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Abstract

We develop a solution approach to the centralized pricing problem of a firm managing multiple
substitutable products. Demand of these products undergoes a diffusion process and customers
choose among the products, with the choice probability of each product given by the logit model.
We examine the firm’s optimal pricing problem when product demand can be described by such
“diffusion-choice” models. In particular, we focus on two models with proven merits, proposed
by Weerahandi and Dalal (1992) and Jun and Park (1999) respectively, and study a generalized
version of the two models. To our knowledge, ours is the first to study multi-product pricing
problem under the integrated diffusion-choice models which are of both theoretical appeal and
practical advantage. We establish uniqueness of the optimal solution, propose an efficient solution
approach, in addition to characterizing the optimal prices and their time trend. We show that the
price trend can be attributed to diffusion dynamics, as well as intertemporal changes in product
costs and customer price sensitivity, all of which are integrated into a unified framework in this
paper. Our model applies to both simultaneous and sequential product introductions and adapts
to stochastic demand.
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1 Introduction

Product adoption often resembles a diffusion process (Bass, 1969) and the resulting sales exhibit

a time trend that can be described by a diffusion equation and characterized by a bell-shaped

curve. When the diffusion of a product takes place in parallel with substitute products offered

by the same firm, demand interactions among the products create interesting and challenging

complications for decision makers. For example, sales of a new book exhibit diffusion characteristic,

and often hardcover, paperback, and electronic versions of the same book are sold concurrently. It

is also common for manufacturers of technology products to introduce multiple variations of a new

product to the market, each variation as a separate model, diffusing into the market concurrently.

For example, Apple introduces three different versions of iPhone7 (32GB, 128GB, and 256GB

memory), as well as three different versions of iPhone7plus concurrently. Product prices and the

resulting price differences among the products play an important role in shaping the diffusion of

the products and customers’ product choice. In this paper, we study the firm’s optimal pricing

strategy within this context. Specifically, we consider how the firm should set prices of products
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over the products’ life cycle when demand exhibits diffusion characteristics and customers choose

among multiple available product options.

In practice, firms adopt varied pricing strategies. Prices of microprocessors go through periodic

downward readjustment as the products enter different phases of their life cycles (Li and Huh,

2012). By the end of a two-year life cycle, the retail prices of smart phones are redued by 34%

on average (Entwistle, 2012). Prices of Apple’s iPhone slided by 25% between 22 and 28 months

of age (Entwistle, 2012) and the retail price of Apple’s iPhone 5s declined by 7% one year after

launch (Entwistle, 2015). Samsung uses an interesting strategy in which the average retail price

peaks one month after release with the introduction price at a 10% discount of the peak price and

the ending price at 50% discount (Maling, 2012). Price increase is observed also in other product

categories. A study by Melser and Syed (2007) indicates that the introduction prices for new beer

varieties are relatively cheap and prices are raised once a following is established. Amazon routinely

adjusts prices for books with strong life cycle characteristics such as those in the “Mystery, Thriller

and Suspense” category, where both price decreases and price increases are observed in the first

few weeks of release (Amazon Website 2017). These anecdotal albeit prevalent phenomena suggest

diverse pricing strategies for products through their life cycles.

The difficulty and complexity of pricing decisions in a diffusion often drive firms to myopic

strategies. According to PriceBeam, a pricing solution provider, companies sometimes conduct

extensive research on setting the proper launch price but fails to re-evaluate the pricing continuously

over the product life cycle (PLC) (PriceBeam, 2017): “This is problematic in two ways: Firstly,

you will either be losing out on revenue or leaving money on the table as you fail to take into account

the changes in the customer’s willingness-to-pay, and secondly, it will most likely deteriorate the returns

on other products in your portfolio. Proper life cycle pricing across both the early, mid- and late-stage

of the PLC is absolutely crucial to reap the rewards from the R&D investment.” While practitioners

are actively searching for a solution that continuously optimizes product prices and accounts for

product interactions throughout the diffusion, pricing in multi-product diffusion is under-studied

in the academic literature and existing models are complicated and intractable. We present in this

paper a viable model and a novel and efficient solution approach for this complex problem.

Researchers have applied diffusion models and choice models separately in many industries.

The diffusion model has been successful in modeling product adoption and the resulting aggregate

demand pattern, and has been extended to include marketing-mix variables such as advertising and

pricing. However, it does not extend easily to admit product and consumer characteristics data
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for sales prediction. On the contrary, choice models (in particular, logit choice models) have been

very successful in linking consumer and product attributes to sales prediction, however, they do

not address the diffusion dynamics that are inherent to the demand of a product over its life cycle.

Therefore, the idea of integrating consumer choice with diffusion is appealing. As Weerahandi

and Dalal (1992) point out, the combination of choice models with diffusion makes it possible to

incorporate customer demographics, price, and product attributes and to utilize cross-sectional

data on customers’ purchasing decision to predict sales penetration.

Despite its theoretical appeal, integrating the choice model and the diffusion model is not

straightforward. In this paper, we restrict our attention to integrated “diffusion-choice” models

that have successfully fitted empirical data and provided good forecast and understanding of the

underlying market. Specifically, we discuss in detail two important models – Weerahandi and

Dalal (1992) (“Weerahandi-Dalal” model hereafter), and Jun and Park (1999) (“Jun-Park” model

hereafter). The former is a single-product diffusion-choice model which treats each adoption as a

choice decision but does not consider interactions among products. The latter addresses diffusion

of competing products but omits the imitation (or word-of-mouth) effect which is often considered

a key component in product adoption. Both models are shown to work well on real-world data set

such as fax communication services (Weerahandi and Dalal, 1992), DRAM (Jun and Park, 1999;

Kim et al., 2005) and large-screen TVs (Lee et al., 2006). In this paper, we examine a firm’s pricing

decision when product demand can be described by such diffusion-choice models. We present a

general model structure that encompasses both the Weerahandi-Dalal and the Jun-Park models

and solve and characterize the optimal pricing solution.

To our knowledge, ours is the first paper addressing the pricing problem in diffusion-choice

models. From a theoretical perspective, we contribute to both the pricing and revenue management

literature and the diffusion theory literature. While price extensions of the diffusion model are

many, none examines pricing under diffusion-choice models despite their proven merits. Indeed,

solving the optimal pricing problem under either the Weerahandi-Dalal or Jun-Park model makes

significant technical and practical contributions while this paper effectively solves both. A key

advantage of our pricing model is its tractability for multi-product diffusion and, unlike existing

pricing models for diffusion, the complexity and computation burden grow very little with the

number of products. In the pricing and revenue management literature, multinomial logit (MNL)

and related choice models are well studied but none from within the context of product diffusion.

The problem becomes significantly harder when examined with diffusion, as customer choices in the
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current period affect future sales. As a result of this dependency, the state-of-art solution approach

does not apply. We present an analysis that circumvents this complexity and show that the optimal

solution is unique and efficiently obtainable. Moreover, we characterize properties of the optimal

solution, yielding insights into this complex pricing problem.

The rest of the paper is organized as follows. We review the related literature in Section 2 and

describe the diffusion-choice model in Section 3. We present the detailed analysis in Section 4 and

conduct numerical studies in Section 5. In Section 6, we present extensions that allow sequential

product introduction, stochastic demand and product-specific imitation effect, respectively. We

conclude in Section 7.

2 Prior Research

The literature on product diffusion is substantial, following the seminal work of Bass (1969) who

identifies two key forces driving product adoption - innovative and imitative behaviors of the con-

sumers. Innovators are early adopters whose decision is not influenced by previous adopters whereas

imitators learn from others and feel increasing pressure for adoption as the number of adoptions

increases. The imitation effect is also referred to as the word-of-mouth effect. The magnitude of

this effect varies by industry, which is shown in the studies by both Mansfield (1961) and Bass

(1969). Norton and Bass (1987) extend the diffusion model in Bass (1969) to successive genera-

tions of products. A series of Bass model extensions incorporate the price variable by modifying the

total market potential or the adoption rate with a price term; see Robinson and Lakhani (1975),

Bass (1980), Dolan and Jeuland (1981), Kalish (1983), Kamakura and Balasubramanian (1988),

Jain and Rao (1990), and Krishnan et al. (1999). Kalish (1983) and Horsky (1990) show that

the optimal price trend depends on the word-of-mouth effect and that penetration pricing (skim

pricing) is optimal with strong (weak) word-of-mouth effect. Krishnan et al. (1999) characterize

the optimal price trajectory under a variation of the generalized Bass model (Bass et al., 1994)

and show that the transition point of price trend depends on the discount factor and the price

sensitivity parameter instead of the innovation and imitation parameters; with zero discounting,

the optimal price shows a monotonically increasing trend nearly for the entire planning horizon. In

this paper, we establish a unimodal price path for time-invariant product quality, price sensitivity

and cost, generalizing the result in Kalish (1983) and Horsky (1990) to multi-product diffusion. In

addition, our model allows more general price trend to be justified by the effect of time-variant

product attributes, price sensitivity, and cost.
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More recently, Li and Huh (2012) examine pricing of a product going through diffusion assuming

a linear demand-price relationship superimposed on the diffusion curve in which the effect of price

does not carry through to future demand. They show that the price trend is driven by the interaction

between the diffusion curve and the intertemporal change in customer price sensitivity. Our model

is more flexible, capturing not only intertemporal changes in price sensitivity, but also its effect on

diffusion and future sales. Shen et al. (2014) consider a new product diffusion model with supply

constraints and show that the optimal price trajectory is complicated with inventory and capacity

considerations: it can be bimodal under the lost sales assumption and may have up to three modes

under a partial backlogging assumption. Most pricing models for product diffusion, including the

aforementioned, are for a single product and those that do address more than one product are

typically in a stylized setting with only two products (e.g., Bayus 1992); the primary reason is that

these models become cumbersome and intractable for price optimization as the number of products

increases beyond two. In contrast, we consider pricing in a multi-product diffusion with adoption

decisions given by the MNL choice model and we provide a scalable algorithm to solve the problem

for n products over T periods, which was unattainable with existing models. Consumer utility is a

function of both product quality and price and each consumer chooses the product that maximizes

his/her own utility. As a result, we are able to capture the effect not only of diffusion dynamics,

but also of product attributes and the demand interactions among products. For example, we show

that products with higher net quality have larger swings in sales, i.e., larger gap between peak and

non-peak sales, a characteristic that prior models were not able to identify.

Several researchers integrate discrete choice models with product diffusion. Oren and Schwartz

(1988) consider diffusion of a new product when each customer makes adoption decision by solving a

utility maximization between the new and current product. They assume that a customer’s utility

depends on the uncertainty of product performance which decreases over time and show that

this uncertainty and the heterogeneity in customer’s risk aversion lead to a logistic growth curve.

Weerahandi and Dalal (1992) propose a single-product diffusion-choice model and demonstrate with

an application of the fax communication services that the model is useful for studying segmented

market and the effect of marketing strategies and product features on sales. Jun and Park (1999)

predict sales in the DRAM market with a multi-product diffusion-choice model. It has been later

adopted in a series of applications for competing product or service offerings including DRAM (Kim

et al., 2005), telephony and broadband service subscriptions (Chen and Watanabe, 2006), large-

screen TVs (Lee et al., 2006), and home networking technologies (Lee et al., 2008). We study a

firm’s pricing decisions under such diffusion-choice models and explore how the diffusion dynamics
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play into the pricing decisions and vice versa.

One stream of related work extends the MNL model to include network effect in which the

customers’ utility for consuming a product depends on the total consumption level of the product.

Miyao and Shapiro (1981) examine situations in which the network effect can be positive, negative,

or zero and establish existence of a steady state equilibrium in which the choice probability of

each product equals the actual consumption proportion of each product. Wang and Wang (2016)

consider assortment planning under this endogenized MNL model. Du et al. (2016) study the

pricing problem when this network effect is a linear function of the total consumption and show

an interesting feature of the optimal prices in which one product has a low price whereas all other

products are priced higher at a common price. While the steady-state description of the network

effect encompasses the idea that choices are affected by total consumption, it does not fully capture

the dynamics of product diffusion, which usually do not reach a steady state but exhibit a time-

varying demand pattern. In contrast, we consider diffusion-choice models that explicitly model the

diffusion dynamics and we characterize the optimal price behaviors throughout the diffusion cycle.

Our paper also builds upon advances in price optimization under the family of logit choice

models. Hanson and Martin (1996) pioneer this research and show that the profit function under

the MNL model is non-concave in prices. Dong et al. (2009) and Song and Xue (2007) prove

concavity with respect to the choice probability vector under the MNL model. Li and Huh (2011)

extend the concavity result to the nested Logit model for symmetric within-nest price sensitivities

and Gallego and Wang (2014) identify a more general condition for a unique solution. Davis et al.

(2014) and Rayfield et al. (2015) propose methods for optimizing prices under the nested logit

model with price constraints. Huh and Li (2015) and Li et al. (2015) examine multi-level nested

logit models. More recently, Wang and Sahin (2017) consider the impact of switching cost on the

assortment and pricing decisions under MNL. Li and Webster (2017) present solution approaches

for pricing under the paired combinatorial logit (PCL) and the cross-nested logit models. Zhang

et al. (2018) study pricing under the broader class of Generalized Extreme Value (GEV) models. In

this paper, we extend this literature and demonstrate how diffusion dynamics influence the profit

function and the optimal prices and sales of products that form a MNL choice set.

3 Model

Figure 1 illustrates consumer choices in a multi-product diffusion, generalizing the single-product

adoption in Weerahandi and Dalal (1992, Figure 1). We assume that the market starts with a
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certain potential pool of customers. The occurrence of a sale for a particular product i results

from two sequential events: first, a purchase occasion arises for a potential customer; second, the

customer chooses product i among the set of available options (including the no-purchase option).

As in Weerahandi and Dalal (1992), we assume that each customer purchases a single unit. The

rate at which purchase occasions arise is driven by two forces: (i) the innovation effect which may

depend on the firm’s efforts in advertising and promotion but not on the current adoption level,

and (ii) the imitation effect which depends on how many customers have already made a purchase.

Once a customer decides to make a purchase, he/she drops out of the potential customer population

and enters the adopter population which influences future sales through the imitation effect; if a

customer decides not to purchase anything, he/she stays in the potential customer population and

may become a future adopter.

Make a Choice

choice 1 choice 3choice 2

Advertisement, Promotion, 

Canvassing

Imitation, Word-of-Mouth

Purchasing Occasion due to 

Diffusion

no purchase

Figure 1: Choice Decision in Product Diffusion.

The conceptual model and assumptions are the same as the Weerahandi-Dalal model, with the

binary logit choices extended to multinomial logit choices. Likewise, the model and assumptions

are also the same as the Jun-Park model with the addition of word-of-mouth (i.e., the dashed arrow

connection in Figure 1). Both models have been tested and applied empirically in the marketing and

economics literature with proven validity and merits, but neither has been studied in a normative

prescriptive decision context. In this paper, we adopt their conceptual model and assumptions

to study the pricing decision in a multi-product diffusion. Given the empirical practicality and

scalability of the model, it offers greater advantage than other multi-product diffusion models that

are either too stylized for practical decision support (such as Bayus (1992)) or too complex to be

tractable and scalable (such as Norton and Bass (1987)).
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Consider a firm selling n products concurrently and maximizing profit within a given planning

horizon of T time periods. Define M as the total market potential. Let Zit be the sales of product

i in period t and Yt be the cumulative sales (including all products) by the end of period t. Thus

Yt =

t
∑

s=1

n
∑

i=1

Zis . (1)

Let the utility of acquiring product i in period t at price pit be given by ait−btpit+ǫit, where ait

stands for the quality of the product at period t, bt is the time-dependent price sensitivity, and ǫit

is a random noise term that is of Gumbel distribution. Here, quality is a measure of attractiveness

of the product based on its non-price attributes and features. In addition, we normalize the utility

of no purchase in each period to zero.

Following the Weerahandi-Dalal model, we consider both the innovation and imitation dynamics

in product adoption. In particular, the number of customers facing a purchase decision in period

t depends on the size of the remaining market potential, (M − Yt−1), and on a fractional rate

(α+βYt−1) which we interpret as the fraction of customers in the remaining market potential who

will face a purchase occasion. The linear dependency on the size of adopter population is a basic

assumption in Bass (1969) and nearly all its extensions. As in Bass (1969), we assume that the time

unit is chosen such that (α+ βYt−1) ∈ [0, 1] for Yt−1 ∈ [0,M ], t = 1, 2, . . . , T , with α > 0 signifying

the intensity of the innovation effect and β > 0 the intensity of the imitation effect (α denotes the

portion of customers whose interest is not affected by the current number of adopters, and βYt−1

denotes the portion of customers whose interest is influenced by those who have already made a

purchase, i.e., the two terms represent the innovators and the imitators respectively). Therefore,

the demand for product i in period t is given by

Zit = (M − Yt−1)(α+ βYt−1)qit , i = 1, . . . , n (2)

where qit =
exp(ait − btpit)

1 +
∑n

j=1 exp(ajt − btpjt)
(3)

is the purchase probability given by the MNL choice model. We denote the no-purchase probability

in period t with

q0t =
1

1 +
∑n

j=1 exp(ajt − btpjt)
.

Following Weerahandi and Dalal (1992), we let α and β be constants while incorporating the effect

of product quality and price into the logit choice probability given in equation (3). In this paper, we
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consider the expected demand and optimize the firm’s profit based on the expected demand given

in (2) and we assume ample supply, both of which are simplifications commonly adopted in the

diffusion pricing literature (e.g., Kalish 1983; Horsky 1990; Bayus 1992). We examine a dynamic

pricing problem based on stochastic adoption in an extension.

The firm’s price optimization problem is given by

max
pit,

i=1,...,n,
t=1,...,T

T
∑

t=1

n
∑

i=1

(pit − cit)Zit

where cit is the cost of product i in period t. This problem formulation generalizes both the Jun-

Park model and the Weerahandi-Dalal model. Specifically, the special case of α = 1, β = 0 leads

to the Jun-Park model and the special case of n = 1 leads to the Weerahandi-Dalal model.

From equations (1) and (2), we can derive

M − Yt = (M − Yt−1)
[

1− (α+ βYt−1)

n
∑

i=1

qit

]

, (4)

α+ βYt = (α+ βYt−1)
[

1 + β(M − Yt−1)
n
∑

i=1

qit

]

. (5)

Define Ht := M − Yt−1 and Ft := α+ βYt−1 for t = 1, . . . , T . Then

Ht = Ht−1

(

1− Ft−1

n
∑

i=1

qi,t−1

)

, (6)

Ft = Ft−1

(

1 + βHt−1

n
∑

i=1

qi,t−1

)

, (7)

and sales of product i in period t can be rewritten as

Zit = FtHtqit . (8)

We observe in equations (3)-(8) that more attractive products obtain higher qit values and

contribute more to the word-of-mouth effect; for the same reason, they also benefit more from the

word-of-mouth effect than the less attractive products.

Note that Ht = M − Yt−1 represents the remaining market potential, and Ft = α + βYt−1

represents the fraction of customers in the remaining market potential that will face a purchase

occasion; so we refer to Ft as the diffusion intensity. We can then interpret FtHt as the number of

customers facing a purchase decision at time t. The recursions in equations (6) and (7) indicate how

the market potential and diffusion intensity evolve over time. The market potential monotonically
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decreases each period, which is reflected in the multiplicative term (1− Ft−1
∑n

i=1 qit−1), where

Ft−1
∑n

i=1 qit−1 signifies the proportion of customers who have made a purchase in period t − 1.

Since (1− Ft−1
∑n

i=1 qit−1) ∈ [0, 1], we refer to it as the shrinkage factor of the market potential

from period t− 1 to t. Similarly, the diffusion intensity Ft monotonically increases each period due

to the imitation effect, as reflected by the term (1 + βHt−1
∑n

i=1 qit−1); this term is greater than 1

and we refer to it as the amplification factor of the diffusion intensity.

The original single-product Bass diffusion model is fully parameterized with α and β, and sales

reach peak volume when the multiplicative product of the remaining market potential Ht and the

diffusion intensity Ft reaches its maximum. In the diffusion-choice model, however, sales of each

product are also affected by quality ait and prices pit of all products through the MNL model, and

such dependencies are then carried through to future periods through Ht and Ft values. These

dynamics may shift the sales of each product differently. Therefore, the price of each product at

any given time has complex rippling effect on the diffusion of this and other products.

4 Optimal Pricing Solution

Let πit be the profit of product i in period t and define the profit-to-go, Jt, as

Jt = max
pis,

i=1,··· ,n;
s=t,...,T

T
∑

s=t

n
∑

i=1

πis . (9)

From equation (8),

πit = (pit − cit)Zit = FtHt

(

pit − cit
)

qit and

Jt = max
pis,

i=1,··· ,n;
s=t,...,T

T
∑

s=t

n
∑

i=1

FsHs

(

pis − cis
)

qis .

Rewrite the price pit as a function of the purchase probability vector qt = (q1t, q2t, ..., qnt)

pit(qt) =
1

bt
(ait − log qit + log q0t) (10)

where q0t = 1−
∑n

i=1 qit. Subsequently,

Jt = max
qit∈[0,1],
i=1,··· ,n

[

FtHt

n
∑

i=1

(

pit(qt)− cit
)

qit + Jt+1

]

, (11)

where JT+1 = 0. The first term on the right side of equation (11) is the current-period profit and

the second term is the profit-to-go from the next period onward. We use the purchase probability

vector qt as the decision variable for the ease of both notation and derivation.
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Define GT+1 := 0 and

Gt(Ht, Ft,qt) :=
n
∑

i=1

(

pit(qt)− cit
)

qit

+

(

1− Ft

n
∑

i=1

qit

)(

1 + βHt

n
∑

i=1

qit

)

G∗

t+1(Ht+1, Ft+1) for t ≤ T (12)

where

G∗

t (Ht, Ft) = max
qt

Gt(Ht, Ft,qt) . (13)

Note that both Ht+1 and Ft+1 are functions of qt (see equations (6) and (7)) and thus depend

on the decision variables in period t. The product (1− Ft

∑n
i=1 qit) (1 + βHt

∑n
i=1 qit) is equal to

Ft+1Ht+1

FtHt
, namely, the ratio of the number of customers facing a purchase occasion in period t+1

to that in period t. Therefore, from (11) and the definition of Ĝ∗

t , the value-to-go Jt as defined in

equation (11) is equivalent to

Jt(Ht, Ft) = FtHtG
∗

t (Ht, Ft) . (14)

Hence, to solve the optimal prices, it suffices to solve (13).

Before we proceed, it is useful to interpret Gt. Recall that FtHt represents the number of

customers facing a purchase decision at time t. From (14), Gt measures the expected profit “amor-

tized” over the current number of customers facing purchase decisions, which includes potential

profit from this customer and those that he/she will influence through word-of-mouth. The first

term in equation (12) signifies the expected period-t profit from a customer who faces a purchase

decision in this period; the second term is the expected future profit amortized over the the number

of customers who face a purchase decision now. The price decision in period t, therefore, affects the

immediate profit in this period and affects future profit through its impact on the remaining market

potential Ht+1 and on the diffusion intensity Ft+1. Since the relationship is recursive, decision on qt

affects not only G∗

t+1, but also G∗

t+2 through Ft+2 and Ht+2, G
∗

t+3 through Ft+3 and Ht+3, and so

on. This leads to a complex dependency that is polynomial and does not appear to provide a clear

path for characterization. In this paper, we present a novel solution approach that circumvents this

complexity. Using this approach, we are able to show not only that the profit optimization has a

unique price solution, but also that the solution can be efficiently obtained and the optimal price

trend can be analytically characterized. In the following, we present in detail the necessary steps

leading to this characterization.
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4.1 Reduction of the Choice Probability Vector qt to a Single Variable θt

Given the relationships in (12), it should be clear that the choice of optimal prices in period t

depends on previous price decisions, {ps}s=1,··· ,t−1, only through Ft and Ht. Further, the definitions

of Ft and Ht imply

Ft = α+ β(M −Ht) ,

hence we view Ft as a linear function of Ht and rewrite (12) and (13) as

Gt(Ht,qt) :=

n
∑

i=1

(

pit(qt)− cit
)

qit

+

(

1− Ft(Ht)

n
∑

i=1

qit

)(

1 + βHt

n
∑

i=1

qit

)

G∗

t+1(Ht+1(Ht,qt))

where pit(qt) =
1

bt

(

ait − log
qit

1−
∑n

j=1 qjt

)

,

Ft(Ht) = α+ β(M −Ht) ,

Ht+1(Ht,qt) = Ht

(

1− Ft(Ht)
n
∑

i=1

qit

)

and

G∗

t (Ht) = max
qit∈[0,1],i=1,...,n

Gt(Ht,qt) .

For notation brevity, we suppress the function arguments of Ft(Ht), Ht+1(Ht, qt), Gt(Ht, qt) and

G∗

t (Ht) where there is no ambiguity, and write them as Ft, Ht+1, Gt and G∗

t for the remainder of

the paper.

Take the first-order partial derivative of Gt with respect to qit and set it to zero to obtain a

necessary condition for optimality:

pit(qt)− cit −
1

bt
=

n
∑

i′=1

qi′t
bt(1−

∑n
j=1 qjt)

+ (Ft+1 − βHt+1)G
∗

t+1 + Ft+1Ht+1
dG∗

t+1

dHt+1
. (15)

where we use the relationships in (6) and (7) to simplify the expression (see the online appendix

for the proof of (15)).

Note that the right hand side of the above is independent of the index i, which implies that,

at optimality, there exists θt such that pit − cit −
1
bt

= θt for all i. That is, the optimal markup

is symmetric across products, which generalizes the “equal-adjusted-markup” property in Gallego
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and Wang (2014) to the multi-period diffusion setting. This observation can simplify the problem.

In particular, we express the price and choice probability as functions of θt

pit(θt) = θt + cit +
1

bt
, (16)

qit(θt) =
exp(ait − 1− btθt − btcit)

1 +
∑n

j=1 exp(ajt − 1− btθt − btcjt)
, (17)

and consider a revised optimization problem over θt, t = 1, . . . , T . We rewrite Gt(Ht,qt) as

G̃t(Ht, θt) =
n
∑

i=1

(

pit(θt)− cit
)

qit(θt)

+
(

1− Ft(Ht)
n
∑

i=1

qit(θt)
)(

1 + βHt

n
∑

i=1

qit(θt)
)

G̃∗

t+1(Ht+1) (18)

where Ht+1 = Ht

(

1− Ft(Ht)

n
∑

i=1

qit(θt)
)

, (19)

G̃∗

t (Ht) = max
θt

G̃t(Ht, θt) . (20)

Hence, we have reduced an n-dimension optimization in each period t to a 1-dimension prob-

lem. Nonetheless, the longitudinal complexity is still prohibitive. In the next step, we establish

a connection between the optimal θt values of two adjacent time periods, which forms a crucial

building block of our solution approach.

4.2 Relationship between θt and θt−1 at Optimality

With the transformation of the choice probability vector to a single variable θt, the first-order

necessary condition of optimality becomes

θt =
n
∑

i=1

qit(θt)/q0t(θt)

bt
+ (Ft+1 − βHt+1)G̃

∗

t+1 + Ft+1Ht+1
dG̃∗

t+1

dHt+1
(21)

where q0t(θt) = 1−
∑n

i=1 qit(θt). Note qit/q0t = eait−1−btcit−btθt and define

rt(θt) := θt −

n
∑

i=1

eait−1−btcit−btθt

bt
,

Λt := FtHt
dG̃∗

t

dHt
.

Then the first-order condition is equivalent to

rt(θt) = (Ft+1 − βHt+1)G̃
∗

t+1 + Λt+1 , t ≤ T . (22)

This transformed first-order condition for the period t decision of θt reveals a clear balance between

the marginal impact on current (i.e., left side of (22)) and future (i.e., right side of (22)) periods.

13



In a myopic single-period decision setting, only rt(θt) is relevant and the optimal decision solves

rt(θt) = 0. With future periods in consideration, it is necessary to quantify the values of (Ft+1 −

βHt+1)G̃
∗

t+1 + Λt+1. A direct quantification is impractical due to the high computation load, the

difficulty of computing the derivative
dG̃∗

t+1

dHt+1
, and the fact that it is unclear whether the optimal

solution of θt is even uniquely identifiable. Instead, by connecting the optimal values of θt with that

of its adjacent period, we can establish uniqueness of the optimal solution and also dramatically

reduce the complexity of the problem.

To accomplish this, we make use of two recursive relationships. Substituting (16) into (18)

yields

G̃∗

t (Ht) = θt

n
∑

i=1

qit +

n
∑

i=1

qit
bt

+
Ft+1

Ft

Ht+1

Ht
G̃∗

t+1(Ht+1) . (23)

In addition, we can show that

Λt =

(

Ft+1

Ft
+

Ht+1

Ht

)

(Ft+1 − Ft)G̃
∗

t+1 +

(

Ft+1

Ft
+

Ht+1

Ht
− 1

)

Λt+1 . (24)

(Derivation of (24) appears in the online appendix.)

From the recursive relationships in (23) and (24), as well as the first order condition in (22), we

establish a connection between the optimal solutions of two adjacent time periods.

Lemma 1. Let θ∗t and θ∗t−1 be the optimal solution at time t and t−1 respectively for t = 2, . . . , T .

Then

rt−1(θ
∗

t−1)− rt(θ
∗

t ) = (Ft − βHt)
n
∑

i=1

eait−1−btcit−btθ
∗

t

bt
.

The relationship in Lemma 1 is much simpler and easier to quantify than the first-order condition

(22). It is not only crucial for establishing uniqueness of the optimal solution and efficiently solving

for it, but also useful for characterizing the optimal price trend, as we show in the next two

subsections.

4.3 Uniqueness and Solution Algorithm

It is clear from the problem formulation in (18)-(20) that the optimal θt is a function of the

remaining market potential at period t, Ht. Let θ
∗

t (Ht) solve the optimization in (18)-(20) for any

given Ht. Rewrite the relationship in Lemma 1 as

rt−1(θ
∗

t−1) = rt(θ
∗

t ) + (Ft − βHt)

n
∑

i=1

eait−1−btcit−btθ
∗

t

bt
. (25)
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We express the right side of (25) as a function of Ht and define

gt(Ht) := rt
(

θ∗t (Ht)
)

+
(

Ft(Ht)− βHt

)

n
∑

i=1

eait−1−btcit−btθ
∗

t (Ht)

bt
.

From (19), Ht = Ht−1

(

1 − Ft−1(Ht−1)
∑n

i=1 qi,t−1(θt−1)
)

is a function of Ht−1 and θt−1; we fur-

ther define ĝt(Ht−1, θt−1) := gt
(

Ht(Ht−1, θt−1)
)

. Therefore, according to (25), the optimal solution

θ∗t−1(Ht−1) must satisfy

rt−1(θt−1) = ĝt(Ht−1, θt−1) , t = 2, . . . , T . (26)

Given Ht−1, this is a single-variable equation for θt−1. From this, we establish uniqueness of the

optimal solution and construct an efficient method to solve for it, as summarized in the following

proposition.

Proposition 1. (i) For any given Ht, there exists a unique solution θ∗t (Ht) which maximizes

G̃t(Ht, θt). (ii)
dθ∗t (Ht)
dHt

≤ 0. (iii) Suppose θ∗t+1(Ht+1) is the unique optimal solution in period t+ 1

for any given Ht+1. Then for any given Ht, θ
∗

t (Ht) is the unique root to

rt(θt) = ĝt+1(Ht, θt) (27)

where
drt(θt)

dθt
> 0 and

∂ĝt+1(Ht, θt)

∂θt
< 0.

The proof relies on inductively showing (i) and (ii) jointly, using the relationship in equation

(26). Furthermore, equation (27) can be solved efficiently with a bisection search since the left side

monotonically increases and the right side monotonically decreases in θt, leading to the following

algorithm for computing q∗

t for all t = 1, . . . , T .

Algorithm 1 (Solution Procedure).

(i) First, solve the period T problem. Since G̃∗

T+1 = 0, solve rT (θ
∗

T ) = 0 to obtain θ∗T and then let

p∗iT = ciT + 1
bt

+ θ∗T .

(ii) Next, for t = T −1, T −2, . . . , 1, discretize the plausible range for Ht, e.g., [0,1], to NH grid points. For
each Ht value, solve the single-variable equation (27) via bisection search to obtain θ∗t (Ht). Specifically,
given Ht, the left hand side of equation (27), i.e., rt(θt) is computed according to

rt(θt) = θt −

n
∑

i=1

eait−1−btcit−btθt

bt
,

and the right hand side of equation (27), i.e., ĝt+1(Ht, θt), is computed according to the relationships:

ĝt+1(Ht, θt) = gt+1

(

Ht+1(Ht, θt)
)

,

Ht+1 = Ht

(

1− Ft(Ht)
n
∑

i=1

qi,t(θt)
)

,

gt+1(Ht+1) = rt+1

(

θ∗t+1(Ht+1)
)

+
(

Ft+1(Ht+1)− βHt+1

)

n
∑

i=1

eait+1−1−bit+1cit+1−bit+1θ
∗

t+1(Ht+1)

bit+1
.
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(iii) Finally, identify the path of optimal prices and sales from the initial value H1 = M − Y0 for t =
1, 2, . . . , T − 1 according to

θ∗t = θ∗t (Ht),

p∗it = θ∗t + cit +
1

bt
,

q∗it =
exp(ait − 1− btθ

∗

t − btcit)

1 +
∑n

j=1 exp(ajt − 1− btθ∗t − btcjt)
,

Z∗

it = [α+ β(M −Ht)]Htq
∗

it ,

Ht+1 = Ht

{

1− [α+ β(M −Ht)]

n
∑

i=1

q∗it

}

,

where we obtain θ∗t (Ht) by interpolating θ∗t values on the grid computed in step (ii).

In the Weerahandi-Dalal model, the above procedure applies with n = 1. In the Jun-Park

model, it turns out that with α = 1 and β = 0, the problem becomes independent of the remaining

market potential Ht. In particular, (12) reduces to

Ĝt =

n
∑

i=1

(

pit(qt)− cit
)

qit +

(

1−

n
∑

i=1

qit

)

Ĝ∗

t+1 (28)

which is concave in qt and independent of Ht, leading to an even simpler solution.

Proposition 2. In the Jun-Park model for which α = 1 and β = 0,

(i) Ĝt is concave in qt = (q1t, q2t, ..., qnt).

(ii) let ρ∗t be the unique solution to

ρt =

n
∑

i=1

1

bt
exp(ait − 1− btcit − btρt) +G∗

t+1 . (29)

Then Ĝ∗

t = ρ∗t .

(iii) the optimal pricing solution is given by

p∗it = cit +
1

bt
+ Ĝ∗

t , (30)

q∗it =
exp(ait − 1− btcit − btĜ

∗

t )

1 +
∑n

j=1 exp(ajt − 1− btcjt − btĜ∗

t )
, (31)

where Ĝ∗

t is solved backward in time according to (29) and Ĝ∗

T+1 = 0.

When diffusion is driven predominantly by the innovation effect, the solution given in Proposi-

tion 2 suffices, which is simple to obtain due to independency on Ht.
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4.4 Properties of Optimal Solution

Lemma 1 implies rt−1(θ
∗

t−1) ≤ rt(θ
∗

t ) if and only if Ft ≤ βHt. Recall that Ht measures the remaining

market potential which decreases with time and Ft measures the diffusion intensity which increases

with time. Hence the term (Ft−βHt) monotonically increases in t; if the planning horizon covers a

majority of the product’s life cycle, this term should shift from negative to positive and crosses zero

only once as t increases. Let t̄ be the time period at which (Ft − βHt) switches from negative to

positive. If the planning horizon only covers a portion of the product life cycle such that (Ft−βHt)

is negative (positive) throughout the planning horizon, then t̄ = T (t̄ = 1).

As a result, rt(θ
∗

t ), and consequently θ∗t change in a predictable manner with respect to time.

Corollary 1. There exists t̄ ∈ {1, . . . , T} such that rt−1(θ
∗

t−1) ≤ rt(θ
∗

t ) if t < t̄ and rt−1(θ
∗

t−1) ≥

rt(θ
∗

t ) if t ≥ t̄ where t = 1, . . . , T .

In the special case for which the cost and price sensitivity are time invariant, we can characterize

the time trend of the optimal prices.

Corollary 2. Suppose product qualities, costs and price sensitivities are time-invariant, i.e., ait =

ai, bt = b and cit = ci for i = 1, . . . , n; t = 1, . . . , T . Then there exists t̄ ∈ {1, . . . , T} such that

θ∗t−1 ≤ θ∗t if t ≤ t̄ and θt−1 ≥ θt if t ≥ t̄. In addition, p∗i,t−1 ≤ p∗i,t if t ≤ t̄ and p∗i,t−1 ≥ p∗i,t if t ≥ t̄ .

Thus with time-invariant quality, cost and price sensitivity, the optimal prices of all products

exhibit an up-and-then-down time trend.

In the special case of the Jun-Park model, it can be shown that the optimal price trend is a

monotonic descending one.

Corollary 3. Suppose α = 1 and β = 0. Then (i) Ĝ∗

t decreases in t. (ii) Suppose that ajt, bt, and

cjt stay constant over time. Then the optimal price of each product, given by p∗it, i = 1, 2, . . . , n,

decreases in t.

The difference of price trend between the Jun-Park special case and the general model reflects

the impact of the imitation effect. In the absence of imitation, the term Ĝ∗

t decreases in time,

implying that the average profit from a customer remaining in the potential customer population

decreases with time, which leads to decreasing prices. Intuitively, as time progresses, the time

window to capture the remaining customers shortens; to counteract this effect, the firm has to

lower prices to make the products more attractive. With imitation, the firm has an incentive to set
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the price low initially so as to speed up the word-of-mouth effect; this is most effective early in the

diffusion. As the diffusion progresses, the firm faces a smaller pool of remaining customers and a

shrinking time window to capture them and thus the pressure to reduce price increases over time.

Samsung, for example, is reported to have priced its smart phones with such an up-and-then-down

trend (Maling, 2012). This highlights the importance of aligning a firm’s product introduction

and pricing strategy with product diffusion characteristics: Optimal pricing strategy should be

stage-dependent in a product life cycle; products that rely more on word-of-mouth for adoption are

better candidates for discounted introduction prices than others.

A similar effect has been documented in the existing literature for a single-product diffusion

– with strong word-of-mouth effect, it is optimal to use penetration pricing (i.e., increase price

initially and decrease price later); with weak word-of-mouth, it is optimal to price skim (i.e.,

monotonically decrease price) (Kalish 1983, Horsky 1990). We have generalized this to the setting

of multiple substitutable products, and the relationships in Lemma 1 and equation (16) quantify

period-to-period price changes for every product in the choice set, which were not available in

prior models. As we will show later in the paper, these relationships continue to hold for sequential

product introductions, making the method a robust tool for analyzing price trend in a much broader

context. In addition, our model allows more general price trend to be justified by the effect of

diffusion as well as time-variant product qualities, price sensitivity, and cost; in this case, the price

trend becomes further compounded with the time trend of these parameters. For example, since

the optimal prices are given by

p∗it = cit +
1

bt
+ θ∗t , (32)

it is evident that increasing price sensitivity and declining cost will superimpose additional descend-

ing trend on the optimal prices, and with our solution method, these impacts are easily quantified.

Therefore, firms can use estimate of cost reduction (or price sensitivity change) to quantitatively

project the optimal pricing strategy and diffusion path of each product over the product life cycle.

Such capability facilitates other strategic decisions such as capacity and inventory planning. The

common term θ∗t depends on properties of all products and identifies the common price trend,

emphasizing the need for joint determination of pricing of all products in a choice set.

From (32), we obtain the familiar “equal mark-up” property which is well-known for pricing

under the MNL demand. Under this property, the product with higher cost is priced higher.

Corollary 4. For any two products i 6= j, p∗it− cit = p∗jt− cjt, i.e., p
∗

it ≥ p∗jt if and only if cit ≥ cij .
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The choice probabilities and sales, however, are not equal across products, but instead differ

across products based on product quality. The next corollary shows that products with higher “net

quality” (i.e, higher ai − bci values) will, ceteris paribus, have higher swing in sales, i.e., steeper

declining or increasing trend, than low net-quality products.

Corollary 5. Suppose ait = ai, cit = ci and bt = b for all i, t. If ai − bci > aj − bcj for i 6= j then

at the optimal price solution, |q∗i,t−1 − q∗i,t| > |q∗j,t−1 − q∗j,t| and |Z∗

i,t−1 − Z∗

i,t| > |Z∗

j,t−1 − Z∗

j,t| for

t = 2, . . . , T .

Therefore, the gap between peak and non-peak sales is larger for high-end products than for

low-end products. This has important implications for inventory and capacity decisions as products

with larger demand swing are harder to manage and require more careful planning.

Lastly, we comment on the diffusion under the optimal prices. Note that sales under the optimal

path are given by Zit =
FtHt exp(ait−1−btθ

∗

t−btcit)
1+

∑n
j=1 exp(ajt−1−btθ

∗

t−btcjt)
. Hence, the time trend of FtHt indicates how the

overall diffusion evolves over time while the exact time when sales peak for each product depends

on the values of ait − btcit. For example, all else equal, a product with faster value depreciation

will reach sales peak sooner than others while a product with faster cost reduction may start to see

sales decline later than other products (as the firm is able to optimally reduce price of this product

at a faster speed than for other products). Therefore, using our model, one can project not only

the optimal price path, but also how each individual product diffuses into the market under the

optimal prices, given the projections of ait, bt and cit over time.

5 Numerical Illustration

The solution method we have developed in Section 4 applies to any intertemporal pattern of pa-

rameters ait, bt and cit. However, conclusive analytical properties of the price trend can only be said

when restricting to particular parameter patterns. Next, we numerically examine the impact of dif-

fusion dynamics, the effect of product quality, price sensitivity and cost as well as the compounding

effect of their intertemporal trend. We illustrate this with a single-product case (Sections 5.1 and

5.2) as figures plotting the time trends of multiple products under varying parameter values are

illegible. To illustrate the effect of product interactions, we present the multiple product scenarios

(Section 5.3) and we consider both the breadth (i.e., the number of products) and the depth (i.e.,

quality differences) of product variety.
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5.1 Effects of Diffusion Parameters, Product Quality and Price Sensitivity

In Bass (1969), as well as in subsequent applications, products of different categories exhibit dis-

tinctive diffusion characteristics which is reflected in the relative magnitude of innovation versus

imitation effect. In the examples shown in Figure 2, we compute the optimal price path by varying

the values of α and β while keeping other parameter values fixed with M = 1, Y0 = 0, T = 25; the

quality, cost and price sensitivity are held constant at at = 4, bt = 1, ct = 0 for t = 1, . . . , T in order

to focus on the diffusion effect. As the imitation effect β increases, the optimal price displays a

steeper up-and-then-down trend, which is in agreement with the discussion following Corollary 2.

However, as the innovation effect α becomes more dominant (Figure 2(b)), the initial price is to be

set higher, which offsets the imitation-driven initial upward price trend and ultimately leads to a

predominantly descending price trend.
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(b) Effect of α (β is fixed at 0.4)

Figure 2: Optimal Prices versus Diffusion Parameters.

The effect of product quality a and price sensitivity b are illustrated in Figures 3(a) and 3(b)

respectively. As expected, higher quality or lower price sensitivity leads to higher prices. In

the literature, a common scale factor of a and b parameters is interpreted as a measure for the

cognitive limitations of customers, i.e., choice probability is given by qi =
eui/γ

∑n
j=0 e

uj/γ
with large γ

values indicating less rational choice behaviors (Su, 2008). Figure 3(c) shows how such customer

rationality affects the optimal prices by scaling down values of a and b by a common parameter

γ. As consumer rationality decreases (i.e., γ increases), the optimal prices are generally higher,

which is intuitive since customers are less able to differentiate between good and poor choices (i.e.,

less sensitive to price or quality differences). In addition, we observe larger intertemporal price

adjustments for higher γ values, which is less intuitive but also reflects the firm’s adaptation to

reduced rationality - with irrational customers, it takes a larger initial discount to induce word-of-

mouth as well as a larger markdown later in the diffusion to counteract the depletion of potential

customers.
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Figure 3: Optimal Prices versus Parameters a and b (other parameters are the same as in Figure
2.)

5.2 Effect of Time-Varying Price Sensitivity and Cost

While the examples in Figure 2 have time-invariant cost and price sensitivity (so as to isolate the

effect of diffusion on prices), in most realistic settings these vary with time and typically cost declines

over time and price sensitivity increases over time. Figure 4 illustrates the optimal price path and

the corresponding sales for each price sensitivity curve specified in Figure 4(a) where the curve is

concave (convex) when λb > 0 (λb < 0) and linear when λb = 0. For reference, we also include the

optimal price path and sales for constant price sensitivity with b(t) = (b1 + bT )/2, shown as the

dashed curve. Evidently, the optimal price displays a stronger declining trend with increasing price

sensitivity than with constant b. With sharply increasing price sensitivity (λb = 0.2), we obtain

a monotonically descending price trend, masking any imitation-driven upward price trend (Figure

4(b)). In addition, with increasing price sensitivity, peak sales occur earlier in the planning horizon

because the firm has a stronger incentive to sell early when the market is less price-sensitive (Figure

4(c)).
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Figure 4: Effect of Increasing Price Sensitivity (price sensitivity curves in Figure 4(a) are given by

the equation bt = b1 + (bT − b1) ·
1−e−λb(t−1)

1−e−λb(T−1) with b1 = 1, bT = 2.)
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We observe in Figure 5 that declining cost (shown in Figure 5(a)) results in a stronger downward

price trend (Figure 5(b)) and delayed peak sales (Figure 5(c)) relative to constant cost (which is

fixed at ct = (c1 + cT )/2 and shown as the dashed curve). That is, anticipating cost decline and

potentially higher margin later in time, the firm finds it more profitable to delay peak sales; like

in the case of increasing price sensitivity, this dampens the imitation-driven upward price trend.

Interestingly, although both price-sensitivity increase and cost decline reduce the upward price trend
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Figure 5: Effect of Declining Cost (cost curves in Figure 5(a) are given by equation cit = c1− (c1−

cT ) ·
1−e−λc(t−1)

1−e−λc(T−1) with c1 = 2, cT = 0.)

during the early stage of diffusion, the former accelerates peak sales whereas the latter postpones

peak sales.

5.3 Effect of Product Interactions

To isolate the effect of product interactions, we consider examples with time-invariant qualities,

costs and price sensitivities. Let M = 1, Y0 = 0, T = 25, α = 0.04, β = 0.2, n = 3, a1t =

3, a2t = 4, a3t = 5, bt = 1, cit = 0 for t = 1, . . . , T . Apply Algorithm 1 to obtain the optimal

θt, pit, qit and Zit for i = 1, 2, 3 and t = 1, . . . , T . Since cost and price sensitivity are symmetric

across products and time-invariant, the optimal prices of the products are equal and given by

p∗it = cit + 1/bt + θt = 1 + θt. Figures 6(a)-6(c) illustrate the optimal price, choice probability and

sales, respectively. Note that the phenomenon identified in Corollary 5 is apparent: Not only are

sales and choice probability of the high-quality product (product 3 with a3t = 5) much higher, but

they also exhibit stronger time trend (i.e., larger swing) than the low-quality product (product 1

with a1t = 3).

Next, we examine how the breadth of product variety, measured by the number of products

offered in the choice set, affects the optimal solution. For the ease of comparison, we let ait = 4 for

i = 1, . . . , n, t = 1, . . . , T and vary n while keeping all other parameters the same as in Figure 6.
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Figure 6: An Example Illustrating Corollary 5.

Results are shown in Figure 7. As n increases, both the optimal prices and the firm’s profit increase.
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Figure 7: Impact of Product Variety Breadth.

In addition, with more product options for the customers, the diffusion takes off more rapidly and

reaches peak sooner. A similar pattern is observed for the optimal prices, which can be explained

when considered in conjunction with diffusion: By adding breadth (i.e., more products), the firm is

able to capture more customers early on, which speeds up the diffusion and consequently lessens the

imitation-driven upward price trend but strengthens the depletion-driven downward price trend;

this results in the optimal prices declining sooner. Such observations may help justify firms’ strategy

of introducing multiple variations of a new product, although the increased profit shown in Figure

7(c) need be balanced with the cost of managing more product variety which is omitted here.

Figure 9 illustrates the effect of depth of product variety, measured by the quality differences

among products. We let a1t = 4 − ∆a, a2t = 4, and a3t = 4 + ∆a for t = 1, . . . , T and vary the

value of ∆a (other parameters are the same as in Figure 6). As the depth (i.e., ∆a) increases, the

optimal solution becomes increasingly dominated by the highest-quality product (i.e., product 3) as

shown in Figure 8. As a result, not only is the firm able to charge higher prices (Figure 9(a)), but

it also achieves a faster diffusion (Figure 9(b)) and a higher profit (Figure 9(c)). Therefore, having
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a more competitive leading product (versus three average products) accelerates the diffusion and

benefits the firm.
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Figure 8: Impact of Product Variety Depth on Sales.
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Figure 9: Impact of Product Variety Depth.

6 Extensions

6.1 Sequential Product Introductions

In Section 4, we have examined multiple substitute products going through diffusion concurrently.

In practice, these products may be introduced nonconcurrently but with overlapping periods of

sales. For example, Amazon sometimes introduces the paperback version of a book a few months

after the hardcover version. Technology firms often introduces successive generations of products

which are substitutes of one another and have overlapping sales. Indeed, the June-Park model itself

considers such a scenario. Researchers have extended Bass (1969) and similar models to address

diffusion of overlapping product generations (see Meade and Islam (2006) and Peres et al. (2010)).

Most prominently, Norton and Bass (1987) assume that the adoption of the next generation prod-

uct originates from both the untapped market potential and adopters of the previous generation

upgrading to the new product. Their model, however, only addresses substitution between adjacent
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generations, not across multiple generations; it grows increasingly more complex with additional

number of products and it is not clear how one can incorporate prices and product characteristics

without making the model intractable. A related stream of work builds upon the population growth

model (for example, Mahajan and Muller (1996) on the demand for IBM mainframe computers,

Kim et al. (2000) on subscriptions of telecommunication services, and Li et al. (2013) on sales of

microprocessors). These models perform well for fitting empirical data, but offer poor tractability

for price optimization. Consequently, normative price optimizations based on multi-product diffu-

sion models are few and are typically in a stylized setting with only two products (e.g., Bayus 1992)

which is unsuitable for decision support. In this section, we show that the mathematical model

presented in Section 4 can be extended to this scenario.

Let Mt be the total market potential at the beginning of period t, which may be adjusted

based on market change. For example, when a new product is introduced, Mt may change due to

additional market potential brought forth by the new product. This modeling choice is commonly

adopted in the literature for successive product generations (see, for example, Norton and Bass

(1987) and Jun and Park (1999)). Let κt be the set of products being offered at time t. As new

products are introduced or old products are retired over time, the set κt and the total market

potential Mt evolve accordingly. Assuming that Mt and κt are both exogenously given, we solve

the pricing problem. The choice probability for product i, i ∈ κt in period t is

qit =
exp(ait − btpit)

1 +
∑

j∈κt
exp(ajt − btpjt)

and the demand for product i in period t is given by Zit = (Mt − Yt−1)(α + βYt−1)qit, where

Yt =
∑t

s=1

∑

i∈κs
Zis. From this, we can derive

Mt+1 − Yt = ∆Mt+1 + (Mt − Yt−1)
[

1− (α+ βYt−1)
∑

i∈κt

qit

]

where ∆Mt := Mt −Mt−1. We note the two main differences in the problem formulation for the

sequential introduction model: (i) the set of product κt is allowed to change with time, (ii) there

is a period-to-period change ∆Mt for the total market potential.

It can be shown that Lemma 1 and Proposition 1 continue to hold under this generalization (see

the online appendix for proofs). Such results warrant a similar efficient algorithm for solving the

model with sequential product introductions (provided in the online appendix). In addition, it can

be verified that Corollaries 4 and 5 continue to hold. Suppose the remaining market potential Ht

monotonically decreases with time, then Corollaries 1 and 2 hold in the sequential model. However,
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this may not always be the case if Mt varies with time; for example, Mt could increase due to the

introduction of a new product, which may cause a temporary increase inHt and consequently a price

kink. Nonetheless, the relationship in Lemma 1 still helps identify the overall price trend with such

potential kinks. Therefore, the model framework and our solution approach are flexible for studying

sequential product introductions and the impact of the pricing decisions in this context. Our method

accommodates multiple product introductions without creating prohibitive computation burdens.

6.2 Stochastic Demand

Our main model in Section 4 considers the expected demand, following the current literature on

diffusion-choice models. Next, we extend this to stochastic demand, which is useful for dynamically

pricing the products based on the realized adoption.

Let Y be the level of cumulative adoption, and M −Y be the remaining market potential. The

diffusion intensity is given by ᾰ+β̆Y where ᾰ parameterize the innovation effect and β̆ parameterizes

the imitation effect. Let (M − Y )(ᾰ + β̆Y ) be the probability that there is a customer arrival in

each time period. We choose the time unit sufficiently small that there can be at most one arrival

in each period. For a given customer arrival, the customer chooses among n products (and the

no-purchase option) with the choice probability given in equation (3). If the customer purchases

product i, then the firm obtains profit pit − cit and the cumulative adoption increases by one unit.

Define Jt as the profit-to-go from period t onward. The firm maximizes the total profit over the

planning horizon of T time periods by solving the following dynamic programming problem:

Jt(Y,qt) = (M − Y )(ᾰ+ β̆Y )

n
∑

i=1

qit
(

pit(qt)− cit + J∗

t+1(Y + 1)
)

+
[

1− (M − Y )(ᾰ + β̆Y ) + (M − Y )(ᾰ+ β̆Y )q0t

]

J∗

t+1(Y ) (33)

where J∗

t (Y ) := max
qt

Jt(Y,qt) , t = 1, . . . , T, J∗

T+1(Y ) = 0 .

Note that the adoption level stays at Y in period t + 1 if there is no arrival in period t, which

occurs with probability 1 − (M − Y )(ᾰ + β̆Y ), or there is an arrival but the customer chooses

not to purchase any of the n products, which occurs with probability (M − Y )(ᾰ + β̆Y )q0t. This

formulation is consistent with stochastic MNL demand models adopted in the literature (e.g., Dong

et al. (2009)); in our formulation, the arrival rate is endogenous and given by the diffusion equation

instead of exogenous and constant.

Taking derivative of Jt(Y,qt) with respect to qit, we obtain the following first-order condition
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(derivation provided in the online appendix)

pit − cit −
1

bt
=

n
∑

i′=1

qi′t/q0t
bt

+ J∗

t+1(Y )− J∗

t+1(Y + 1) . (34)

The right hand side is independent of the index i. Thus at optimality, equal markup holds and

there exists θt such at

pit − cit −
1

bt
= θt ∀i. (35)

We can rewrite (34) as

θt =
1

bt

n
∑

i=1

eait−1−btcit−btθt + J∗

t+1(Y )− J∗

t+1(Y + 1) , (36)

or equivalently,

rt(θt) = J∗

t+1(Y )− J∗

t+1(Y + 1), (37)

where

rt(θt) := θt −
1

bt

n
∑

i=1

eait−1−btcit−btθt . (38)

Let θ∗t (Y ) be the solution to the first-order condition in (37). We derive a similar connection

between rt−1(θ
∗

t (Y )) and rt(θ
∗

t (Y )) as in Lemma 1.

Lemma 2.

rt−1(θ
∗

t−1(Y ))− rt(θ
∗

t (Y )) = (M − Y )(ᾰ+ β̆Y )

n
∑

i=1

eait−btcit−1−btθ
∗

t (Y )

bt

−(M − Y − 1)(ᾰ+ β̆Y + β̆)
n
∑

i=1

eait−btcit−1−btθ
∗

t (Y+1)

bt
. (39)

This relationship simplifies the dynamic programming problem and leads to a unique optimal

price solution.

Proposition 3. The solution to (37) is unique for any given Y = 0, . . . ,M − 1 and t = 1, . . . , T .

Rewrite the relationship in Lemma 2 as

rt−1(θ
∗

t−1(Y )) = θ∗t (Y ) + [(M − Y )(ᾰ + β̆Y )− 1]

n
∑

i=1

eait−btcit−1−btθ
∗

t (Y )

bt

−(M − Y − 1)(ᾰ + β̆Y + β̆)

n
∑

i=1

eait−btcit−1−btθ
∗

t (Y+1)

bt
. (40)
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Given θ∗t (Y ) for Y = 0, . . . ,M − 1, it is straightforward to compute rt−1(θ
∗

t−1(Y )); due to the

monotonicity of rt−1(·), one can then apply a bisection search to find θ∗t−1(Y ). Therefore, based

on these analytical results, the dynamic programming problem is easily solved with backward

computation. Furthermore, we can derive the following structural properties of the optimal solution.

Proposition 4. (i) θ∗t (Y +1) ≥ θ∗t (Y ) for Y = 0, . . . ,M−1 and t = 1, . . . , T . (ii) rt−1(θ
∗

t−1(Y )) ≥

rt(θ
∗

t (Y )) if Y ≥ M−1
2 − ᾰ

2β̆
, t = 2, . . . , T .

Corollary 6. Suppose product qualities, costs and price sensitivities are time-invariant, i.e., ait =

ai, bt = b and cit = ci for i = 1, . . . , n; t = 1, . . . , T . Let p∗it(Y ) be the optimal price of product i at

period t when the current adoption level is Y . Then (i) p∗it(Y + 1) ≥ p∗it(Y ) for Y = 0, . . . ,M − 1

and t = 1, . . . , T (ii) p∗it−1(Y ) ≥ p∗it(Y ) if Y ≥ M−1
2 − ᾰ

2β̆
, t = 2, . . . , T .

This indicates that, all else equal, the optimal price is higher at a higher adoption level. In

addition, once adoption exceeds a certain level, the optimal prices decrease (weakly) over time.

The stochastic model examines the perspective of dynamic pricing and is solvable using a similar

technique developed for the main model. However, it does not supersede the main model for two

reasons. First, the main model is based on a family of models that have been proven to work

empirically. Methods are well established to parameterize such models using sales data. The

stochastic model is based on infinitesimally small time intervals and single-unit arrivals; it is more

challenging to parameterize such a conceptual model with real data. In practice, single-unit demand

arrival is not observed in most data set, one has to use the main model parameters α and β and

rescale them to approximate parameters ᾰ and β̆ for the stochastic model. Second, the stochastic

model focuses more on the tactical response strategy of dynamic pricing, i.e., how should prices be

adjusted at a given time based on the stochastic realization of the adoption level, while the main

model allows us to characterize the optimal adoption path along with the optimal price trend a

priori, and thus offers practical guidance for strategic pricing over product life cycles.

6.3 Product-specific Word-of-mouth Effect

It is possible that the word-of-mouth effect may also be driven by the cumulative adoption of

each individual product in addition to the aggregate adoption. For example, a consumer who

bought an iPhone with a 256 GB memory may communicate the benefit of a large size memory

to non-adopters and positively influence the sales of the 256GB model. Hence it may be desirable

to consider product-specific imitation in diffusion-choice models. In this extension, we examine a
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general model in which this product-specific word-of-mouth effect is also considered. In particular,

the demand for product i in period t is given by

Zit = (M − Yt−1)(α+ βYt−1 + γYit−1)qit (41)

where Yit−1 is the cumulative sales of product i by the end of period t− 1, γ > 0 parameterizes the

intensity of the product-specific imitation effect, and other terms are as defined in Section 3. As we

show next, accounting for the product-specific imitation effect necessitates tracking product-specific

diffusion intensity, leading to a much more complex problem. As a result, the reduction of choice

probability vector qt to a single variable θt adopted in Section 4.1 does not carry through. To see

this, note that the remaining market potential and the diffusion intensity become

Ht+1 = Ht



1−

n
∑

j=1

Fjtqjt



 (42)

Fit+1 = Fit +Ht



β
n
∑

j=1

Fjtqjt + γFitqit



 (43)

and the optimization problem becomes

Jt = max
qit∈[0,1],
i=1,··· ,n

[

Ht

n
∑

i=1

Fit

(

pit(qt)− cit
)

qit + Jt+1

]

,

where JT+1 = 0. Denote the vector of product-specific diffusion intensity with Ft = (F1t, F2t, . . . , Fnt).

It can be shown that Ht = M −
∑n

i=1 Fit−nα

nβ+γ
. Thus from (42) and (43), the vector Ft+1 is a function

of Ft and qt. Define

Ğt(Ft,qt) :=

n
∑

i=1

(

pit(qt)− cit
)

qitFit +

(

1−

n
∑

i=1

Fitqit

)

Ğ∗

t+1(Ft+1(Ft,qt))

where Ğ∗

t (Ft) = max
qit∈[0,1],i=1,...,n

Ğt(Ft,qt) .

We note that the interpretation of Ğ(·) differs from that of G(·) in Section 4 due to the term Fit.

The first-order condition of optimality is given by (derivation provided in the online appendix):

pit(qt)− cit −
1

bt
=

n
∑

i′=1

qi′t
bt(1−

∑n
j=1 qjt)

·
Fi′t

Fit
+ Ğ∗

t+1 −Ht+1

(

γ
∂Ğ∗

t+1

∂Fit+1
+ β

∑

i′

∂Ğ∗

t+1

∂Fi′t+1

)

. (44)

Contrasting this with equation (15), we observe that the right hand side is dependent on the

index i through the term γ
∂G∗

t+1

∂Fit+1
. Hence the equal mark-up property no longer holds with product-

specific imitation. As a result, the transformation given in equation (16)-(17) is no longer viable.
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However, despite the added complexity of product-specific imitation, we can reduce the longitudinal

complexity employing a similar technique as in Section 4. Define

Rit(pt) := pit − cit −
1

bt
−

n
∑

i′=1

eai′t−btpi′t

bt

Fi′t

Fit
.

We can rewrite the first-order condition as

Rit = Ğ∗

t+1 −Ht+1

(

γ
∂G∗

t+1

∂Fit+1
+ β

n
∑

i′=1

∂G∗

t+1

∂Fi′t+1

)

. (45)

Proposition 5. The optimal price solution p∗

t , t = 1, . . . , T satisfies

Rit−1(p
∗

t−1)−Rit(p
∗

t ) =
n
∑

i′=1





1

bt
+

n
∑

j=1

eajt−btp
∗

jt

bt
·
Fjt

Fi′t



 qi′t(p
∗

t )(Fi′t − βHt)

−γHt





1

bt
+

n
∑

j=1

eajt−btp
∗

jt

bt
·
Fjt

Fit



 qit(p
∗

t ) ∀i = 1, . . . , n . (46)

Proposition 5 connects the optimal price vectors of two adjacent time periods, consequently

enabling reduction of the longitudinal complexity. The relationship in Proposition 5 decouples the

price decision in each period from all future periods except the immediate next one. Proceeding

backward in time, one can solve a system of n equations in each period to obtain the optimal solution

path. Although still a problem of substantial size (particularly when the number of products is

large), the complexity in the time dimension is significantly reduced.

The time trend of the optimal prices is not as clear-cut as in the case without product-specific

imitation, but some general character persists such as indicated in the following corollary.

Corollary 7. There exist t, t̄ ∈ {1, . . . , T} such that Rit−1(p
∗

t−1) ≤ Rit(p
∗

t ) for t ≤ t and Rit−1(p
∗

t−1) ≥

Rit(p
∗

t ) for t ≥ t̄.

7 Conclusion

We have examined pricing of multiple products in a diffusion process in which customers choose

among the products and the choice probabilities are given by the MNL model. Technical challenge

of the problem arises in two ways. First, interactions among multiple substitutable products com-

plicate the pricing problem as the price of one product affects returns on this and all other products

in the portfolio. Second, the diffusion dynamics, in particular, the imitation effect creates complex

dependency of future sales on current prices, leading to a seemingly unsolvable problem. In this
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paper, we overcome both obstacles and present a scalable algorithm to solve the problem for n

products over T periods, which was unattainable with existing models. We establish uniqueness of

the optimal solution, characterize the time path of the optimal prices, and show how the diffusion

dynamics and product-specific differences enter the optimal solution. Our model applies to both

simultaneous and sequential product introductions and easily accommodates changes to the prod-

uct portfolio as the firm introduces or retires products during the planning horizon. Moreover, we

consider extensions including stochastic demand and product-specific imitation effect.

We identify a few crucial elements determining the time path of the optimal prices in this

paper. First, the relative magnitude of the innovation versus imitation effect of diffusion can lead

to differing price patterns. Second, quality differences across products affect the optimal solution.

On one hand, the structure of the optimal solution indicates that the optimal price gap only has

to do with cost and price sensitivity and is independent of quality; this is in spirit consistent

with the “equal mark-up” finding for pricing under MNL. On the other hand, the optimal sales

of products with higher net quality exhibit steeper increasing or declining trend than those with

lower net quality. Managerially, this means that within the same choice set, the gap between peak

and non-peak sales is larger for high-end products than for low-end products. This has important

implications for inventory and capacity decisions as products with larger demand swing are harder

to manage and require more careful planning. Third, our model is flexible and allows time-varying

cost and price sensitivities, whose impacts compound the price trend but are easily quantified

using our solution method. We show that increasing price sensitivity and declining cost both

reduce the upward price trend, but the former accelerates peak sales whereas the latter delays peak

sales. Lastly, both the breadth and depth of product variety accelerate the diffusion, increasing the

optimal prices and the firm’s profit.

We conclude the paper by discussing two practical considerations concerning our method. First,

our model is a discrete-time model, which allows a firm to optimally adjust its product prices at

the same frequency as the demand model. If a firm chooses to or is constrained to adjust price at

a lesser frequency, we describe in the online appendix a heuristic implementation of our method

and show that it can adapt to such practical considerations with sound performance. Second, there

may be practical scenarios in which firms are constrained to non-increasing prices even though it

might not be optimal. In this case, solving the period t problem requires not only the remaining

market potential, but also the last-period prices. As a result, the current method becomes less

tractable. However, insights afforded by our model shed light on how this may affect the price
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solution. In the absence of imitation, we have shown analytically that the optimal price trend is

monotonically decreasing when other parameters are time invariant (Corollary 3). The imitation

effect may cause an initial upward price trend because lower price early in the diffusion speeds up

the word-of-mouth effect, benefiting the firm. If the firm is constrained to non-increasing prices,

then it may not be able to set lower prices early in the diffusion cycle to take full advantage of the

word-of-mouth effect; this will consequently slow down the diffusion and drive the firm to apply

lower prices later in the diffusion, relative to the unconstrained price path.
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