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Abstract

Technology products often experience a life-cycle demand pattern that resembles
a diffusion process, with weak demand in the beginning and the end of the life cycle
and high demand intensity in between. The customer price-sensitivity also changes
over the life cycle of the product. We study the pre-specified pricing decision for a
product that exhibits such demand characteristics. In particular, we determine the
optimal set of discrete prices and the times to switch from one price to another, when
a limited number of price changes are allowed. Our study shows that the optimal prices
and switching times show interesting patterns that depend on the product’s demand
pattern and the change in the customers’ price sensitivity over the life cycle of the
product.

Keywords: Discrete Pricing, Pre-specified Pricing Strategy, Product Life Cycle, Time-
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1 Introduction

This paper presents and analyzes a model for optimal inter-temporal pricing of a short life-

cycle product when customer sensitivity to price varies over time. A well-known example of

this type of product is the microprocessor, which is a key component in personal computers.

Every two years, Intel introduces a new silicon process technology onto an existing product

architecture (called a “tick”), and every other year it introduces a new architecture onto an

existing silicon process technology (a “tock”). This synchronized tick-tock product devel-

opment strategy drives a new generation of processors to the market every year [37]. Such

frequent product introduction leads to short product life cycles (often less than two years)

and is accompanied by systematic price reductions throughout each product’s life cycle [10].

Figure 1 illustrates the price path of several Intel processors over a period of eighteen months.

0 5 10 15
100

200

300

400

500

600

month

pr
ic

e

 

 

Q9650
Q9550
Q9400
Q8300
Q8200
Q6700
Q6600

Figure 1: Sample Price Paths for Intel Processors (between March 2008 and August 2009).
Data from Intel Corporation Website [19].

Price reduction over a product’s life cycle has been attributed to factors such as declining

production cost [41], increasing competition [12], or concerns of excess inventory [16]. As

production technology matures, the unit cost of a product decreases, and therefore the

product price often decreases in a cost-based pricing model. As competitive products enter

into the market, companies often lower prices in order to keep their customers. With short

life-cycle products, the obsolescence cost is high; when companies need to push sales within

a limited time window, they often reduce price as the selling window becomes smaller. Yet

another important factor that leads to price reduction over time is price discrimination based

on the time of purchase. It is commonly believed that the early adopters of a product are

much less price-sensitive than the population who buys later. For example, when iPhone

3G was first introduced, the bidding price for a 16G-byte iPhone 3G on e-Bay topped $1000

despite Apple’s list price of $299 [36]. Apple dropped the price for the same phone to $199
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only a year later in order to attract new buyers. Because of the time-varying price-sensitivity,

it is optimal to charge different prices at different stages of a product’s life cycle to maximize

revenue.

In this paper, we consider the problem of revenue maximization for a short life-cycle

product given such inter-temporal price-sensitivity variations. We investigate the optimal

inter-temporal pricing policy and the impact of a product’s demand pattern on the optimal

pricing policy. The demand of technology products such as microprocessors often follows a

bell-shaped curve. For example, the sales ramp up as the product awareness and customer

confidence grow, and later decline as the product ages and a newer generation product

becomes available. The exact shape of the curve depends upon many product-specific char-

acteristics. For example, a processor with high speed and low power consumption may reach

a higher demand peak, stay at the peak longer, and decline at a slower rate, compared to

a product with weaker performance on these metrics. If a newly-released processor is “pin-

compatible” with the existing platforms (i.e., a customer can simply plug the new processor

in his computer without purchasing additional hardware), the adoption will be faster and

the demand will peak sooner. Managers at Intel know their market and product well and

understand the underlying demand pattern and its evolution. They are interested in learn-

ing how one product’s inter-temporal pricing pattern should differ from another given the

differences in their demand patterns. For example, Table 1 shows the actual discrete prices

and their percentage reductions for several processor product categories. We observe that

some products (the Q series, the T series, and the Celeron processors) show decelerating

percentage reduction in price over time. Others exhibit more complex discounting patterns

(the E and Z series). Managers question whether a particular pattern of price discount makes

sense for each specific product – when should they be more aggressive or less aggressive on

pricing given what they know about the product. In this paper, we present a model that

addresses this question and provides qualitative predictions of how changes in the underlying

demand pattern would affect the optimal pricing decision of a product.

Our research originates from a collaborative project with Intel. In contrast to companies

who sell directly to consumers and are able to continuously change the price of their products,

Intel’s customers are Original Equipment Manufacturers (OEMs) who use Intel’s product

as a component in a product that they in turn sell to end users. Both Intel and its OEM

customers desire a certain degree of short-term price stability to facilitate business planning.

With stable prices, OEMs are able to better estimate market demand and can pass on

the demand estimate to Intel, which is particularly helpful as the production lead time

for processors is three months. As a result, Intel only makes a limited number of price

changes during a product’s life cycle, as exemplified in Figure 1, and such price changes
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Table 1: Microprocessor Prices Used by Intel, and Corresponding Percentage Reductions (Data
from Intel Corporation Website [19])

Discrete Prices (In Sequence)
Product Percent Price Reductions

Core 2 Quad Processor 530 316 266 224 193 183
Q series, Desktop 40.4% 15.8% 15.8% 13.8% 5.2%
Core 2 Duo Processor 266 183 163 133 113
E series, Desktop 31.2% 10.9% 18.4% 15.0%
Core 2 Duo Processor 530 316 241 209
T series, Mobile 40.4% 23.7% 13.3%
Atom Processor 135 70 40 20
Z series, Mobile 48.1% 42.9% 50.0%
Celeron Processor 134 107 86
Mobile 20.1% 19.6%

are pre-specified at the beginning of the product life cycle. In this paper, we determine a

price schedule that consists of a sequence of prices and a set of switching times at which

the price changes from one to another. As discussed earlier, the problem is complicated by

time-varying price-sensitivity of the customers and product-specific demand patterns. To

our knowledge, no prior research has addressed pricing problems with these features.

In this paper, we adopt a simplified view of customers. Specifically, “customers” in this

paper refer to the OEM customers, not end customers. It is true that end customers ulti-

mately drive the demand and the price-sensitivity change. However, very few end customers

directly buy processors from the manufacturers and most purchase products containing pro-

cessors as components. Therefore, we treat the OEMs as the “delegate” customers whose

demand reflect the end market demand and we neglect the detailed dynamics between the

OEMs and end customers. That is, we assume that the OEM customers simply pass along the

end-market demand and possess the same price-sensitivity characteristics as end customers.

We also assume that there is no strategic behavior from the customers. Given the com-

plexity of information needed to predict future prices, it is reasonable to expect that individ-

ual OEMS may not act strategically. The assumption of completely non-strategic customers

is somewhat restrictive; in practice certain OEM customers might be tempted to act strate-

gically, for example, by delaying an order when anticipating a price reduction. However, the

magnitude of such strategic behavior is small because most OEM customers operate with

very low inventory and delaying orders exposes them to high stockout risk. Therefore, we

do not consider strategic customer behaviors in this paper.

Many considerations may go into the pricing decisions including production cost, compe-

tition, substitute products, inventory and capacity. In this paper, we focus on one particular

aspect of this complicated situation – how the evolution of optimal prices over time depends

on the characteristics of a life cycle. We consider a case of a single monopoly firm, facing
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a deterministic, but time-varying price-sensitive demand for a single product. The optimal

price path is determined at the beginning of the horizon, prior to the release of the product,

and is based on the best demand estimate at the time of decision-making. While we rec-

ognize that this model is a simplification of the reality, it captures the first-order effects of

the demand pattern and price sensitivity, and it represents the first stage of a hierarchical

decision-making process popular in practice.

One of the models often used for life-cycle demand is the diffusion model, first proposed

by Bass [4]. The original Bass diffusion model assumes that new product adoption starts

with some innovators who adopt the product, and then those customers who have purchased

the product can influence other potential buyers to adopt (also known as the word-of-mouth

effect). Many researchers extend the Bass model to include the impact of price. Bass et al.

[6] categorize these extensions into current-effect models [5, 20, 39] and models with carry-

through property [22, 23, 29, 33, 24]. The carry-through models extend the impact of price

into future demands whereas the current-effect models allow the effect of price to apply only

to instantaneous adoption rate at a given time. Although models with the carry-through

property are sometimes desirable as they capture the dependency of demand on historic

prices, they are intractable and difficult to analyze.

In the majority of this paper we adopt a current-effect model. We assume that the

diffusion of new product awareness follows a given pattern and is independent of price. Each

individual who becomes newly aware determines whether or not to purchase the product and

this purchasing decision is strongly influenced by the price of the product. This is similar to

Speece and MacLachlan [39], who incorporated price by multiplying the cumulative adoption

by a price function, Li and Shen [25], who consider a variation of the Bass model by assuming

that the word-of-mouth effect is driven by customers who already own the product as well

as those who have considered purchasing, and He et al. [18], who model the instantaneous

demand rate as a product of the current product awareness (which follows a diffusion-like

differential equation) and the current price. Our discussion with Intel indicates that the

diffusion of new product awareness is driven by many more prevailing factors than price

(such as product performance, features, compatibility, advertisement, expert reviews, etc).

The customer’s final purchasing decision will be greatly affected by price, which forms the

basis of our demand model.

Using this model, we develop procedures to determine the timing and magnitude of

price changes that will maximize revenue over a fixed life cycle when a given number of

price changes are allowed. Based on analytical results and numerical examples, we develop

qualitative guidelines for inter-temporal price-setting in this environment. Later in Section

6.2, we relax the assumption of separable price effect and explore a demand model with
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carry-through price effect. We find that in addition to mark-down strategies, the optimal

pricing solution reflects an “early promotion” strategy which is used to speed up the initial

adoption and amplify product diffusion. The insights from this analysis can help managers

determine how to price a product differently from others based on the projected demand

pattern and price sensitivity path for that product.

1.1 Previous Related Work

While the literature of pricing and revenue management has been vast and growing, we

highlight papers related to the following key features used in our model.

(1) Time-Varying Price Sensitivity. Earlier work on inter-temporal pricing problems fo-

cuses on price discrimination [41]. When a monopolist faces a market of consumers with

heterogenous valuations for a product, it first sets a high price in order to reap a high

premium from those who are more willing to pay, and later reduces the price to attract

those who are less willing to pay (but more willing to wait) to improve the total revenue.

Charging different prices based on the time of purchase thus provides a means of mitigat-

ing the information asymmetry between the seller and the buyers. Harris and Raviv [17]

introduce a capacity limit to the above problem and derive the optimal inter-temporal price-

discrimination schemes. Besanko and Winston [7] incorporate consumer rationality into the

pricing model, and derive the equilibrium pricing strategy for the monopolist given that con-

sumers optimally respond to its pricing policy by weighing the benefit of immediate purchase

against that of waiting. In these papers, customers buy at different times because they have

different valuations for the same product. This is similar to what we assume in this paper

that customers who purchase a product at different stages of a product’s life cycle have

different price sensitivities; however we examine a discrete pricing problem with a restriction

on the number of price changes.

More recently, Zhao and Zheng [47] show a price monotonicity property for fashion goods

with limited inventory when customers’ reservation price shifts monotonically over time, and

they characterize the optimal discrete price policies. Xu and Hopp [46] study the dynamic

pricing policies with time-varying price sensitivity and strategic customer behavior, and they

show that the optimal prices form a supermartingale if the price sensitivity increases over

time and a submartingale otherwise. Elmaghraby et al. [13], Su [43], and Aviv and Pazgal [2]

study strategic customer behaviors when a customer’s valuation of a product changes over

time. We complement this literature on pricing with time-varying customer valuation by

incorporating price-sensitivity changes into a product life cycle and studying its impact on a

product’s optimal life-cycle pricing pattern. A paper worth noting is Li and Shen [25], which

studies the timing of a product line extension. They consider two variants of a product, a
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high-end version and a low-end version, which are introduced at different times to target

customer segments with different valuations for the product.

(2) Pre-Announced Pricing Strategy. Many papers in the dynamic pricing literature

consider adaptive pricing actions due to factors that change stochastically over time such

as inventory [16]. In this paper, for the reasons mentioned previously, we consider pricing

decisions that are made at the beginning of the planning horizon and we do not consider

any recourse action. There are a handful of papers which study a pre-announced pricing

strategy under which the price path for the entire horizon is fixed at the beginning. Bitran

and Mondschein [8] study a pricing strategy with pre-announced fixed percentage discount

per time period in retail stores. Elmaghraby et al. [13] investigate the optimal pre-announced

markdowns when a company has limited supply and faces strategic customers with multi-unit

demand. They consider the optimal number of markdowns and the level of each markdown.

Aviv and Pazgal [2] study both inventory-contingent and pre-announced discount strategies

with strategic customers and compare their performances. We also point to the literature

on price commitment in the presence of strategic customer behaviors, for example, by Su

and Zhang [44] whose results suggest that price and quantity commitment to consumers can

improve retail profits (price commitment in this case implies that the retailer commits to

a high price and does not discount), and by Cachon and Swinney [9] who show that price

commitment is generally not as good as dynamic discounting. This literature focuses on

contexts with limited supply and often price commitment is compared with dynamic pricing

adjustment. In comparison to our paper, these papers do not consider the timing of discounts.

We also note that even though most of the papers in this stream of literature incorporate

the finiteness of the selling horizon, the diffusion demand pattern – that is characteristic of

many products with a short life cycle – has not been explicitly modeled in any of the existing

models, to our knowledge.

(3) Limited Price Change. In this paper, we consider a pricing policy in which the total

number of price changes is fixed. Feng and Gallego [14] study a similar problem with an

added restriction of at most two discrete prices over the planning horizon; in this case, the

optimal decision consists of the pair of prices and the switching time. Feng and Gallego [15]

consider the optimal switching times from one price path to another price path when the

menu of price paths are given. Furthermore, Netessine [31] explores various complementarity

conditions between prices and switching times to identify conditions for a unique timing

solution for a given set of prices. Our paper extends these works by characterizing both the

optimal switching times and the optimal sequence of prices for any given total number of

price changes.

(4) Multiplicative, Separable Demand. In this paper, we adopt a current-effect demand

7



model which has a multiplicative separable function form. Examples of this demand form are

seen in both normative and empirical work. These models are able to empirically fit the sales

and price data quite well [6] and are more tractable than models that allow price to effect

future demand. Smith and Achabal [38] use a demand rate function that is multiplicative

separable in seasonal effect, inventory effect and price sensitivity to obtain a closed-form

pricing solution. Bass [5] extends the original Bass diffusion model to the case where pricing

is an endogenous control. He models the demand rate as a multiplicative separable form of

the adoption rate and price sensitivity, which leads to tractable analysis and useful insights.

Jain and Rao [20] propose a model in which price affects the effective market potential. This

model is similar to Bass [5] as the price affects only the sales function but not the basic

diffusion process. Speece and MacLachlan [39] incorporate the effect of price by multiplying

a price factor with the cumulative adoption. Recently, He et al. [18] study cooperative

advertising and pricing decisions between a retailer and a wholesaler, using a demand model

that is multiplicatively separable in awareness and price.

In this paper, we consider the inter-temporal pricing problem with a limited number of

price changes. We investigate the effect of time-varying demand pattern on pricing decisions.

We observe that the optimal prices and price-switching times are closely related to the

shape of the demand pattern. Furthermore, we capture that the customers’ price sensitivity

increases during the life cycle, i.e., the composition of the customer base changes from a

pro-technology population to a more value-conscious one over a product’s life cycle. To our

knowledge, neither the operations management nor the marketing researchers have studied

the interaction of life-cycle demand characteristics with inter-temporal price-sensitivities as

a driver for pricing strategies. Lastly, we note that the model does not limit its application

to diffusion patterns, but applies to any general demand pattern caused by non-price-related

characteristics such as seasonality and a macroeconomic cycle.

1.2 Summary of Results and Organization

We describe in Section 2 a general model and solution approach for solving the optimal prices

and switching times for any fixed number of price changes. We then specialize this model to a

case where the price-sensitivity parameter increases linearly in time in Section 3. We obtain a

closed-form solution when the nominal demand pattern is stationary throughout a product’s

life cycle as a benchmark. We show in this benchmark case that the optimal prices follow a

constant percentage reduction over time and that the time duration of each price is the same

on a logarithmic scale. When the nominal demand pattern is of a general unimodal form,

but still with linear price sensitivity change, the results show a stark comparison with the

benchmark case of stationary demand: In particular, the percentage price discount between
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two successive prices decreases (i.e., the relative price change becomes smaller) before the

peak of the demand pattern and increases after this peak. This explains some companies’

practice of heavy discounting toward the latter half of a product’s life cycle. In addition, on

the logarithmic time scale, price changes are shown to concentrate more in the region where

the demand pattern peaks (instead of being evenly distributed on the same logarithmic time

scale as in the benchmark case), given that the total number of price changes is fixed.

In Section 4, we relax the linearity assumption on price sensitivity and study the optimal

pricing policy when the customers’ price sensitivity may change over time in a nonlinear

fashion. We show properties of the optimal prices and switching times when price sensitivity

increases either concavely or convexly in time and contrast that with the linear case.

In Section 5, we examine cases that are not fully characterized analytically using numer-

ical methods to further explore the impact of life-cycle demand pattern and time-varying

price sensitivity on the optimal pricing decision. In addition, we consider the performance

improvement of the optimal discrete-price policy as the number of allowed price changes

increases, as well as the impact of demand pattern and price-sensitivity on the performance

improvement. This provides useful insights on the decision of how many times a firm should

adjust the price of a product.

We discuss further generalizations including nonlinear price-demand relationships and

the “carry-through” effect of price in Section 6 and we conclude in Section 7 by summarizing

our findings from the model.

2 The Model and the Solution Approach

2.1 The Model

We consider the pricing problem of a product during its life cycle. Following the release of

the product, the demand is often initially weak due to the lack of awareness or the perceived

uncertainty of quality, but then it increases and reaches its peak before it fades away due to

saturation. During the life cycle, not only does the magnitude of demand change, but the

consumer sensitivity to price also changes, typically increasing over time. Customers chasing

the latest cutting-edge technology are the least price-sensitive and adopt the product early

in a product’s life cycle; those with a preference for “value” are more price-sensitive and

purchase it later. Thus, the revenue depends not only on the size of the underlying demand,

but also on the consumer sensitivity to price. We incorporate into our model the effect of

these two features and determine the path of the optimal price during the planning horizon

that maximizes the total revenue.
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Let [0, T ] denote the planning horizon, where the release of the product occurs at time 0.

We use t to represent the time instance corresponding to the product’s age (i.e., time since

release). Let r(p, t) denote the revenue rate function, which depends on both the current

price p and the product’s age t. Our objective is to determine the price path p(·) that

maximizes the total revenue during the planning horizon:

∫ T

t=0

r(p(t), t)dt . (2.1)

As discussed earlier in the introduction, this is a current-effect model, similar to Bass [5],

Speece and MacLachlan [39], and He et al. [18]. In maximizing the total revenue function

given in (2.1), we first consider two extreme scenarios with respect to the constraints on the

price path. In the first scenario, a constant price should be maintained through the entire

planning horizon. Then, the total revenue is a single-dimensional function, and thus can

be optimized quite easily. In the second scenario, the price may change continuously over

time without any inter-temporal restriction, and we refer to this model as the continuous

pricing problem. In this case, it is optimal to simply maximize r(p, t) over p for each

t ∈ [0, T ] separately, which is again a single-dimensional problem. While continuous pricing

is possible in certain settings, it is inappropriate in business-to-business settings in which the

direct customers are OEMs who prefer price stability in their planning, as discussed earlier.

For the remainder of the paper, we focus on the discrete pricing problem, where the number

of possible price changes is limited and fixed.

The discrete pricing problem is in general analytically intractable, and poses computa-

tional difficulties. As a result, we introduce specific functional forms for the demand and

revenue functions that our industry collaborators considered to be a reasonable simplification

and that yield a tractable analysis. In particular, we build upon the literature of current-

effect diffusion models to allow separability of product diffusion and price, and we extend it

to incorporate both the underlying diffusion pattern and evolving customer price sensitivity

into a single framework.

Assumption 1. There exist a positive function h(t) and a positive continuous increasing

function b(t) such that r(p, t) = h(t) · g(p, t) where g(p, t) = d(p, t) · p and d(p, t) = a− b(t)p.

Here, the instantaneous revenue function consists of two factors. The factor h(t) rep-

resents the underlying demand pattern, which indicates, for example, the progression of

product awareness, the growth in customer confidence, and the aging of the product over

time (losing appeal to newer products). There are a number of models developed for this

purpose, notable examples of which are diffusion-based models (see the introduction). The

10



other factor g(p, t) represents the normalized revenue rate. To model the price-demand rela-

tionship, we use a linear form of price-demand relationship d(p, t) = a−b(t)p, which is one of

the most widely-used in the literature [32, 27]. Here, we refer to b(t) as the price sensitivity

parameter, which varies with time to reflect the evolving price sensitivity over the planning

horizon. Note that one may interpret h(t) · a as the maximum possible demand at time t

(i.e., the demand when price approaches zero).

2.2 Discrete Pricing Problem: Solution Approach

We now consider the discrete pricing problem in which there can be n distinct prices over

the planning horizon, where n ≥ 2 is finite. We need to decide not only what values should

be chosen for the set of these n prices, but also how to partition the planning horizon into n

intervals, one for each price. The objective is to maximize the total revenue over the horizon.

In this section, we formulate this problem as an optimization problem. This problem is a

multi-dimensional problem without an easily identifiable structure. However, we show that

it can be interestingly reduced to an optimization problem over only a single variable such

that it can be easily solved using a simple search procedure.

We introduce some notation and basic properties. For fixed t, the choice of p that

maximizes g(p, t) also maximizes the revenue rate r(p, t) = g(p, t) · h(t), and is given by

p∗(t) = arg maxp r(p, t) = a/[2b(t)]. As the price sensitivity parameter b(t) is increasing

in t, the instantaneous optimal price p∗(t) is unique, positive and decreasing in t. The

monotonicity of p∗(t) in t, that the price declines over time, is commonly observed in the

high-tech industry. Now, for any interval [t1, t2], where 0 ≤ t1 ≤ t2 ≤ T , define the optimal

single price in the interval by p∗(t1, t2) = arg maxp R(p, t1, t2), where

R(p, t1, t2) =

∫ t2

t1

r(p, t)dt .

Then, it can be shown that p∗(t1, t2) is decreasing in both t1 and t2. The proof of this result

is based on the concavity of r(p, t) in p and the above-mentioned monotonicity property

of p∗(t), and appears in Appendix A.1. Later in this paper, we will further investigate

additional properties of how the optimal price evolves over time.

Multi-Dimensional Optimization for Maximizing Revenue

We denote by {pi | i = 1, . . . , n} the sequence of n prices, and by {τi | i = 1, . . . , n − 1}
the sequence of switching times, where price switches from pi to pi+1 at time τi. We require

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn−1 ≤ T . For the n-price discrete pricing problem, the total revenue
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during the planning horizon [0, T ] given in (2.1) can be written using the following notation:

V (τ1, . . . , τn−1, p1, . . . , pn) =

n
∑

i=1

R(pi, τi−1, τi) ,

where we define τ0 = 0 and τn = T for notational convenience. Note that the total revenue

V is a function of both (τ1, . . . , τn−1) and (p1, . . . , pn), a set of (2n − 1) decision variables.

Yet, it is possible to write it as a function of (τ1, . . . , τn−1) only – by substituting the optimal

choice of (p1, . . . , pn) for given (τ1, . . . , τn−1). In fact, as we shall see below, the optimal pi

depends only on τi−1 and τi, the switching times that define the interval in which pi is in

effect.

Proposition 2.1. Fix (τ1, . . . , τn−1). Under Assumption 1, the value of (p1, . . . , pn) maxi-

mizing V (τ1, . . . , τn−1, p1, . . . , pn) is given by pi = p∗(τi−1, τi) for each i ∈ {1, . . . , n}, where

p∗(τ ′, τ ′′) =
a

2 · b(τ ′, τ ′′)
and b(τ ′, τ ′′) =

∫ τ ′′

τ ′
b(t)h(t)dt

∫ τ ′′

τ ′
h(t)dt

. (2.2)

The proof of this proposition is in Appendix A.2. This proposition can be interpreted as

follows. Note that b(τ ′, τ ′′) is a weighted average of b(t) over the interval [τ ′, τ ′′] where the

weight is given by the life-cycle effect h(t). Thus, by the Intermediate Value Theorem, there

exists t(τ ′, τ ′′) in the interval [τ ′, τ ′′] such that

b(τ ′, τ ′′) = b(t(τ ′, τ ′′)) , (2.3)

and we refer to t(τ ′, τ ′′) as the analytic center of the interval [τ ′, τ ′′]. Thus, the optimal

price depends on the interval only through the analytic center of the interval [τ ′, τ ′′], and the

optimal price of the interval, p∗(τ ′, τ ′′), indeed maximizes the revenue rate r(p, t(τi−1, τi))

at the analytic center. Furthermore, it can be shown that the analytical center t(τ ′, τ ′′) is

increasing in both of its arguments (i.e. the boundaries of the interval).

Now, by substituting optimal values of prices in each interval based on Proposition 2.1,

we can write the objective function in terms of (τ1, . . . , τn−1) only, a set of (n − 1) decision

variables. Define

Ṽ (τ1, . . . , τn−1) =
n

∑

i=1

R(p∗(τi−1, τi), τi−1, τi) . (2.4)

While this function is not a separable function, it exhibits a property that perturbing τi

does not affect the revenue outside the interval [τi−1, τi+1]. We can exploit this property to

develop an iterative method in which each τi is repeatedly optimized.
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From the first-order and second-order necessary conditions for optimality, we obtain a

property that, at the price switching time τi, the instantaneous revenue rates are equal under

the two prices pi and pi+1. That is, the revenue curves r(p∗(τi−1, τi), t) and r(p∗(τi, τi+1), t),

as functions of t, should intersect at t = τi. (Otherwise, it would increase the total revenue

by expediting or delaying the switching time.) Furthermore, we can show that, at this

point, r(p∗(τi, τi+1), t) must cross r(p∗(τi−1, τi), t) from below, i.e., the next price p∗(τi, τi+1)

starts becoming better than the previous price p∗(τi−1, τi). These necessary conditions are

unfortunately not sufficient for optimality, and in fact Ṽ may even not be quasi-concave with

respect to some τi. It can be shown however that the quasi-concavity property is guaranteed

by a technical condition, which for example is satisfied by constant h(t) and linear b(t)

functions. See Appendix A.3 for details.

Single-Dimensional Search Approach for Maximizing Revenue

We have formulated the revenue objective as a function of (n−1) decision variables (instead

of (2n − 1) variables), which is still not straightforward to solve particularly when n is

large. However, it is possible to formulate the revenue objective as a function of a single

variable only, using the special structure that we have identified in Proposition 2.1. We now

demonstrate this reformulation such that the objective function can be maximized using a

single-dimensional algorithmic approach.

We first show the following proposition, which provides necessary optimality conditions

in terms of the switching times only. It shows how the optimal switching time τi (which is

for the price transition from pi to pi+1) is related to the analytic centers of the interval with

price pi and the interval with price pi+1. Recall the definition of b(τ ′, τ ′′) from (2.2). The

proof of this proposition is in Appendix A.4.

Proposition 2.2. Suppose Assumption 1 holds. Then, the optimal switching times in an

n-price model satisfy: for i = 1, . . . , n − 1,

b(τi)

b(τi−1, τi)
+

b(τi)

b(τi, τi+1)
= 2 . (2.5)

Observe that b(τi−1, τi) is a function of τi−1 and τi, and that b(τi, τi+1) is similarly a

function of τi and τi+1. Therefore, an important consequence of Proposition 2.2 is the

relationship among the three consecutive switching times {τi−1, τi, τi+1}. If both τi−1 and τi

are fixed, we can use this relationship to determine the value of τi+1. Based on this idea, if the

first switching time is given, then the entire sequence of switching times can be defined. More

specifically, for a fixed positive value θ ∈ (0, T ), we construct a sequence (τ̂1(θ), . . . , τ̂n−1(θ))

as follows. Let τ̂0(θ) = 0 and τ̂1(θ) = θ. For any given pair of τ̂i−1(θ) and τ̂i(θ), we recursively

13



define τ̂i+1(θ) via (2.5). If such τ̂i+1(θ) does not exist, then we set τ̂i+1(θ) = · · · = τ̂n(θ) = ∞.

We are particularly interested in the values of θ satisfying τ̂n(θ) = T since otherwise any

solution with τ1 = τ̂1(θ) = θ does not satisfy the optimality condition in Proposition 2.2.

(For a graphical illustration of constructing (τ̂1(θ), . . . , τ̂n−1(θ)), please see Appendix A.5.)

Therefore, we propose the following method to identify the candidates for optimal solu-

tions. First, identify all possible values of θ such that τ̂n(θ) = T . In our computation, there

is only one value of θ satisfying this condition; however, in general, τ̂n(θ) is not monotonic

in θ, and thus it is possible that there may be multiple values of θ with this property. This

step amounts to finding all zeros of a single-dimensional function, which is not difficult com-

putationally. Next, for each identified θ, we find p̂i values based on (2.2), and we evaluate

the performance of each candidate to select the best solution.

Summarizing this section, we have formulated the objective function for the discrete

pricing problem. While this function depends on multiple variables, we have shown that the

optimal solution can be obtained by performing a single dimensional search, regardless of n,

the number of discrete prices.

3 Analysis of Models with Linear Price Sensitivity b(t)

In Section 2, we have considered general approaches for numerically finding the optimal

solution. In this section, for analytical tractability and ease of demonstration, we restrict

our attention to the case where the sensitivity parameter b(t) is a linear function of time t,

i.e., b(t) = β0+β1t, where β0 and β1 are nonnegative constants. This allows us to understand

the impact of the demand pattern more clearly. Later, in Section 4, we extend the analysis

to a general nonlinear b(t). Under linear b(t), customers’ sensitivity towards price increases

proportionally with the product’s age. The older the product becomes, the less willing a

customer is to pay. In addition, we define m = β1/β0. Thus, a higher value of m indicates a

greater change of the price sensitivity as a function of time t.

Given that b(t) is linear, we first examine, in Section 3.1, the case where the life-cycle

effect is absent, and use results and insights obtained in this case as a benchmark. Then,

in Section 3.2, we extend to the general case where the life-cycle effect is of a unimodal

pattern, and we illustrate the impact of the demand pattern on optimal pricing decisions by

comparing the results in the general model against the benchmark case of constant h(t).

3.1 A Benchmark Case of Constant h(t)

One of our objectives in Section 3 is to understand the impact of the demand pattern on the

optimal price path (both in terms of the set of prices and timing). For the benchmark case
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where the life cycle effect is absent, i.e., h(t) is constant throughout the planning horizon,

we obtain a closed-form solution for the optimal switching times and prices. (Note that we

let h(t) = 1 without loss of generality.)

Proposition 3.1 (Linear b(t) and Constant h(t)). Suppose Assumption 1 holds, and assume

h(t) = 1 and b(t) = β0 + β1t = β0(1 + mt). For the n-price model, the optimal switching

times (τ1, . . . , τn−1) and the optimal prices (p1, . . . , pn) are given by the following:

τi =
(1 + mT )i/n − 1

m
and pi =

a/β0

(1 + mT )i/n + (1 + mT )(i−1)/n
.

We comment on some interesting properties of the optimal solution for the n-price prob-

lem in this benchmark case. The optimal switching time τi is an exponential function of the

switching index i. It implies that price switching is more frequent at the early part of the

product life cycle and becomes more infrequent, i.e., τi − τi−1 < τi+1 − τi. This phenomenon

can be explained by the fact that the customer population shifts over time to become less

willing to pay; thus, for a given number of allowed price changes, we change prices more

frequently in the early part of the life cycle in order to capture as much of the surplus as

possible.

In the two-price case (i.e., n = 2), the above argument implies that the only switching

time τ satisfies τ ≤ 0.5T , indicating that price changes are more important at the earlier stage

of the life cycle. Furthermore, we can examine how the optimal switching time depends on a

measure of how fast the price sensitivity change, namely [b(T )− b(0)]/b(0) (which simplifies

to β1T/β0):

τ ≈







0.477T if β1T/β0 = 0.2
0.414T if β1T/β0 = 1.0
0.290T if β1T/β0 = 5.0 .

(3.1)

This shows that the optimal switching time τ occurs earlier in the life cycle if the demand

sensitivity changes more rapidly.

Not only are the price changes more frequent at the beginning of the life cycle, but also

the drop in prices is greater at that time; mathematically, pi − pi−1 > pi+1 − pi > 0. These

characteristics are further demonstrated in the following corollary of Proposition 3.1: Under

the assumptions of Proposition 3.1, the optimal price points for the n-price model satisfy,

for each i ∈ {1, . . . , n − 1},

pi+1/pi = (1 + mT )−1/n , (3.2)

and, furthermore, the optimal switching times satisfy, for i ∈ {0, . . . , n − 1},

log(1 + mτi+1) − log(1 + mτi) = [log(1 + mT )]/n . (3.3)
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From this result, the ratio between two adjacent prices under the optimal policy turns out

to be a constant. This suggests that, in the absence of the life-cycle effect (h(t) = 1), the

price points should be chosen such that the percentage reduction between two adjacent prices

stays constant. (See Appendix A.7 for the proof.)

In the pricing problem, the total number of price changes is fixed for the entire planning

horizon. Thus, the question we address is how to distribute the fixed number of price changes

along the time horizon. To characterize the optimal switching times, we define a logarithmic

time scale log(b(t)). On the logarithmic time scale, equation (3.3) shows that, under the

constant h(t) benchmark case, the duration for each price point remains the same in the

logarithmic scale.1 Furthermore, it implies

b(τi+1) − b(τi)

b(τi)
= [b(T )/β0]

1/n − 1 . (3.4)

(See Appendix A.8 for the proof.) Equation (3.4) indicates that the optimal strategy to

segment the customers based on price sensitivity is to partition the customers such that the

proportional increase in price sensitivity at subsequent switching points is a constant, which

is the right-side expression of (3.4).

The observations identified here will serve as a benchmark basis in the remainder of the

paper.

3.2 General Unimodal h(t)

Products exhibiting life-cycle demand characteristics typically go through a demand ramp

up, followed by a ramp down. Therefore, a unimodal h(t) is general enough to include most

demand patterns with diffusion characteristics. In this section, we characterize the optimal

solution for the discrete pricing problem with n prices and show how the demand pattern

affects the ratio of subsequent prices and the time duration of each price, when compared to

the benchmark case of constant h(t) – which we have discussed in Section 3.1.

The following theorem is the main analytical result of Section 3.

Theorem 3.2 (Linear b(t) and Unimodal h(t)). Suppose Assumption 1 holds, and assume

b(t) = β0 + β1t = β0(1 + mt). Suppose that h(t) is unimodal, i.e., there exists t̂ such that

h(t) increases in t in the interval [0, t̂] and decreases in t in the interval [t̂, T ]. The n-price

model satisfies the following properties.

1On the original time scale, however, equal length of log(b(t(i))− log(b(t(i−1))) always implies increasing
length of τi − τi−1 by the concavity and monotonicity of the logarithmic function and linearity of b().
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(a) The optimal prices (p1, . . . , pn) satisfy:

pi

pi−1

≤ pi+1

pi

if τi ≤ t̂, and (3.5)

pi

pi−1
≥ pi+1

pi
if τi−1 ≥ t̂ . (3.6)

(b) Furthermore, the optimal switching times (τ1, . . . , τn−1) satisfy:

log(1 + mτi) − log(1 + mτi−1) ≥ log(1 + mτi+1) − log(1 + mτi) if τi ≤ t̂, and (3.7)

log(1 + mτi) − log(1 + mτi−1) ≤ log(1 + mτi+1) − log(1 + mτi) if τi−1 ≥ t̂. (3.8)

The results in equations (3.7) and (3.8) provide a stark comparison with the benchmark

case when h(t) is constant. Recall that under the assumption of constant h(t), the optimal

price points should follow a constant percentage discount pattern: each time we make a price

change, we apply a certain fixed percentage discount (equation (3.2)). Also, the duration

for each price point is of “equal” length on a logarithm scale of time (Proposition 3.1 and

equation (3.3)). When the demand pattern h(t) is not a constant, these results no longer

hold, which we elaborate below.

First, equations (3.5) and (3.6) show that the price discount between two successive prices

depends on the demand pattern h(t), in a way such that if demand is increasing, then the

percentage price discount decreases (i.e., the relative price change is smaller); similarly, if

demand is decreasing, then the percentage price discount increases.

Second, equations (3.7) and (3.8) show that, on the logarithmic time scale, price changes

should be more concentrated in the region where the demand pattern peaks, given that the

total number of price changes is fixed. More specifically, before the peak, the duration for

each price point (equivalently, the switching time interval) becomes smaller in time, and

after the peak, the switching interval becomes larger in time – both in the log scale.2

Third, equation (3.7) is equivalent to

b(τi) − b(τi−1)

b(τi−1)
≥ b(τi+1) − b(τi)

b(τi)
,

which implies that the percentage increase in price sensitivity between adjacent segments

becomes smaller before the peak; we can similarly show that this percentage becomes bigger

after the peak. This result contrasts with equation (3.4) and indicates that the optimal

2On the original time scale, however, this relationship does not necessarily hold. In particular, increasing
length of log(b(t(i)) − log(b(t(i − 1))) always implies increasing length of τi − τi−1 by the concavity and
monotonicity of the logarithmic function and linearity of b(·). However, decreasing length of log(b(t(i)) −
log(b(t(i − 1))) does not necessarily correspond to decreasing length of τi − τi−1. Therefore, on the original
time scale, the switching intervals become shorter before the peak, but the trend is undecided after the peak.
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strategy to segment the customers is to divide the customers such that the percentage in-

crease in price sensitivity at subsequent switching points is decreasing before the peak and

increasing after the peak.

While the above-mentioned differences from the benchmark case arise from the demand

pattern h(t), our numerical experiments indicate that one of the insights identified previously

for the constant demand pattern – that the price switching times tend to concentrate in the

earlier stages of a product life cycle – tends to hold here as well. While it is not easy to

formalize this because of the compounding effect of the demand pattern, we can show that

the price change occurs before the middle of the horizon if there is only one price change

allowed: Under the conditions of Theorem 3.2, if h(t) is symmetric around t = T/2 and it is

log-concave, then the optimal switching time τ of the two-price model satisfies

τ ≤ T/2 . (3.9)

takes advantage of the monotonicity property of mean-advantage-over-inferior functions un-

der log-concavity [3], and it appears in Appendix A.9. Many commonly known diffusion

models such as the Bass model are log-concave. (See, for example, Sengupta and Nanda [35]

for discussion on the sufficient conditions for log-concavity.)

Now, for an illustrative purpose, suppose that h(t) is given by the probability density

function N(µ, σ2), a normal distribution with mean µ and standard deviation σ. Let µ = T/2

and σ = T/6 such that the demand pattern h(t) peaks at the center of the life cycle (when

t = T/2). Then, as we vary [b(T ) − b(0)]/b(0) = β1T/β0 as before, it can be shown that the

optimal switching times are as follows:

τ ≈







0.491T if β1T/β0 = 0.2
0.468T if β1T/β0 = 1.0
0.425T if β1T/β0 = 5.0 .

(3.10)

See Appendix A.10 for the proof of (3.10). This result again demonstrates a pattern that the

switching times should occur earlier in the life cycle as the change in price sensitivity (i.e.,

β1T/β0) increases. This is consistent with the earlier result where h(t) remains constant over

the life cycle. Yet, compared to the constant h(t) case shown in (3.1), the above result shows

that the switching time is closer to the center of the life cycle where the demand pattern

peaks.

We end this section with a remark that the proof of Theorem 3.2 can be easily extended to

the case where h(t) may not be unimodal. For any general continuous h(t), we can divide the

planning horizon into an alternating sequence of time intervals during which h(t) is increasing

or decreasing, and show that for the time intervals during which h(t) is increasing, equations

(3.5) and (3.7) hold, and for time intervals during which h(t) is decreasing, equations (3.6)

and (3.8) hold.
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4 Analysis with Nonlinear Price Sensitivity b(t)

In Section 3, we derived several properties regarding the optimal prices and their timing

(Proposition 3.1 and Theorem 3.2) under the assumption that the customers’ price sensitivity

b(t) changes linearly in time. In this section, we consider the impact of price sensitivity by

considering the case where it increases in a more general manner.

As before (the benchmark case in Section 3.1), we first consider the impact of nonlinear

price sensitivity b(t) by fixing the demand pattern h(t) at a constant. In particular, if the

price sensitivity increases in a convex or concave manner, we examine what would happen to

the price changes and their timing, compared to the benchmark case with linear price sensi-

tivity. Intuitively, convex price-sensitivity increase implies that the rate of price-sensitivity

increase accelerates with the age of the product, or equivalently, the decline in customers’

willingness to pay becomes steeper as the product grows older; the opposite holds for concave

price-sensitivity increase. We characterize these two cases because any nonlinear increasing

b(t) can be treated as intervals of concave or convex increasing functions.

Proposition 4.1 (Nonlinear b(t) and Constant h(t)). Suppose Assumption 1 holds, and

assume h(t) = 1 in the n-price model. Then, the optimal prices (p1, . . . , pn) and switching

times (τ1, . . . , τn−1) satisfy the following.

(a) If b(t) is concave in t, then (pi−1 − pi)/pi−1 and {log b(τi) − log b(τi−1)} decrease in i.

(b) If b(t) is convex in t, then (pi−1 − pi)/pi−1 and {log b(τi) − log b(τi−1)} increase in i.

Recall from Section 3.1 that both (pi−1 − pi)/pi−1 and {log b(τi) − log b(τi−1)} remain

constant independent of i in the linear b(t) case, a result that can also be implied by the

above theorem. Proposition 4.1 provides insights that are intuitive in hindsight but not

necessarily straightforward initially. As the customers’ price sensitivity increases through

time in a concave manner, there is less need to provide a steep price discount to cater to

the increasingly slowing changing customer sensitivity (i.e., the percentage price reduction

(pi−1 − pi)/pi−1 becomes smaller), and furthermore, the percentage change in price sensitivity

at switching times becomes smaller each time (i.e., {log b(τi) − log b(τi−1)} becomes smaller).

A similar argument can be made for the case of a convex price sensitivity. We remark that

the results of Proposition 4.1 can be extended such that if b(t) follows an S-shaped curve or

a rotated S-shaped curve in which the concavity and convexity of b(t) can switch in time, or

if b(t) is of a general nonlinear form which comprises of intervals of concave and/or convex

functions.
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Now, we consider a more general case where b(t) may be non-linear and h(t) may not

be constant. By combining Theorem 3.2 and Proposition 4.1, we can obtain the following

result. (The proofs of Proposition 4.1 and Corollary 4.2 are in Appendix A.12.)

Corollary 4.2 (Nonlinear b(t) and Non-constant h(t)). Under Assumption 1, the optimal

prices (p1, . . . , pn) and switching times (τ1, . . . , τn−1) satisfy the following.

(a) If h(t) is increasing and b(t) is concave in t, then (pi−1 − pi)/pi−1 and {log b(τi) − log b(τi−1)}
decrease in i.

(b) If h(t) is decreasing and b(t) is convex in t, then (pi−1 − pi)/pi−1 and {log b(τi) − log b(τi−1)}
increase in i.

Summarizing the analytical results in Sections 3 and 4, we see that increasing underlying

demand pattern h(t) and less and less rapidly changing price sensitivity b(t) have a similar

impact on the relative amount of price change and the frequency of price changes in a log-

price-senstivity scale. Corollary 4.2 is still an incomplete characterization of the optimal

price and switch times since it does not discuss the case of increasing h(t) and convex b(t),

or the case of decreasing h(t) and concave b(t). In these cases, a simple clean-cut result

cannot be obtained and we demonstrate this with more details in Section 5.2 with numerical

studies.

5 Sensitivity Analysis: Numerical Results

Since the primary modeling features of this paper are the demand pattern during a product’s

life cycle and the customer price sensitivity that evolves in time, we continue in this section

to explore their impact on the optimal decisions using numerical examples. In particular,

we seek to complement the analytical study in Sections 3 and 4 by examining cases that are

not fully characterized analytically.

• We have established in Section 3 that price switching times follows two trends: (i)

they concentrate more in the peak region of the demand pattern h(t); (ii) the optimal

pricing switching tends to be earlier in the life cycle than later, for symmetric h(t). In

Section 5.1, we study the impact of a general unimodal h(t) by varying the levels of

asymmetry and width of the peak while keeping the price sensitivity b(t) at a linear

form.

• We have allowed both increasing and decreasing demand pattern h(t), and both convex

and concave price sensitivity b(t). In Section 4, we have obtained analytical results for
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the combinations of (i) increasing h(t) and concave b(t) and (ii) decreasing h(t) and

convex b(t). In Section 5.2, we numerically examine the other combinations of h(t) and

b(t): (iii) increasing h(t) and convex b(t), and (iv) decreasing h(t) and concave b(t).

• Finally, in Section 5.3, we address the restriction of discrete pricing (limiting the total

number of price changes) by comparing the performance of discrete pricing to contin-

uous pricing.

Experiment Set-Up. While there are a large number of life cycle demand patterns

available in the literature (for example, Mead and Islam [28] summarize 29 models), we

choose three demand patterns that are commonly used. Each of these demand patterns,

listed in Table 2, is a unimodal bell-shaped curve, in which we can vary parameters to

control both the location and “width” of the peak, the mode of the demand pattern h(t).

Table 2: Three Types of Demand Patterns h(t)
Type Parameters h(t) Literature

Normal µ, σ > 0 1√
2πσ

e−
(t−µ)2

2σ2 Rogers [34], Stapleton [40]

Simple Logistic γ > 0, k > 0 kγe−kt

(1+γe−kt)2
Stone [42], Tanner [45]

Bass γ > 0, k > 0 ke−kt

1+γe−kt [1 + γ(1−e−kt)
1+γe−kt ] Bass [4], Mahajan and Peterson [26]

For the Normal demand pattern, we use the following parameter values:

• Location of the peak: µ ∈ {T/6, T/4, T/2, 3T/4, 5T/6}.

• Width of the peak: σ ∈ {T/4, 3T/8, T/2, 5T/8, 3T/4}.

• Inter-temporal price sensitivity: m = β1/β0 ∈ {1, 5, 20, 35, 50}. Here, we vary the

value of β1 while keeping the value of β0 constant at 10 and the parameter a in the

linear demand equation (see Assumption 1) at 200.

Without loss of generality, we use T = 1.0. We have computed the optimal solution for

each of 5 × 5 × 5 = 125 parameter combinations using the Normal demand pattern, and we

report our findings and insight in this section. We also tested the logistic and Bass demand

patterns with similar parameter values (by choosing γ and k such that the location and

width of the peak match the Normal demand patterns listed above) – while these results are

not reported here for the simplicity of presentation, we have obtained similar results as the

Normal demand pattern, providing the robustness of our findings.
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5.1 Impact of Demand Pattern (Peak Location and Width)

We first consider the impact of the peak location and peak width of the demand pattern,

denoted in our model by µ and σ respectively, on the optimal decision for the discrete pricing

model. In this section, we restrict our attention to the case of n = 2 discrete prices for the

ease of illustration.

The location of the peak determines where a large portion of demand can be expected, and

thus has a direct positive effect on the optimal switching time. One implication of Theorem

3.2 is that price switching should concentrate more near the peak region. Therefore, in a

two-price policy, if the peak occurs later in the life cycle, then the optimal switching time is

delayed, and the optimal price in each segment decreases as it caters to more price-sensitive

customers (consistent with the monotonicity result of p∗(t1, t2) in Section 2.2). See Figure 2

for an illustration.
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Figure 2: Impact of Demand Pattern on the Optimal Decision in a 2-price Case: m = 1.0

Our finding leads to a better understanding of the interaction between the location of

the demand peak and the pricing strategy. If demand peaks early in a product’s life cycle,

it strengthens the need to set an initial high price and then discount early (known as the

price skimming strategy); in comparison, if demand peaks later in a product’s life cycle, it

is optimal to start with a lower price and delay price reduction (price penetrating strategy).

Thus, in an industry where demand peaks in the early part of the life cycle (for example, in

the film industry where pre-release promotion stimulates early demand), the firm sets a high

initial price for the product (compare movie tickets to DVD rentals); by the same logic, for

many household items whose release rarely grabs customer attention, the firm maintains a

steady price throughout the life cycle.

In addition, Figure 2 shows that the strength of our earlier observation depends on the

width of the peak, i.e., the less spread the demand pattern is (smaller σ), the more closely

the switching time follows the peak location.
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5.2 Impact of Inter-Temporal Price Sensitivity

While we have examined the impact of demand pattern h(t) in Section 5.1, we now turn our

attention to the impact of the inter-temporal price sensitivity b(t) on the optimal decision

(both the switching time and prices), holding the demand pattern h(t) to a fixed curve. We

investigate both linearly-changing price sensitivity and nonlinear price sensitivity. With lin-

ear price sensitivity, we demonstrate how the speed of the price-sensitivity change affects the

switching time using a two-price example. Then, we study the case in which the customers’

price sensitivity evolves over time in various nonlinear ways and show how the optimal price

reductions and the optimal switching times are affected using a 10-price example.

Linear Price Sensitivity

Since the price sensitivity parameter is given by b(t) = β0 + β1t, which starts at β0 and

increases by β1T during the life cycle, m = β1/β0 represents the proportional increase in

price sensitivity. The value of m often depends on the market positioning of each product; for

example, Intel may brand a certain processor for a small group of pro-performance segment

in which case m is small while a product may be sold across the entire spectrum of the

customer base in which case the value of m may be large.
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(b) First Price
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(c) Second Price

Figure 3: Impact of m on the Optimal Decision in a 2-price Case: µ = 0.5

In Figure 3, we show the optimal decisions as a function of m. We fix the location

of the peak in the center of the life cycle (at µ = 0.5), and each line corresponds to a

“width” σ of the peak. In Figure 3(a), we observe that when price sensitivity increases

rapidly (high value of m), the optimal switching point occurs early in the life cycle. Such

a phenomenon can be explained by the need to generate as much revenue as possible from

the price-insensitive customers in the earliest part of a life cycle. We also observe that when

demand is concentrated in the middle of the life cycle (small value of σ), the switching time

is later because there is less need to focus on the earliest part of the life cycle that has
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fewer customers. These observations are consistent with equation (3.9) and the numerical

examples in Section 3.

Nonlinear Price Sensitivity

Without the linear assumption on b(t), the analytical result regarding the optimal pricing

policy given in Section 4 is less conclusive except for the case of constant h(t) (Proposition

4.1) and the two cases characterized in Corollary 4.2. In this section, we investigate the

cases where the customers’ price sensitivity may take on various curvatures, given that the

life cycle demand pattern is a unimodal curve.

We use the following exponential family of price sensitivity functions b(t):

b(t) = b0 + (bT − b0) ·
1 − e−αt

1 − e−α

where b0 and bT are constants, and α is a curvature parameter given by −b′′(t)/b′(t). By

varying the values of α, we obtain curves with different curvatures but fixed values at time 0

and time T (which are b0 and bT respectively) – see Figure 4(a) for a set of price sensitivity

curves with b0 = 10 and bT = 30. The curve in the middle is the case of linear b(t) (α = 0),

and the others are either concave (α > 0) or convex (α < 0).

We use the general b(t) function described above to solve the optimal 10-price problem

while we fix the demand pattern h(t) at a normal shaped curve with mean µ = 0.5 and

standard deviation σ = 0.25. Figure 4(b) shows the optimal pricing policy. Note that

concave (convex) b(t) means that the price sensitivity is less and less (more and more)

rapidly changing. One clear observation is that for concave (convex) b(t), price switchings

occur earlier (later) in the product life cycle; this can be explained by the fact that concave

(convex) b(t) means that there are rapid changes in price sensitivity in the early (later) part

of the cycle.

Figure 4(c) demonstrates a property on the optimal sequence of prices. With linear b(t),

percentage reduction between adjacent prices decreases before the peak of h(t) (which is 0.5

in this case) and increases after the peak. When b(t) is convex (i.e., α < 0), the increasing

trend starts sooner, much earlier than the peak; with concave b(t), the opposite is true.

Therefore, the concavity of b(t) elongates the period of decreasing percentage reduction and

shortens the period of increasing percentage reduction relative to the case of linear b(t).

Figure 4(d) shows a property of the optimal sequence of switching times. Recall from

equation (3.2) and Theorem 3.2 that with linear b(t), the duration of each price point mea-

sured in the logarithmic scale of log[b(t)] is a constant if h(t) is constant; the duration is

increasing in the price index if h(t) is increasing, and decreasing if h(t) is decreasing. This

is clearly verified with the linear case in Figure 4(d). When b(t) is concave or convex, the
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(c) Optimal Percentage Reduction
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(d) Optimal Duration of Prices

Figure 4: Impact of Curvatures of b(t): Optimal Pricing Policy in a 10-Price Case

above is not necessarily true. Given what we know of the impact of b(t) on the optimal price

percentage reduction, and that the percentage reduction and the switching time interval

(measured by log[b(τi)] − log[b(τi−1)]) ought to move in the same direction (see Proposition

4.1 and its proof, particularly Lemma A.9 in Appendix A.12), it is no surprise that we ob-

serve very similar behavior for the switching time interval (Figure 4(d)) and the percentage

reduction (Figure 4(c)). In summary, concavity leads to either steeper decreases or less steep

increases for the switching intervals log[b(τi)] − log[b(τi−1)]. On the original time scale, we

observe that as the degree of concavity increases, more price adjustments occur early in the

life cycle (see Figure 4(b)).

The managerial implications of this analysis reinforces a simple pricing policy guideline.

If the customer price sensitivity changes more rapidly in the early part of the product life

cycle (i.e., in the case of concave b(t)), it makes sense to adjust price more frequently and

to use more aggressive percentage price discounts in the early part. With a price sensitivity
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function that changes more rapidly in the latter half (i.e., convex b(t)), these frequent and

aggressive changes should be reserved for later in the life cycle. Therefore, depending on

the industry and product, which may have a specific price sensitivity evolution, the pricing

strategy should differ accordingly.

We have shown in Table 1 the paths of price discounting for several Intel products. The

percentage discount is initially aggressive, then slows down over time, and in some cases rises

again. Although it is tempting to draw an analogy to the observation from Figure 4(c) where

the percentage discount could take either a monotonic decreasing path, or a decreasing-and-

then-increasing pattern, we recognize that Intel’s current price points are influenced by many

other considerations in addition to what we focus on in this paper. However, being able to

exemplify how important demand and market characteristics such as h(t) and b(t) affect the

optimal price path through an analytical model and to compare this with current practice

may prove useful to decision makers.

5.3 The Performance of Discrete Pricing as n Changes

In this section, we study how the restriction of limiting the number of the price changes

during the planning horizon (discrete pricing) impacts the performance. We measure this

by comparing it to the case without this restriction where the price can change continuously

(continuous pricing). This can provide a guideline for a firm faced with the decision of how

many times it should adjust the price of a product. We also investigate how this relative

performance is affected by the shape of demand and by the price sensitivity change of the

customers.

In Figure 5, we report the relative performance of discrete pricing as a function of the

number of discrete prices. While it is easy to see that the overall life-cycle revenue is positively

related to the flexibility associated with price changes (i.e., the number of allowed price

changes), we emphasize how the location and width of the peak in the demand pattern

affect the performance of discrete pricing. We find that the relative performance is high

when the demand pattern peaks late in the life cycle, as illustrated by Figure 5(a), where

each curve represents a different peak location in the life cycle. This can be explained that

if demand pattern peaks early when customers are more price sensitive, there is a greater

need or value of differentiated pricing tailored for changing customer price sensitivity.

Figure 5(b) suggests that the performance is high when the demand peak is narrow (small

width) since demand is concentrated in a small time window during which price sensitivity

does not change significantly. We also find that the performance is high when the inter-

temporal price sensitivity m is small (see Figure 5(c)). This is intuitive since for a more

stable price sensitivity there is less pressure for the company to adjust price over time.
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(a) m = 20 and σ = 1/8. µ refers
to the location of the peak in the
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(b) m = 20 and µ = 1/2. Here, σ
refers to the width of the peak in
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Figure 5: Relative Performance of Discrete Pricing Compared to Continuous Pricing

Results in Figure 5 are useful for determining the optimal number of price changes to

implement. A company may evaluate the administrative cost associated with additional

price changes against the performance improvement and make the decision. We note that

the performance improvement, i.e., the magnitude of benefit from an additional price change,

depends on how fast price sensitivity changes with time, as well as the shape of the demand

pattern.

6 Discussions

6.1 Nonlinear Demand

Thus far in this paper, we model the price-demand relationship using a linear function

d(p, t) = a − b(t)p, which is commonly adopted in economics and management literature.

For a nonlinear relationship, the analysis becomes intractable. However, we show with a

numerical example that the main insights do not deviate.

In particular, we consider another commonly-adopted demand relationship: d(p, t) =

ae−b(t)p where b(t) is defined as in Proposition 3.1 with b(t) = β0 + β1t = β0(1 + mt). The

exponential demand form is widely used in the literature on pricing and revenue management

(see, for example, Smith and Achabal [38], Gallego and van Ryzin [16], and Araman and

Caldentey [1]). Since the parameter a does not affect the pricing and timing decision, we

let a = 1. In our analysis in Section 2.2, we have provided an illustration using a two-price

case and have applied the analytical results to obtain the optimal switching time when the

demand pattern h(t) is constant (Equation (3.1)) and when h(t) is given by the normal

density function N(µ, σ2) (Equation (3.10)). We now provide a similar illustration for a

nonlinear price-demand relationship using computation results.
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If h(t) is a constant, i.e., h(t) = 1, we obtain under the exponential demand that

τ ≈







0.477T if β1T/β0 = 0.2
0.414T if β1T/β0 = 1.0
0.290T if β1T/β0 = 5.0 .

(6.1)

Note the same switching time is obtained for the linear demand in the case that h(t) = 1

(equation (3.1)).3 If h(t) is given by the normal density with µ = T/2 and σ = T/6, then

τ ≈







0.475T if β1T/β0 = 0.2
0.466T if β1T/β0 = 1.0
0.453T if β1T/β0 = 5.0 .

(6.2)

When h(t) is of a normal-density shape, the specific switching time may shift, but the

insights obtained from the linear demand stay true for the exponential demand. Specifically,

the switching time occurs earlier in the life cycle (τ < 0.5T ) and, with a bell-shaped demand

pattern, the switching time is closer to the demand peak than in the case that h(t) is constant.

6.2 “Carry-through” Effect of Price

A key assumption made in our model is that the demand pattern h(t) does not depend on

price and that the effect of price does not carry through to future time. This assumption is

critical for tractability and provides closed-form solutions and simple approaches for obtain-

ing the optimal solution, as well as for deriving interesting analytical results by capturing

the impact of the demand pattern on pricing decisions. As discussed earlier, this assump-

tion is consistent with industrial conditions at companies such as Intel, which motivates our

research problem. However, it may not be true in other contexts in which price may have a

significant impact on product visibility and thus affect the diffusion pattern h(t).

To explore the impact of such “carry-through” effect on the optimal pricing and switching

time decisions, we consider one of the earliest price-dependent diffusion models, which is

adopted by Robinson and Lakhani [33], Dolan and Jeuland [11] and Jeuland and Dolan [21].

We use the notation α and θ to denote the innovation and imitation parameters. Let f and

F be the instantaneous adoption and the cumulative adoption, respectively. The adoption

rate f(t) is given by

f(p, t) = (α + θF (p, t))(1 − F (p, t))e−b(t)p, (6.3)

where f(p, t) = dF (p,t)
dt

, t ∈ [0, T ]. Therefore, the price at time t affects the adoption rate

f(p, t) at time t, and consequently the cumulative adoption F (p, t), as well as future adop-

tions through the impact on F (p, t). The revenue rate function then becomes:

r(p, t) = f(p, t) · p (6.4)

3For the two-price problem with constant h(t), the optimal switching time under a general price-demand
relationship can be shown to coincide with that of the linear demand. See Appendix A.13 for detail.
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As discussed in the introduction, models with carry-through property usually do not

have a closed-form adoption function. In this case, a closed-form expression of f(p, t) as a

function of p and t does not exist [6]. The discrete pricing problem becomes difficult to solve,

and the technical properties that we have developed in this paper do not apply. However,

by limiting to a simple two-price problem, we can explore the impact of carry-through on

the pricing decisions through numerical means.

Assuming that price sensitivity changes in a linear fashion as given in Proposition 3.1, we

compute the optimal prices (p1, p2), and optimal switching time τ through a two-dimensional

search. We compute the adoption rate f(p, t) in discrete time since it does not have a closed-

form expression. Figure 6 illustrates the optimal solutions for different values of m (note

that m is the rate of price sensitivity change over time). Other parameter values are β0 = 1,

α = 0.0037 and θ = 0.33; the diffusion parameters are the same as in the original Bass paper.

Figures 6(a) and 6(b) show that the revenue is a bimodal function of the switching time, the

first mode corresponding to dropping the price early so that the “carry-through” diffusion

process can accelerate early in the life cycle, and the second mode corresponding to the case

of reaping the most revenue from the price-sensitive mass market. At a lower m value, the

left mode dominates and it is optimal to switch early; at a higher m value, the right mode

dominates and it is optimal to switch price later. This interesting bi-modal behavior is further

illustrated in Figure 6(c): For m values that are small, the optimal solution is characterized

by an initial low price and then a switch to a higher price early in the planning horizon;

For m values that are large, the optimal solution is characterized by a high initial price,

followed by a price discount much later in the planning horizon. These can be interpreted as

two commonly-observed pricing practices in the industry: For a newly-introduced product,

companies sometimes use an early promotion to build up the initial adopter population and

induce faster diffusion and then stop the promotion to maximize revenue. We refer to this as

the “early promotion” approach, also known as the price-penetrating strategy. Alternatively,

companies start with a high initial price to capture the price premium early on in the product

life cycle when customers are less price sensitive, and discount the price significantly later in

the life cycle to induce additional sales. We refer to this as the “late mark-down” approach,

also known as the price-skimming strategy. This approach relies on inter-temporal price

discrimination and works well if the market’s price-sensitivity changes rapidly, i.e., m is

large. Depending on which impact dominates (which appears to be determined by m only),

we observe different patterns of the switching times as m changes.

Clearly the “early promotion” approach depends critically on the assumption that the

demand pattern is price dependent. The current-effect model does not capture this. How-

ever, “early promotion” is rare for technology products such as processors and we usually
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only observe price mark-downs for these products. Instead, strong initial adoption is of-

ten achieved through non-pricing controls, consistent with our earlier discussion. Hence the

absence of “early promotion” in these markets reassures the “no carry-through” assumption.
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Figure 6: Optimal Solutions under Price-dependent Demand Pattern

7 Conclusions

In this paper, we have addressed the dynamic pricing of a product in the high technology

industry as it goes through a life cycle. In such a cycle, the underlying demand changes

(usually increasing initially and decreasing eventually), and the customers’ price sensitivity

also evolves over time. We have considered the problem in which the price can change over

time for a fixed total number of times, and both these times and the prices for each subperiod

must be determined.
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We have obtained a number of analytical and numerical results which can be summarized

as follows. For the benchmark case of the stationary demand and linearly increasing price

sensitivity, closed-form solutions for the optimal prices and switching times indicate constant

percentage reduction in price over time and exponentially increasing switching times. We

have studied the impact of demand pattern and price sensitivity, and have shown that, (i)

the increasing trend in the demand pattern and (ii) the less and less rapidly increasing price

sensitivity (i.e., concave price sensitivity) have the same qualitative impact on the optimal

solution: the optimal percentage reduction in adjacent prices decreases in time. We have

also obtained a similar characterization for the frequency of price changes. As a result,

price switchings should concentrate more in the peak region of the demand, compared to a

stationary demand case. We also have extended the analysis to the nonlinear price-demand

relationship using exponential function as an example and have shown that the major insights

remain true. In addition, we have considered an example of price-dependent diffusion and

compute the optimal solution for the two-price problem, and have shown that this “carry-

through” effect of price leads to an “early promotion” pricing strategy in which price is

initially low and then increases to a higher value. Given that early price promotion is rarely

observed in the focal market, we infer that the current-effect price-demand relationship is

valid for our purpose.

The findings of this paper offer several “rule-of-thumb” guidelines in pricing products with

distinct demand patterns: (1) Given a fixed number of price changes, reprice the product

more often when demand is close to its peak than in other times; (2) Since price is more and

more frequently updated as demand approaches the peak, the amount of reduction in each

price update can gradually be less aggressive; (3) Adjust the decision based on the concavity

of the customers’ price sensitivity evolution, such that price reduction is more aggressive if

price sensitivity increases in a convex manner.

To apply the results in this paper requires knowledge of the demand pattern and the

price-demand relationship (more specifically, how price sensitivity changes with time), both

of which are market-specific. Over time, companies develop expert knowledge on its customer

population and how sensitive the customers are to price adjustments at different stages of

a product life cycle. At Intel, such expert knowledge arises from market experience, from

analyzing past sales and price data in the same market, as well as from focus-group studies.

For example, when forecasting demand, Intel usually starts with some generic demand curve,

and then modifies it based on attributes specific to that product such as price. The impact

of price is derived from past sales and price data of products previously sold by Intel in

this market. With sufficient data, Intel can control other product attributes to isolate the

effect of price on sales and infer the price-sensitivity b(t) at different stages of a product life
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cycle. This subsequently leads to a better and updated estimate of the price-independent

demand curve h(t). With the estimated demand pattern and price-sensitivity characteristics,

we can apply methods in this paper and obtain reference price points and switching times,

which are valuable to decision makers. Certainly Intel faces many more pricing constraints

than what is captured in our model. Nevertheless, understanding the dynamics of how

the life-cycle demand pattern and changing price-sensitivity affect the optimal price points

and switching times enables management to make better-informed decisions in a complex

business situation.

In this paper, we do not consider strategic customer behavior for the reasons discussed

in the introduction. If in a different application, a large number of customers may delay

their purchase anticipating a price reduction in the near future and thus strategic customer

behavior cannot be neglected, the optimal pricing decisions will be affected. Since the revenue

impact of such delay would be most significant during demand peak, we expect the optimal

switching times to shift away from the peak time (relative to the case of no strategic behavior

consideration), and also price reductions near the peak to be of a smaller magnitude.

Additionally, we have considered in this paper the pricing decisions for a product in

the absence of substitutable products. For technology products, several generations of a

single product family as well as many related products often coexist in the same market.

An interesting question is how to address the pricing problem within this context. Efforts

for these extensions are likely to include substantial development in both modeling and

computation that build on the current paper, which we leave to future research.
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A Appendix

A.1 Monotonicity of p∗(t1, t2) in Section 2.2

We prove the following proposition.

Proposition A.1. Suppose Assumption 1 holds. For any pair of (t1, t2) and (t′1, t
′
2) satisfying

t1 ≤ t′1 and t2 ≤ t′2,

p∗(t1, t2) ≥ p∗(t′1, t
′
2) .

Proof. We first state the following claim: p∗(s1) ≥ p∗(s1, s2) ≥ p∗(s2) for any s1 and s2 such

that s1 ≤ s2. To prove this, recall that

p∗(s1, s2) = arg max
p

R(p, s1, s2) where R(p, s1, s2) =

∫ s2

s1

r(p, s)ds .

For any s ∈ [s1, s2], the fact that p∗(t) is decreasing in t implies that p∗(s1) ≥ p∗(s) ≥ p∗(s2).

Therefore, the concavity of r(p, t) in p implies that r(p, s) is increasing in p for any p < p∗(s2),

and thus p∗(s1, s2) cannot be smaller than p∗(s2). Similarly, r(p, s) is decreasing in p for any

p > p∗(s1), and thus p∗(s1, s2) cannot be bigger than p∗(s1). Therefore, we complete the

proof of the claim.

Now, we consider the following two cases separately depending on whether t2 ≤ t′1 holds

or not. Suppose t2 ≤ t′1. Then, applying the above claim and the monotonicity of p∗(t), we

obtain

p∗(t1, t2) ≥ p∗(t2) ≥ p∗(t′1) ≥ p∗(t′1, t
′
2) ,

proving the required result.

Now, suppose t′1 < t2. Thus, t1 ≤ t′1 < t2 ≤ t′2. By the above claim, p∗(t′1) ≥ p∗(t′1, t2).

Thus, for any t ≤ t′1, we have p∗(t) ≥ p∗(t′1, t2), which implies that r(p, t) is increasing in p at

p∗(t′1, t2). Therefore, R(p, t1, t
′
1) =

∫ t′1
t1

r(p, t)dt is also increasing in p at p∗(t′1, t2). Also note

that p∗(t′1, t2) is the maximizer of R(p, t′1, t2) =
∫ t2

t′1
r(p, t)dt. It follows that R(p, t1, t2) =

R(p, t1, t
′
1) + R(p, t′1, t2) is increasing in p at p∗(t′1, t2), and we conclude that p∗(t1, t2) ≥

p∗(t′1, t2). By applying a similar argument, we can prove that p∗(t′1, t2) ≥ p∗(t′1, t
′
2). Thus,

these two inequalities imply the required result.

A.2 Proof of Proposition 2.1

Proof. Since V (τ1, . . . , τn−1, p1, . . . , pn) is a separable function in (p1, . . . , pn), maximizing

V (τ1, . . . , τn−1, p1, . . . , pn) is equivalent to maximizing R(pi, τi−1, τi) over pi, which is a con-

cave function maximization problem. Since
∫ τi

τi−1

∂

∂pi
r(pi, t)dt =

∫ τi

τi−1

∂

∂pi
[(a − b(t)pi) · pi]h(t)dt =

∫ τi

τi−1

[a − 2b(t)pi] h(t)dt ,
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the corresponding first-order condition
∫ τi

τi−1

∂
∂pi

r(pi, t)dt = 0 implies (2.2).

∂

∂τi

V (τ1, . . . , τn−1, p1, . . . , pn) =
∂

∂τi

∫ τi

τi−1

r(p1, t)dt +
∂

∂τi

∫ τi+1

τi

r(p2, t)dt

= r(pi, τi) − r(pi+1, τi)

= h(τi) [(a − b(τi) · pi) · pi] − h(τi) [(a − b(τi) · pi+1) · pi+1]

= h(τi) · (p2
i − p2

i+1) ·
[

−b(τi) +
a · (pi − pi+1)

p2
i − p2

i+1

]

= h(τi) · (p2
i − p2

i+1) ·
[

−b(τi) +
a

pi + pi+1

]

. (A.1)

A.3 Necessary Conditions for the Optimality of Ṽ (τ1, . . . , τn−1)

From the first-order and second-order necessary conditions for optimality, we obtain the

following proposition.

Proposition A.2. Under Assumption 1, suppose that (τ1, . . . , τn−1) maximizes Ṽ , and sup-

pose that τi ∈ (0, T ) where i ∈ {1, . . . , n−1}. Then, r(p∗(τi−1, τi), τi) = r(p∗(τi, τi+1), τi) and
∂

∂τi
r(p∗(τi−1, τi), τi) ≤ ∂

∂τi
r(p∗(τi, τi+1), τi).

Proof. For simplicity, we prove the result for n = 2. The case for n > 2 is similar. Since

n = 1, there is only one switching point τ1, which we denote simply by τ . For the ease

of notation, we use ∇i to denote the first order partial derivative with respect to the ith

argument. Suppose that τ is an optimal solution for Ṽ such that τ ∈ (0, T ). Then, we need

to show that

r(p∗(0, τ), τ) = r(p∗(τ, T ), τ) , and (A.2)

∇2r(p
∗(0, τ), τ) ≤ ∇2r(p

∗(τ, T ), τ) . (A.3)

Recall

Ṽ (τ) = V (τ, p∗(0, τ), p∗(τ, T )) = R(p∗(0, τ), 0, τ) + R(p∗(τ, T ), τ, T ) .

By taking the first derivative of Ṽ (τ) with respect to τ , we obtain

Ṽ ′(τ) = ∇2p
∗(0, τ)

∫ τ

0

∇1r(p
∗(0, τ)), t)dt + r(p∗(0, τ), τ)

+ ∇1p
∗(τ, T )

∫ T

τ

∇1r(p
∗(τ, T ), t)dt − r(p∗(τ, T ), τ)

= r(p∗(0, τ), τ) − r(p∗(τ, T ), τ) , (A.4)
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where the last equality follows from the fact that the first and third terms are both zero by

the first order condition of p∗(t1, t2), i.e., p = p∗(t1, t2) is a solution to

∂

∂p
R(p, t1, t2) =

∫ t2

t1

∂

∂p
r(p, t)dt = 0 .

Thus, the first order condition for switching time τ implies (A.2).

From (A.4),

Ṽ ′′(τ) = ∇2r(p
∗(0, τ), τ) + ∇1r(p

∗(0, τ), τ) · ∇2p
∗(0, τ)

− ∇2r(p
∗(τ, T ), τ) − ∇1r(p

∗(τ, T ), τ) · ∇1p
∗(τ, T ) .

From Proposition A.1, we obtain p∗(0, τ) ≥ p∗(τ), and thus ∇1r(p
∗(0, τ), τ) ≤ 0. Similarly,

we obtain p∗(τ, T ) ≥ p∗(τ) and thus ∇1r(p
∗(τ, T ), τ) ≥ 0. Also from Proposition A.1,

∇2p
∗(0, τ) ≤ 0 and ∇1p

∗(τ, T ) ≤ 0. Therefore, the second and the fourth terms above are

nonnegative. Thus, a necessary condition for Ṽ ′′(τ) ≤ 0 is that the first and the third terms

should sum up to at most 0, a condition stated in (A.3).

Quasi-Concavity of Ṽ with Respect to τi

Under Assumption 1, the single-dimensional optimization of Ṽ may not be quasi-concave.

In this section, we identify the sufficient condition for the quasi-convexity of Ṽ with respect

to τi where i ∈ {1, . . . , n − 1}.
Suppose that we vary τi in Ṽ (τ1, . . . , τn−1) given in (2.4) while fixing all the other τj

values, where j 6= i. For any τi ∈ [τi−1, τi+1], since b is an increasing function, it follows from

(2.2) that b(τi) can be written as a convex combination of b(τi−1, τi) and b(τi, τi+1). Define

γ(τi) implicitly such that

b(τi) = (1 − γ(τi)) · b(τi−1, τi) + γ(τi) · b(τi, τi+1) .

As τi increases in the interval [τi−1, τi+1], the value of γ(τi) changes from initially 0 to

eventually 1. Also, define ρ(τi) such that

ρ(τi) =
b(τi−1, τi)

b(τi−1, τi) + b(τi, τi+1)
.

Note that ρ(τi) is bounded below by b(τi−1)/[2 · b(τi+1)] > 0, and bounded above by 1/2.

Therefore, ρ(τi) − γ(τi) is positive when τi = τi−1, and it is negative when τi = τi+1. The

necessary and sufficient condition that we identify in the following proposition is the single-

crossing property of ρ(τi) − γ(τi).

Proposition A.3. Suppose Assumption 1 holds. Fix i ∈ {1, . . . , n−1}, and (τ1, . . . , τi−1, τi+1, . . . , τn−1).

Then, Ṽ (τ1, . . . , τn−1) is quasi-concave in τi ∈ [τi−1, τi+1] if and only if ρ(τi) − γ(τi) crosses

zero exactly once.
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Proof. We provide the proof for the two price case. The case for the n price model is similar.

Recall r(p, t) = p · (a − b(t)p) · h(t). Recall from (2.2),

p∗(0, τ) =
a

2b(0, τ)
and p∗(τ, T ) =

a

2b(τ, T )
.

From (A.4) and (2.2),

Ṽ ′(τ) = r(p∗(0, τ), τ) − r(p∗(τ, T ), τ)

=
a

2b(0, τ)
·
[

a − b(τ) · a

2b(0, τ)

]

· h(τ) − a

2b(τ, T )
·
[

a − b(τ) · a

2b(τ, T )

]

· h(τ) .

Thus, the following statements are “if and only if” statements:

Ṽ ′(τ) ≥ 0

a

2b(0, τ)
·
[

a − b(τ) · a

2b(0, τ)

]

· h(τ) ≥ a

2b(τ, T )
·
[

a − b(τ) · a

2b(τ, T )

]

· h(τ)

b(τ, T ) ·
[

1 − b(τ)

2b(0, τ)

]

≥ b(0, τ) ·
[

1 − b(τ)

2b(τ, T )

]

b(τ, T ) − b(0, τ) ≥ 1

2
· b(τ, T )2 − b(0, τ)2

b(0, τ) · b(τ, T )
· b(τ)

b(0, τ) · b(τ, T ) ≥ 1

2
· b(τ, T )2 − b(0, τ)2

b(τ, T ) − b(0, τ)
· b(τ)

b(0, τ)

b(0, τ) + b(τ, T )
· b(τ, T )

b(0, τ) + b(τ, T )
≥ 1

2
· b(τ)

b(0, τ) + b(τ, T )
.

Since ρ(τ) = b(0, τ)/[b(0, τ)+ b(τ, T )] and b(τ) = (1−γ(τ)) · b(0, τ)+γ(τ) · b(τ, T ), the above

condition is equivalent to

ρ(τ) · (1 − ρ(τ)) ≥ 1

2
[(1 − γ(τ))ρ(τ) + γ(τ)(1 − ρ(τ))] .

Since ρ(τ) ≤ 1/2 for any τ ∈ [0, T ], the above inequality holds with equality if γ(τ) = ρ(τ).

In fact, we can show that the above inequality holds if and only if γ(τ) ≤ ρ(τ). Since

ρ(0) − γ(0) ≥ 0 and ρ(T ) − γ(T ) < 0, we can easily verify that the single-crossing property

of ρ(θ) − γ(θ) is sufficient and necessary to show the existence of τ̂ ∈ [τi−1, τi+1] such that

Ṽ ′(τ) is nonnegative in the interval (0, τ̂) and negative in (τ̂ , T ).

The single-crossing property in Proposition A.3 is observed in most of the numerical

examples that we have examined. If h(t) is constant and b(t) is a linear function of t,

then the single-crossing condition in Proposition A.3 is satisfied, and we prove the following

corollary.
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Corollary A.4. Suppose Assumption 1 holds, and that h(t) is constant and b(t) is linear in

t. Then, for each i ∈ {1, . . . , n − 1}, Ṽ (τ1, . . . , τn−1) is quasi-concave in τi ∈ [τi−1, τi+1].

Proof. Without loss of generality, suppose that h(t) = 1 for t ∈ [0, T ], and b(t) = β0 + β1t

for nonnegative numbers β0 and β1. We provide the proof for the two-price case, i.e., n = 2;

the generalization to any n ≥ 2 follows a similar argument. Since b(τ) = β0 + β1τ , it can be

shown easily that

b(0, τ) = β0 +
β1τ

2

b(τ, T ) = β0 +
β1T

2
+

β1τ

2
.

Thus, from the definition of γ(τ), we obtain

β0 + β1τ = b(τ)

= (1 − γ(τ)) · b(0, τ) + γ(τ) · b(τ, T )

= (1 − γ(τ)) ·
[

β0 +
β1τ

2

]

+ γ(τ) ·
[

β0 +
β1T

2
+

β1τ

2

]

,

which is simplified to

γ(τ) =
τ

T
.

Note that γ(τ) is a linear function with slope of 1/T . Also, from the definition of ρ(τ),

ρ(τ) =
b(0, τ)

b(0, τ) + b(τ, T )
=

β0 + β1τ
2

2β0 + β1τ + β1T
2

=
1

2
−

β1T
4

2β0 + β1τ + β1T
2

,

which is a concave increasing function of τ . Therefore, the maximum slope occurs at τ = 0,

at which

ρ′(τ)|τ=0 =
β1T
4

· β1
[

2β0 + β1T
2

]2 ≤
β1T
4

· β1
[

β1T
2

]2 =
1

T
.

Therefore, ρ(τ)−γ(τ) satisfies the single-crossing property. By Proposition A.3, Ṽ (τ1, . . . , τn−1)

is quasi-concave in τi.

A.4 Proof of Proposition 2.2

We first state and prove the following result.

Proposition A.5. Fix (p1, . . . , pn). Under Assumption 1, the value of (τ1, . . . , τn−1) maxi-

mizing V (τ1, . . . , τn−1, p1, . . . , pn) is given by

b(τi) =
a

pi + pi+1

(A.5)

for each i ∈ {1, . . . , n − 1}.
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Proof. Consider the problem of maximizing V over τi while keeping all the other variables

fixed. We obtain

∂

∂τi

V (τ1, . . . , τn−1, p1, . . . , pn) =
∂

∂τi

∫ τi

τi−1

r(p1, t)dt +
∂

∂τi

∫ τi+1

τi

r(p2, t)dt

= r(pi, τi) − r(pi+1, τi)

= h(τi) [(a − b(τi) · pi) · pi] − h(τi) [(a − b(τi) · pi+1) · pi+1]

= h(τi) · (p2
i − p2

i+1) ·
[

−b(τi) +
a · (pi − pi+1)

p2
i − p2

i+1

]

= h(τi) · (p2
i − p2

i+1) ·
[

−b(τi) +
a

pi + pi+1

]

. (A.6)

Since b is an increasing function, V is quasi-concave in τi, and the optimal value of τi is given

by (A.5).

Proof of Proposition 2.2. Let pi and pi+1 be as given in (2.2). Then, from (A.5) of Proposi-

tion A.5,

b(τi)

b(τi−1, τi)
+

b(τi)

b(τi, τi+1)
=

a

pi + pi+1
· 2 · pi

a
+

a

pi + pi+1
· 2 · pi+1

a
,

which simplifies to 2.

A.5 Graphical Representation of Constructing (τ̂1(θ), . . . , τ̂n−1(θ))

The method for constructing (τ̂1(θ), . . . , τ̂n−1(θ)) can be illustrated graphically. We adopt a

slightly different but still equivalent way of explaining this method. Let ti−1,i be a proxy for

t(τ̂i−1(θ), τ̂i(θ)). In this method, we alternate the following two operations.

• In the first operation, we find τ̂i for given values of τ̂i−1 and ti−1,i. We accomplish this

by applying (2.2) such that the choice of τ̂i ensures that ti−1,i is the analytic center of

the interval [τ̂i−1, τ̂i]:

b(ti−1,i) =

∫ τ̂i

τ̂i−1
b(t)h(t)dt

∫ τ̂i

τ̂i−1
h(t)dt

.

• In the second operation, we find ti,i+1 for given values of ti−1,i and τ̂i. Recall (2.5),

which is equivalent to

Z(ti−1,i) − Z(τ̂i) = Z(τ̂i) − Z(ti,i+1) ,

where we define Z(t) = 1/b(t). Note that the left side of the above expression is

independent of ti,i+1 while the right side is increasing in ti,i+1. This shows that the

choice of ti,i+1 ensures that the difference in the Z function between ti−1,i and τ̂i is the

the same as the corresponding quantity between τ̂i and ti,i+1.
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Figure 7 illustrates the procedure. We are interested in the values of θ such that τ̂n = T

since this guarantees that the associated solution satisfies the set of first-order conditions for

the optimality of V . Note that we can determine such values of θ by performing a search

over a single dimension regardless of n.

1,0
t

3,2
t

2,1
t

1̂ 3
ˆ

2
ˆ

)(

1
)(

tb
tZ

t0

Figure 7: Iterative Algorithm for Finding (τ̂1(θ), . . . , τ̂n−1(θ)).

A.6 Proof of Proposition 3.1

The proof of Proposition 3.1 is based on the following results.

Lemma A.6. Under the conditions of Theorem 3.1, the optimal switching times under the

n-price model, (τ1, . . . , τn−1), satisfy the following property: there exists c such that

1 + 0.5m(τi−1 + τi)

τi − τi−1
= c, for each i = 1, 2, . . . , n.

Proof. Since b(τi−1, τi) = β0+β1(τi−1+τi)/2 and b(τi, τi+1) = β0+β1(τi+τi+1)/2, Proposition

2.2 implies

β0 + β1τi

β0 + β1(τi−1 + τi)/2
+

β0 + β1τi

β0 + β1(τi + τi+1)/2
= 2

β0 + β1τi

β0 + β1(τi−1 + τi)/2
− 1 = 1 − β0 + β1τi

β0 + β1(τi + τi+1)/2

β1(τi − τi−1)/2

β0 + β1(τi−1 + τi)/2
=

β1(τi+1 − τi)/2

β0 + β1(τi + τi+1)/2

(τi − τi−1)

1 + (β1/β0) · (τi−1 + τi)/2
=

(τi+1 − τi)

1 + (β1/β0) · (τi + τi+1)/2
.

Thus, we obtain the required result.
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Lemma A.7. Under the conditions of Lemma A.6,

τi =

[

(

c + 0.5m

c − 0.5m

)i

− 1

]

/

m (A.7)

for i = 1, . . . , n. Furthermore, the value of c satisfies

c =
m

2
·

n
√

1 + mT + 1
n
√

1 + mT − 1
. (A.8)

Proof. Define zi = mτi+1. For the first result, we will prove the following result by induction:

zi =

(

c + 0.5m

c − 0.5m

)i

. (A.9)

Clearly, this induction hypothesis implies (A.7). Since τ0 = 0 and z0 = 1, the base case of

(A.9) holds, and we proceed by assuming that the induction hypothesis holds for τi−1. From

Lemma A.6,

c

m
=

1
2
[(mτi−1 + 1) + (mτi + 1)]

mτi − mτi−1
=

1
2
[zi−1 + zi]

zi − zi−1
c

m
· zi −

c

m
· zi−1 =

zi−1

2
+

zi

2
.

Thus, we obtain

zi =

(

c + 0.5m

c − 0.5m

)

· zi−1 =

(

c + 0.5m

c − 0.5m

)i

,

where the last equality follows from induction hypothesis. Thus, we complete the induction

step and finish the proof of (A.7).

Now, since the the optimal value of τn must satisfy τn = T , we set it to T the right side

of (A.7), where i = n; thus,

1 + mT =

(

c + 0.5m

c − 0.5m

)n

(A.10)

for i = 1, . . . , n. Then, we solve for c to obtain (A.8).

Proof of Proposition 3.1. For i = 1, . . . , n, (A.9) and (A.10) imply

zi =

(

c + 0.5m

c − 0.5m

)i

= (1 + mT )i/n ,

where zi = mτi + 1. By rearranging it for τi, we obtain the required expression for τi.

From (2.2),

pi =
a

2
· 1

β0 + β1

2
(τi−1 + τi)

=
a

2
· 1

β0 + β1

2
(zi−1 + zi − 2)

=
a/β1

zi−1 + zi

where the last equality follows from m = β1/β0. Now, substituting the above expression for

zi−1 and zi, we complete the proof.
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A.7 Proof of Equations (3.2) and (3.3)

Equation (3.2) follows directly from Proposition 3.1. Also, algebraic manipulation shows that

the optimal switching times for the n-price model satisfy (3.3) for each i ∈ {0, . . . , n − 1}.

A.8 Proof of Equation (3.4)

Since b(t) = β0 +β1t and m = β1/β0, the left-side expression of equation (3.3) can be written

as

log(1 + mτi+1) − log(1 + mτi) = log

[

b(τi+1)

β0

]

− log

[

b(τi)

β0

]

= log

[

b(τi+1)

b(τi)

]

= log

[

1 +
b(τi+1) − b(τi)

b(τi)

]

. (A.11)

From (3.3) and (A.11), we obtain

b(τi+1) − b(τi)

b(τi)
= [1 + mT ]1/n − 1 =

[

b(T )

β0

]1/n

− 1 ,

which is (3.4).

A.9 Proof of Equation (3.9)

Proof. From Proposition 2.2 and equation (2.3) along with the assumption that b(t) =

β0+β1t, the optimal switching time τ in the two-price model satisfies 1+mτ
1+mt(0,τ)

+ 1+mτ
1+mt(τ,T )

= 2.

Let ∆L(τ) = τ − t(0, τ) and ∆R(τ) = t(τ, T ) − τ , and rewrite the above equation as

1 + mτ

1 + m(τ − ∆L(τ))
+

1 + mτ

1 + m(τ + ∆R(τ))
= 2 ,

which is equivalent to

1

∆L(τ)
− 1

∆R(τ)
=

2m

1 + mτ
.

Clearly, the nonnegativity of the above expression implies that ∆L(τ) ≤ ∆R(τ). Further-

more, by the symmetry of h(t) centered at T/2 and the linearity of b(t), it can be verified

from equations (2.2) and (2.3) that ∆L(τ) = ∆R(τ) at τ = T/2.

For t ∈ [0, T ], define h̃(t) = h(t)/[
∫ T

0
h(s)ds]. Since h(t) log-concave, h̃(t) is also log-

concave. Define

δ(τ) = τ −
∫ τ

0
sh̃(s)ds

∫ τ

0
h̃(s)ds

,
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which is known in the literature as the mean-advantage-over-inferiors function. Since h̃(t)

is log-concave, it follows from Theorem 5 of Bagnoli and Bergstrom (2005) that δ(τ) is an

increasing function. From

β0 + β1 · t(τ ′, τ ′′) = b(t(τ ′, τ ′′)) = b(τ ′, τ ′′) =

∫ τ ′′

τ ′
b(s)h(s)dt

∫ τ ′′

τ ′
h(s)ds

=

∫ τ ′′

τ ′
[β0 + β1s]h(s)ds
∫ τ ′′

τ ′
h(s)ds

= β0 + β1 ·
∫ τ ′′

τ ′
sh̃(s)ds

∫ τ ′′

τ ′
h̃(s)ds

,

we obtain t(τ ′, τ ′′) =
∫ τ ′′

τ ′
sh̃(s)ds

/∫ τ ′′

τ ′
h̃(s)ds, and conclude that ∆L(τ) = τ−t(0, τ) = δ(τ) is

an increasing function. By symmetry, we can also show that ∆R(τ) is a decreasing function.

These monotonicity properties, along with the fact that ∆L(τ) ≤ ∆R(τ) and ∆L(T/2) =

∆R(T/2), imply that the optimal choice of τ should satisfy τ ≤ T/2.

A.10 Normal Demand Pattern h(t): Proof of (3.10)

Suppose that h(t) is given by the probability density function N(µ, σ2), a normal distribution

with mean µ and standard deviation σ. From (2.2) and (2.3),

t(τ ′, τ ′′) = µ − σ2 · f(τ ′′) − f(τ ′)

F (τ ′′) − F (τ ′)
, (A.12)

where f and F denote the probability density function and the cumulative density function

of the normal distribution N(µ, σ). (The proof of (A.12) appears at the end of this section.)

Thus, (2.5) for the two-price case would become

2 =
b(τ)

b(0, τ)
+

b(τ)

b(τ, T )
=

1 + mτ

1 + m
[

µ + σ2 f(τ)−f(0)
F (τ)−F (0)

] +
1 + mτ

1 + m
[

µ + σ2 f(T )−f(τ)
F (T )−F (τ)

] .

Recall µ = T/2 and σ = T/6. Then, as we vary [b(T ) − b(0)]/b(0) = β1T/β0, we obtain the

optimal switching times given in (3.10).

Proof of Equation (A.12) . For fixed µ and σ, let f and F be the probability density function

and the cumulative density function of N(µ, σ2), respectively. Let φ and Φ be the probability

density function and the cumulative density function of the standard normal distribution.

It has been well known that
∫ ∞

c
tφ(t)dt = φ(c). Therefore,

∫ ∞

s

tf(t)dt =

∫ ∞

s

[

t · φ
(

t − µ

σ

)

· 1

σ

]

dt =

∫ ∞

s−µ

σ

[(xσ + µ) · φ (x)] dx

= σ

∫ ∞

s−µ

σ

xφ (x) dx + µ

∫ ∞

s−µ

σ

φ (x) dx = σ · φ
(

s − µ

σ

)

+ µ ·
[

1 − Φ

(

s − µ

σ

)]

= σ2 · f(s) + µ · [1 − F (s)] .
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Since h is the probability density function of N(µ, σ2) and b(t) = β0 + β1t, we obtain

∫ τ ′′

τ ′

b(t)h(t)dt = β0 · [F (τ ′′) − F (τ ′)] + β1

∫ τ ′′

τ ′

tf(t)dt

= β0 · [F (τ ′′) − F (τ ′)] + β1 ·
[

µ · [F (τ ′′) − F (τ ′)] − σ2 · (f(τ ′′) − f(τ ′))
]

.

Equation (2.2) and the fact
∫ τ ′′

τ ′
h(t)dt = F (τ ′′) − F (τ ′) together imply that

b(τ ′, τ ′′) =

∫ τ ′′

τ ′
b(t)h(t)dt

∫ τ ′′

τ ′
h(t)dt

= β0 + β1 ·
[

µ − σ2 · f(τ ′′) − f(τ ′)

F (τ ′′) − F (τ ′)

]

.

Since the definition of t in (2.3) is given by b(τ ′, τ ′′) = b(t(τ ′, τ ′′)), we obtain (A.12), as

required.

A.11 Proof of Theorem 3.2

Proof. (a) Note that

pi+1

pi
=

b(τi−1, τi)

b(τi, τi+1)
= 2 · b(τi−1, τi)

b(τi)
− 1 = 2 · 1 + mti−1,i

1 + mτi
− 1 , (A.13)

where the first equality follows from equation (2.2) of Proposition 2.1; the second equality

follows from equation (2.5) of Proposition 2.2; and the third equality follows from the linearity

assumption on b(t) = β0 + β1t, the definition of m = β1/β0, and the fact that ti−1,i is the

analytic center of the interval [τi−1, τi].

Suppose τi ≤ t̂. Since h(t) is increasing in t ∈ [0, t̂], the average of τi−1 and τi should be

smaller than the analytic center ti−1,i (see equation (2.2)), i.e., (τi−1 + τi)/2 ≤ ti−1,i. This

inequality is equivalent to the below inequality:

1 + mτi

1 + mti−1,i

≤ 2 − 1 + mτi−1

1 + mti−1,i

=
1 + mτi−1

1 + mti−2,i−1

,

where the equality follows from equation (2.5). From (A.13), it implies pi+1/pi ≥ pi/pi−1.

If τi−1 ≥ t̂, a similar argument shows pi+1/pi ≤ pi/pi−1, as required.

(b) From equation (A.5) in Proposition A.5, we obtain, for each i = 1, 2, . . . , n − 2,

b(τi+1)

b(τi)
=

pi + pi+1

pi+1 + pi+2

.

Thus

{log[b(τi+1)] − log[b(τi)]} − {log[b(τi)] − log[b(τi−1)]}

= log
b(τi−1)b(τi+1)

b(τi)2
= log

(pi + pi+1)(pi + pi+1)

(pi+1 + pi+2)(pi−1 + pi)

= log
(1 + pi+1/pi)(1 + pi/pi+1)

(1 + pi+2/pi+1)(1 + pi−1/pi)
= log

{[

1 + pi+1/pi

1 + pi+2/pi+1

] [

1 + pi/pi+1

1 + pi−1/pi

]}

.
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If pi

pi−1
≤ pi+1

pi
≤ pi+2

pi+1
, then we obtain 1+pi+1/pi

1+pi+2/pi+1
< 1 and 1+pi/pi+1

1+pi−1/pi
< 1, which imply that the

above expression is non-positive, i.e., log[b(τi+1)] − log[b(τi)] ≤ log[b(τi)] − log[b(τi−1)]. We

obtain an analogous result if pi

pi−1
≥ pi+1

pi
≥ pi+2

pi+1
holds instead.

The proof follows from the fact that log(1+mτi) = log(b(τi)/β0) = log(b(τi))− log β0.

A.12 Proofs of Proposition 4.1 and Corollary 4.2

Recall, from (2.2), b(τ ′, τ ′′) =
∫ τ ′′

τ ′
b(t)h(t)dt

/∫ τ ′′

τ ′
h(t)dt.

Lemma A.8. Under Assumption 1, the optimal prices (p1, . . . , pn) satisfy

1

1 + pi+1/pi

− 1

1 + pi/pi−1

=
b(τi) + b(τi−1)

2b(τi−1, τi)
− 1 . (A.14)

Furthermore,

{

pi/pi−1 ≤ pi+1/pi if [b(τi−1) + b(τi)] /2 ≤ b(τi−1, τi)

pi/pi−1 ≥ pi+1/pi if [b(τi−1) + b(τi)] /2 ≥ b(τi−1, τi).

Proof. Note that (A.13) is valid without the assumption on the linearity of b(t). Thus,

1 +
pi+1

pi
= 2 · b(τi−1, τi)

b(τi)
and 1 +

pi

pi−1
= 2 · b(τi−2, τi−1)

b(τi−1)
.

Therefore,

1

1 + pi+1/pi
− 1

1 + pi/pi−1
=

1

2
·
[

b(τi)

b(τi−1, τi)
− b(τi−1)

b(τi−2, τi−1)

]

.

Since Proposition (A.5) implies b(τi−1)/b(τi−2, τi−1) = 2 − b(τi−1)/b(τi−1, τi), we get (A.14)

as required.

Now, if [b(τi−1) + b(τi)] /2 ≤ b(τi−1, τi), then the expression in (A.14) is at most 0, and

it follows that pi/pi−1 ≤ pi+1/pi. Similarly, [b(τi−1) + b(τi)] /2 ≥ b(τi−1, τi) implies pi/pi−1 ≥
pi+1/pi.

Lemma A.8 states that the percentage reduction in price, given by (1−pi+1/pi), increases

or decreases in i depending on the relationship between the arithmetic mean of the price

sensitivities at the two adjacent switching times, [b(τi) + b(τi−1)]/2, and the analytic mean

b(τi−1, τi). Suppose h(t) = 1. Then, from (2.2), b(τ ′, τ ′′) =
∫ τ ′′

τ ′
b(t)dt

/

(τ ′′ − τ ′).

If b(t) is concave in t, then it can be shown that, for any t ∈ [τ ′, τ ′′],

b(t) ≥ τ ′′ − t

τ ′′ − τ ′
· b(τ ′) +

t − τ ′

τ ′′ − τ ′
· b(τ ′′).
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Since
∫ τ ′′

τ ′
(τ ′′ − t)dt = [τ ′′t − t2/2]

τ ′′

t=τ ′ = [τ ′′2 − τ ′′2/2] − [τ ′τ ′′ − τ ′/2] = (τ ′′ − τ ′)2/2 and

similarly
∫ τ ′′

τ ′
(t − τ ′)dt = (τ ′′ − τ ′)2/2, the above inequality implies

∫ τ ′′

τ ′
b(t)dt

τ ′′ − τ ′
≥

∫ τ ′′

τ ′

τ ′′ − t

(τ ′′ − τ ′)2
· b(τ ′)dt +

∫ τ ′′

τ ′

t − τ ′

(τ ′′ − τ ′)2
· b(τ ′′)dt =

b(τ ′)

2
+

b(τ ′′)

2
. (A.15)

Thus, b(τi−1, τi) ≥ [b(τi−1) + b(τi)] /2 holds. By Lemma A.8, it follows that pi/pi−1 ≤ pi+1/pi.

Now, the following lemma shows that {log b(τi) − log b(τi−1)} is decreasing in i.

Lemma A.9. Under Assumption 1, the optimal switching times (τ1, . . . , τn−1) satisfy the

following properties.

(a) If pi

pi−1
≤ pi+1

pi
≤ pi+2

pi+1
, then log[b(τi)] − log[b(τi−1)] ≥ log[b(τi+1)] − log[b(τi)].

(b) If pi

pi−1
≥ pi+1

pi
≥ pi+2

pi+1
, then log[b(τi)] − log[b(τi−1)] ≤ log[b(τi+1)] − log[b(τi)].

Proof. It follows the same argument as in the proof of Theorem 3.2(b).

If b(t) is convex in t, we can similarly show from Lemmas A.8 and A.9 that pi/pi−1 ≥
pi+1/pi and {log b(τi) − log b(τi−1)} is increasing in i. This completes the proof of Proposition

4.1.

To prove Corollary 4.2, first suppose that h(t) is increasing and b(t) is concave and

increasing in t. We first prove the following claim:
∫ τi

τi−1

b(t) · h(t)
∫ τi

τi−1
h(t)dt

dt ≥
∫ τi

τi−1

b(t) · 1

τi − τi−1
dt .

Suppose that X1 and X2 are random variables defined on the interval [τi−1, τi] with densities

given by h(t)/
∫ τi

τi−1
h(t)dt and 1/(τi − τi−1), respectively. Then, since h(t) is increasing, we

can show, for any t′ and s ≥ 0,

P [X1 > s + t′ | X1 > t′] ≥ P [X2 > s + t′ | X2 > t′] ,

i.e., X2 is smaller than X1 with respect to the hazard rate order. Since b(·) is an increas-

ing function, by Theorem 1.3.8 and Theorem 1.2.8 of Müller and Stoyan [30], we obtain

E[b(X1)] ≥ E[b(X2)], which proves the above claim.

Now, from the definition of b(τi−1, τi) given in (2.2) and inequality (A.15), we can show

from the above claim that (pi − pi−1)/pi−1 is decreasing in i. Furthermore, by Lemma A.9,

{log b(τi) − log b(τi−1)} is also decreasing in i, and we establish part (a) of Corollary 4.2. By

similar reasoning, we can establish part (b) also.

A.13 Proof of Footnote 3

Proposition A.10. Assume h(t) = 1 and b(t) = β0 +β1t = β0(1+mt). In addition, assume

d(p, t) = λ(b(t)p), where the function λ(·) satisfies the conditions (i) λ(x) is decreasing in x,
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and (ii)
xλ′(x)

λ(x)
is decreasing in x. For the two-price model, the optimal switching times τ is

given by

τ ∗ = [(1 + mT )1/2 − 1]/m .

We note that conditions (i) and (ii) imply concavity of xλ(x) and are satisfied by many

common price-demand relationships including the linear and the exponential demand func-

tions.

Proof. Let p1 and p2 be the prices in the first and second period, respectively. The revenues

during [0, τ ] and during [τ, T ] are given by

R1(p1, τ) =

∫ τ

0

p1λ(b(t)p1)dt and (A.16)

R2(p2, τ) =

∫ T

τ

p2λ(b(t)p2)dt . (A.17)

Taking first order derivative of equation (A.16) with respect to p1 yields:

∂R1

∂p1

=

∫ τ

0

[

λ(b(t)p1) + p1
dλ

d(b(t)p1)
b(t)

]

dt

=

∫ τ

0

λ(b(t)p1)dt +

∫ τ

0

b(t)

β0m

[

p1
dλ

d(b(t)p1)

db(t)

dt

]

dt

=

∫ τ

0

λ(b(t)p1)dt +
1

β0m

∫ τ

0

b(t)dλ(b(t)p1)

=

∫ τ

0

λ(b(t)p1)dt +
1

β0m

[

b(t)λ(b(t)p1)|τ0 −
∫ τ

0

λ(b(t)p1)db(t)

]

=

∫ τ

0

λ(b(t)p1)dt +
1

β0m
b(t)λ(b(t)p1)|τ0 −

∫ τ

0

λ(b(t)p1)dt

=
1

β0m
b(t)λ(b(t)p1)|τ0 ,

where the second and fifth equalities are due to
db(t)

dt
= β0m. The third equality is due to

dλ(b(t)p1)

dt
= p1

dλ

d(b(t)p1)

db(t)

dt
.

Suppose that p∗1(τ) satisfies ∂R1(p1,τ)
∂p1

= 0. Using the above equality and condition (ii),

we can verify that ∂2R1(p1,τ)

∂p2
1

|p1=p∗1(τ) ≤ 0 (the details are skipped for brevity). Hence R1 is

unimodal in p1 for a given switching time τ . Therefore, by setting the rightmost expression

to zero, the optimal first-period price p∗1(τ) should satisfy:

b(τ)λ(b(τ)p∗1(τ)) = b(0)λ(b(0)p∗1(τ)) . (A.18)
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Similarly, optimizing R2 over p2 for a given τ , we obtain

b(τ)λ(b(τ)p∗2(τ)) = b(T )λ(b(T )p∗2(τ)) . (A.19)

Therefore the total profit as a function of the switching time τ is given by

R(τ) = R1(p
∗
1(τ), τ) + R2(p

∗
2(τ), τ) .

From the proof of the equation (A.2) in Appendix A.3, we know that the optimal τ shall

satisfy

p∗1(τ)λ(b(τ)p∗1(τ)) = p∗2(τ)λ(b(τ)p∗2(τ)) . (A.20)

From equations (A.18) to (A.20), we obtain

b(0)p∗1λ(b(0)p∗1) = b(τ)p∗1λ(b(τ)p∗1) = b(τ)p∗2λ(b(τ)p∗2) = b(T )p∗2λ(b(T )p∗2) . (A.21)

Let the value of the above equalities be z. The above equalities imply that b(0)p∗1, b(τ)p∗1,

b(τ)p∗2 and b(T )p∗2 are roots of the equation xλ(x) = z. Because of the monotonicity of b(t)

and because p∗1 ≥ p∗2 (see the monotonicity result from Appendix A.1),

b(0)p∗1 < b(τ)p∗1 ≥ b(τ)p∗2 < b(T )p∗2.

However, conditions (i) and (ii) imply that xλ(x) is concave in x; thus there could be at

most two distinct roots for equation xλ(x) = z. Therefore, we must have

b(0)p∗1 = b(τ)p∗2 (A.22)

b(τ)p∗1 = b(T )p∗2 , (A.23)

which leads to b(τ)
b(0)

= b(T )
b(τ)

and thus b(τ) = (b(0)b(T ))1/2. Because b(t) = β0(1+ mt), we have

τ ∗ = [(1 + mT )1/2 − 1]/m ,

which is equal to the optimal switching time for the two-price problem under linear demand

and constant h(t) as derived from Proposition 3.1.
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