0 that ψ(Q̃0) = 0. Since Q̂k = 1/
[
1 +

∑K
`=1 W (A`)

]
by Theorem

3, Thus

ψ(Q̂0)− ψ(Q̃0) =
1

1 +
∑

` W (A`)
+

∑

`

V

(
A`

1 +
∑

i W (Ai)

)
− 1

=
∑

`

[
V

(
A`

1 +
∑

i W (Ai)

)
− W (A`)

1 +
∑

i W (Ai)

]
≥ 0 ,

where the inequality follows from Lemma 1 by letting x = A` and λ =
∑

i W (Ai). Thus ψ(Q̂0) ≥
ψ(Q̃0). Since ψ is increasing, we obtain Q̂0 ≥ Q̃0.

Finally we show p̃jk ≤ p̂jk for any j and k. From the above argument,

W (Ak) · Q̂0 =
W (Ak)

1 +
∑

` W (A`)
≤ V

(
Ak

1 +
∑

` W (A`)

)
= V (Ak · Q̂0) .

It implies, along with the definitions of V (AkQ̂0) and W (Ak),

exp

(
V (AkQ̂0)

1− V (AkQ̂0)

)
=

Ak · Q̂0

V (AkQ̂0)
≤ Ak

W (Ak)
= exp(W (Ak)) .

Since exp(·) is an increasing function,

0 ≤ W (Ak)− V (AkQ̂0)
1− V (AkQ̂0)

= bkτk

{[
1 + W (Ak)

bkτk

]
−

[
1

bkτk(1− V (AkQ̂0))

]}

= bkτk {p̂jk − p̃jk} ,

where the last equality follows from the expressions of p̂jk and p̃jk given in Theorem 3 and Theorem
4. Thus, p̂jk ≥ p̃jk.
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A.6 Proof of Corollary 3

Proof. Part (a). From Theorem 2, we know that the monopoly optimal price of products within
branch k are the same, i.e., p∗1k = · · · = p∗Mkk. Similarly, from Theorem 3, we also know p̂1k =
· · · = p̂Mkk. Thus, the conditional probability qj|k = eajk/

∑Mk
i=1 eaik remains the same under the

oligopoly and under the monopoly. Since qjk = qj|kQk, it is sufficient to show the existence of
k̂∗Q ∈ {1, 2, . . . , K} such that

{
Q̂k ≥ Q∗

k if k ∈ {1, . . . , k̂∗Q}
Q̂k ≤ Q∗

k if k ∈ {k̂∗Q + 1, . . . ,K} .

We will establish this by proving (i) Q̂1 ≥ Q∗
1, and that (ii) Q̂k ≤ Q∗

k implies Q̂k+1 ≤ Q∗
k+1.

From the expression of q∗jk in Theorem 2 and the fact that Q∗
k =

∑Mk
j=1 q∗jk,

Q∗
k =

[
∑Mk

i=1 eaik−bkcik−bkρ∗ ]τk

e +
∑K

`=1[
∑M`

j=1 eajl−b`cj`−b`ρ∗ ]τ`

=
e−1[

∑Mk
i=1 eaik−bkcik ]τk

ebkτkρ∗ +
∑K

`=1 e−1[
∑M`

j=1 eaj`−b`cj` ]τ`e(bkτk−b`τ`)ρ∗
=

Ak

ebkτkρ∗ +
∑K

`=1 A` · e(bkτk−b`τ`)ρ∗
, (23)

where the last equality follows from the definition of A` = e−1
[∑M`

j=1 eajl−b`cj`

]τ`

given in (7). Also,
from Theorem 3,

Q̂k =
W (Ak)

1 +
∑K

`=1 W (A`)
=

Ak exp(−W (Ak))

1 +
∑K

`=1 Ai exp(−W (A`))

=
Ak

exp(W (Ak)) +
∑K

`=1 A` exp(W (Ak)−W (A`))
, (24)

where the second equality holds due to the definition of the Lambert W function that W (z) =
ze−W (z).

Suppose k = 1. Recall from (22) that bkτkρ
∗ > W (Ak). Since both b1τ1 ≥ b`τ` and A1 ≤ A`

hold by assumption, we obtain e(b1τ1−b`τ`)ρ
∗ ≥ e0 ≥ eW (A1)−W (A`). Thus, by comparing (23) and

(24), we have Q̂1 ≥ Q∗
1, which is statement (i).

Now, for statement (ii), suppose k ∈ {1, . . . , K − 1}. Then,

Ak+1 ·
[

1
Q∗

k+1

− 1
Q̂k+1

]
=

{
exp(bk+1τk+1ρ

∗) +
K∑

`=1

A` exp((bk+1τk+1 − b`τ`)ρ∗)

}

−
{

exp(W (Ak+1)) +
K∑

`=1

A` exp(W (Ak+1)−W (A`))

}

≤
{

exp(bkτkρ
∗) +

K∑

`=1

A` exp((bkτk − b`τ`)ρ∗)

}

−
{

exp(W (Ak)) +
K∑

`=1

Ai exp(W (Ak)−W (A`))

}

= Ak ·
[

1
Q∗

k

− 1
Q̂k

]
,
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where the both equalities follow from (23) and (24), and the inequality follows from the assumptions
that Ak ≤ Ak+1 and bkτk ≥ bk+1τk+1. Thus, if Q̂k ≤ Q∗

k, then this inequality implies Q̂k+1 ≤ Q∗
k+1,

yielding statement (ii). This completes the proof of Part (a).

Part (b). Following the same argument as (a), it suffices to show the existence of ˆ̄kQ ∈
{0,1, 2, . . . , K} such that

{
Q̂k ≥ Q̃k if k ∈ {1, . . . , ˆ̄kQ}
Q̂k ≤ Q̃k if k ∈ {ˆ̄kQ + 1, . . . ,K} .

Since
∑

` Q̂` ≤
∑

` Q̃` (Corollary 2), there exists at least one firm j such that Q̂j ≤ Q̃j Thus, it
suffices to show that Q̂k ≤ Q̃k implies Q̂k+1 ≤ Q̃k+1, for any k ∈ {1, . . . , K − 1}.

From (21) and (20) along with the definition of the W function,

log
Q̃k+1

Q̃k

+
Q̃k+1 − Q̃k

(1− Q̃k+1)(1− Q̃k)
= log Ak+1 − log Ak = log

Q̂k+1

Q̂k

+
Q̂k+1 − Q̂k

1−∑
` Q̂`

Assume, by a contradiction, we have Q̂k ≤ Q̃k but Q̂k+1 > Q̃k+1. Then, since Q̃k+1/Q̃k < Q̂k+1/Q̂k,
we must have

(Q̃k+1 − Q̃k)
(1− Q̃k+1)(1− Q̃k)

>
Q̂k+1 − Q̂k

1−∑
` Q̂`

≥ (Q̂k+1 − Q̂k)
(1− Q̂k − Q̂k+1)

Since Q̂k ≤ Q̃k ≤ Q̃k+1 < Q̂k+1 (where the middle inequality comes from Theorem 4 and the
condition Ak ≤ Ak+1), each of the expressions in any bracket is nonnegative. Thus, the ζ value,
defined below, should be positive:

ζ = (Q̃k+1 − Q̃k) · (1− Q̂k − Q̂k+1)− (Q̂k+1 − Q̂k) · (1− Q̃k+1) · (1− Q̃k) .

The ζ value, as a function of Q̃k is linear and the value of Q̃k should belong to the interval [Q̂k, Q̃k+1].
At the left endpoint of this interval,

ζ
∣∣
Q̃k=Q̂k

= (Q̃k+1 − Q̂k) · (1− Q̂k − Q̂k+1)− (Q̂k+1 − Q̂k) · (1− Q̃k+1) · (1− Q̂k) .

This expression is non-positive since Q̃k+1 < Q̂k+1 implies both (Q̃k+1 − Q̂k) ≤ (Q̂k+1 − Q̂k) and
(1 − Q̂k − Q̂k+1) ≤ (1 − Q̂k − Q̃k+1) ≤ (1 − Q̂k)(1 − Q̃k+1). Now, at the right endpoint of the
interval,

ζ
∣∣
Q̃k=Q̃k+1

= (Q̃k+1 − Q̃k+1) · (1− Q̂k − Q̂k+1)− (Q̂k+1 − Q̂k) · (1− Q̃k+1) · (1− Q̃k+1) ,

which simplifies to −(Q̂k+1 − Q̂k) · (1 − Q̃k+1)2, which is a non-positive quantity. Then, by the
linearity of ζ in Q̃k, we conclude that the ζ value is always non-positive, and this is a desired
contradiction.

A.7 Proof of Equation (12)

Proof. Now, taking a partial derivative of (11), we obtain

∂J t(x,q)
∂qk

= λ ·
[
∂R(q)
∂qk

− ∆kV
t−1(x)

]
= λ ·

[
pk(q)− 1

bk
−

∑

i

qi

bi

(
1

1−∑
` q`

)
− ∆kV

t−1(x)

]
,
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where the last equality follows from the proof of Theorem 2. Let q̌t(x) denote the choice of q that
maximizes J t(x,q) for given x. (For notational simplicity, we omit the superscript t when there is
no ambiguity.) By setting the above partial derivative to zero, we obtain

pk(q̌) = ∆kV
t−1(x) +

∑

i

q̌i

bi

(
1

1−∑
` q̌`

)
+

1
bk

.

Multiplying the above identify by q̌∗ and summing over all products, we obtain
∑

k

pk(q̌)q̌k =
∑

k

q̌k

bk
+

∑
k q̌k

1−∑
` q̌`

∑

i

q̌i

bi
+

∑

k

q̌k∆kV
t−1(x)

=
∑

k

q̌k

bk

(
1 +

∑
k q̌k

1−∑
` q̌`

)
+

∑

k

q̌k∆kV
t−1(x)

=
∑

k

q̌k

bk

(
1

1−∑
` q̌`

)
+

∑

k

q̌k∆kV
t−1(x) .

Since we set ř(x, q̌) =
∑

k

{
pk(q̌)− V t−1(x)

} · q̌k, it follows that ř(x, q̌) =
∑

k

q̌k

bk

(
1

1−∑
` q̌`

)
.

Thus, we obtain pk(q̌) = ∆kV
t−1(x) + ř(x, q̌) +

1
bk

, which is (12).
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