Searching for Credible Information via Social Media Mining

Huan Liu

Data Mining and Machine Learning Lab
Arizona State University
Thanks to Former and Current PhD Students of DMML

- Reza Zafarni, Asst Prof, Syracuse U
- Xia Hu, Asst Prof, Texas A&M U
- Magdiel Galan, Intel
- Shamanth Kumar, Castlight Health
- Pritam Gundecha, IBM Res Almaden
- Jiliang Tang, Asst Prof, MSU
- Huiji Gao, LinkedIn
- Ali Abbasi, Machine Zone
- Salem Alelyani, Asst Prof, King Khalid U
- Xufei Wang, LinkedIn
- Geoffrey Barbier, AFRL
- Lei Tang, Clari
- Zheng Zhao, Google
- Nitin Agarwal, Chair Prof, UALR
- Sai Moturu, PostDoc, MIT Media Lab
- Lei Yu, Assc Prof, Binghamton U, NY
- Robert Trevino, AFRL
- Yunzhong Liu, LeEco, US
- Somnath Shahapurkar, FICO
- Fred Morstatter
- Isaac Jones
- Suhas Ranganath
- Suhang Wang
- Tahora Nazer
- Jundong Li
- Liang Wu
- Ghazaleh Beigi
- Kai Shu
- Justin Sampson

![Citations per year](chart_image)
False, Misleading, and Inaccurate Information

- Spam
- Fraud
- Fake News
- Rumor
- Urban Legend
- Gossip

Information can be: **true, false, or uncertain**

Big Data: 6\(^{th}\) ‘V’ Everyone Should Know About

- Vulnerability
- Social media has all 6 V’s

Disinformation (purposeful)
Misinformation (unintentional) & Disinformation
Spam in Social Media

- Unwanted content information generated by spamming users as comments, chat, fake requests that are used to promote products or spread malicious information.
 - Fake reviews
 - Malicious links
 - Fake requests
Fraud (Scam) in Social Media

• A social media fraud is defrauding and/or taking advantage of social media users with the use of social media services.

 – Swindle money
 – Steal personal information
Fake News Websites and Social Media

• Fake news websites deliberately publish hoaxes, propaganda, and disinformation to drive traffic *exacerbated by social media*

• Fake news can affect domestic politics, *inflamed by social media*, due to limited resources to check the veracity of claims
 – Easy to “like” and “share”, but taking effort to check, albeit just a few clicks away (effort asymmetry)

• Fake news + Social media ➔ Cyberwarfare
Fake News Is Rampant in Social Media

• Fake news spreads on social media
 – Spreads rapidly
 – Evolves fast

• Crossover to other networks
• Modified content
Fake News Can Cause Real Harm

- Pizzagate: stories of fake news from Reddit lead to real shooting

- A false rumor erased $136 billion in 10 minutes
Rumors

- Wikipedia: “A tall tale of explanations circulating from person to person and pertaining to an object, event, or issue in public concern”.
- Rumors can be **true** or **false**.

 - False rumor

 "Russian jet shot down by Turkish jet 20151010
 yasser alhaji @yasseralhaji1
 Unconfirmed report Russian jet is down by Turkish after interning Turkish airspace.
 4:04 PM - 9 Oct 2015 - details"
Gossip in Social Media

• Gossip is idle chat and rumor about personal and/or private affairs of others.
• Social media allows for faster, a larger scale of, and more convenient idle chat.

– Celebrity:
 “Obamas moving to Asheville”

– Friends:
 People “are much more likely to gossip when a story unites a familiar person with an interesting scenario.”

Urban Legend in Social Media

• Fictional stories with macabre elements rooted in local popular culture.
 – On social media, it develops faster and spreads wider
 • Urban legend of Fengshui

• In summary, it is imperative to study credibility checking
On Credibility Checking

• Studying different *types* of *credibility* and the need for different data and information sources in credibility checking
 – We don’t have to reinvent wheels in social media mining and can “stand on the shoulder of giants”
 – Machines differ from humans in credibility checking

• About Credibility Checking
 – *Types* of Credibility (social sciences, psychology, CS)
 – *Aspects* of Credibility Checking
 – *Components* of Credibility Checking in Social Media
Four Types of Credibility

• *Presumed* credibility (general assumptions)
 – “Our friends usually tell truth”

• *Reputed* credibility (based on third parties’ reports)
 – For instance, prestigious awards or official titles

• *Surface* credibility (simple inspection)
 – “People judge a book by its cover”

• *Experienced* credibility (first-hand experience)
 – “Time can tell” （路遥知马力，日久见人心）
Aspects of Credibility Checking (CC)

• Can we turn CC into a problem easier for users or AM Turks (without much expertise) to check?

• Issues about Credibility Checking Measures
 – Reputation and History (time)
 – Accuracy and Relevance
 – Transparency and Integrity (consistency)
 – Response from independent sources (consistency)

• Implication or impact assessment
 – Not every piece of fake news is disastrous
 – “Warn or not to warn”: how to balance?
Components in Credibility Checking in Social Media

- **News/Post**
 - News/Post
 - Fake
 - Yes
 - Uncertain
 - No

- **Recipients**
 - Expertise, experience
 - Background, occupation

- **Senders**
 - Reputation
 - Length of online presence
 - Social networks

- **Source of information**
 - Provenance
 - Reputation, Curation/Editing
 - Length
 - Writing style
 - Topics
 - URLs
 - Multimedia
 - Topic thread (Outlier detection)
 - Retweets
 - Replies
 - Comments

- **Content**
 - Writing style
 - Topics
 - URLs
 - Multimedia

- **Network context**
 - Crowdsourcing (fact-checking sites, e.g., Snopes)
 - Ground truth (multifaceted, gold standard)
Searching for Credible Information

- A Unique Challenge
 - Ground truth
- Additional Challenges
 - Credibility verification
 - Dynamic change
 - Timeliness
- Alternative Approaches
 - Rumor Detection
 - Spam Detection
 - Bot Detection
 - Inferring Distrust

General Elimination Methodology
Using Social Media for Credibility Checking

- **Velocity and Volume**
 - 6,000 tweets per second, 5 million per day on Twitter
 - 55 million status and 300 million photos per day on FB

- **Variety**
 - Geo-spatial, textual, pictorial, temporal, social dimensions
 - Cross modality (e.g., geotagged pictures)

- **Veracity**
 - Truthfulness and accuracy of information

- **Use** big data, multi-source info, and social networks *to compensate for* lack of expertise
 (以其之矛还其之盾)
A decent breakdown of all things real and fake news.

[Image: http://imgur.com/7xHaUXf]
Rumor Detection

- **Rumor**: unverified and relevant information that circulates in the context of ambiguity.

- **Goal**: detecting emerging rumors with minimum information as early as possible
 - If intervention is not feasible, get early warning or prepared

- **Challenges**:
 - How to overcome the lack of information in a single tweet?
 - How to detect rumors in their formative stage?
Insufficient Information in a Single Tweet

• A single tweet could be damaging, but contains little information w/o context for detection

• Treat batches of tweets as “conversations”
 • Based on keyword similarities
 • Based on reply chains

• Aggregate conversations
 • Shared hashtags
 • Common links
 • Cosine similarity

‘Incidence of #BubonicPlague dropped too, but #vaccines hadn’t been invented yet.’

‘You seem to believe #vaccines are safe and effective and worth forcing onto others.’

Point of Acceptable Accuracy

1 to 9 tweets
10+ tweets
Detection of Emerging Rumors

• Emergent detection - link the first tweet in a rumor with those already posted
• Standard rumor classifications are not effective for small conversations
 – Lack of network and statistical data
 – Data sparsity issues
• Implicit linking works effectively for detecting small rumor cascades
Bot Detection

• Bots
 – Innocuous: relay information from official sources
 – Malicious: spread rumors and false information

• Goal: Remove bots from social media data with high Recall
 – WHY?

• Challenges
 – Acquiring ground truth
 – Increasing Recall without significantly reducing Precision
Bots in Social Media

• Bots on Twitter:
 – Twitter claims 5% of 230M users are bots.
 – One study found 20M bot accounts = 9%**.
 – 24% of all tweets are generated by bots***.

• 5-11% of Facebook accounts are fake****.

** http://www.nbcnews.com/technology/1-10-twitter-accounts-fake-say-researchers-2D11655362
*** https://sysomos.com/inside-twitter/most-active-twitter-user-data
Finding Ground Truth

Status on Twitter as a labeling mechanism

• Three states of a Twitter user:
 - Active
 - Suspended
 - Deleted

• Idea:
 - Use these states as labels
 - Two snapshots of each user is taken

Initial Crawl
 • Finds seed set of users.
 • Crawls Profile, Network, ...
Ground Truth - Honeypots

- Act as obvious bot accounts
- Attract other bot accounts
- Bots are identified when they follow our account
- **Assumption:** Real users do not follow bots
Honeypots - Logic

- **Post “Luring” Content**
 - Post content that will be seen
 - trending topics, hashtags, “famous” tweets...

- **Maintain Network Connections**
 - “Follow back”, Retweets
 - Fame begets fame

- **Promote Other Honeypots**
 - Retweet each other’s tweets
 - Mention each other
BoostOR

- Based on AdaBoost
- Try to increase Recall without drastic decrease in Precision
- Iteratively update the weight of instances:
 - Unchanged if correctly classified
 - Decreased if false negative
 - Increased if false positive
Trust-Distrust Prediction

• Goal
 – Trust and distrust relations can play an important role in helping online users collect reliable information
 – Finding trustworthy users and reliable information is of significant importance
 – How to predict trust relations between users?

• Challenges
 – Trust relations are extremely sparse
 – Distrust relations are even sparser than trust ones
 – Finding substitute features indicative of trust and distrust
Trust and Emotions

- According to psychology, user’s emotions can be strong indicators of trust and distrust relations
- Emotional information is more available than that of trust/distrust
- There exists a correlation between emotions and trust/distrust relations
Modeling Emotional Information

- Users with positive (negative) emotions are more likely to establish trust (distrust) relations
- Users with high positive (negative) emotion strengths are more likely to establish trust (distrust)
- The Emotional Trust Distrust framework ETD
 - Low-rank matrix factorization
 - Emotional information regularization
Studying Bias in Social Media Data

• Twitter shares its data
 – “Firehose” feed - 100% - costly
 – “Streaming API” feed - 1% - free

• We usually obtain data via sampling
 – Is the sampled data from the Streaming API representative of the true activity on Twitter’s Firehose?

• Challenges
 – How to determine if the sample is biased when we do not have access to the whole data?
 – How to obtain an unbiased sample?
Twitter’s Streaming API vs. Firehose

• Data from Firehose and Streaming API has been collected for specific period of time to perform analysis

• More than 90% of all geotagged tweets are available via Streaming API and there is not significant difference in location distribution

• Based on in-degree centrality and betweenness centrality in user-user retweet networks, the Streaming API finds ~50% of the key users
Mitigating Bias in Twitter’s Streaming API

Can we find bias without the Firehose?

Estimating Bias from Streaming API:
- Obtain trend of hashtag from Sample API and Streaming API
- Bootstrap Sample API to obtain confidence intervals
- Mark regions where Streaming API is outside of confidence intervals

Mitigating Bias:
- Leverage multiple crawlers to maximize data for each query
- Round Robin Splitting
Time-Critical Information in Crisis Response

• Social media is used to request for immediate assistance during crisis
• Time-critical posts demand immediate attention
• Addressing these queries promptly can help in emergency response
• How can these posts be distinguished from others?

• What Is Required in *Finding Time-Critical Responses*?
 – Users with expertise or knowledge
 – Fast response
 – Relevant answers
Finding Time-Critical Responses

• Many questions asked during crisis should be immediately attended
• Many responders are busy
• How can we find a prompt responder who can provide a relevant answer?

• Challenges of Identifying Prompt Responders
 – How do we estimate the reply time of users to identify prompt responders?
 – Timeliness and relevance: how do we integrate timeliness with relevance to rank candidate responders?
Information Seeking in Social Media

- Social media is used to request for help during crisis.
- Addressing these queries promptly can help in emergency response.

Examples:

- "This is what's going on #Tsunami #earthquake #Indonesia any one has news of #bangladesh ? #bayofbengal ?"

- "How can my mom get help from #springfix? She is 92 years old & her house in Sheepshead Bay was destroyed in Sandy. #help"

- "What kind of help is needed and where? #earthquake"
Identifying Candidate Responders

• Timeliness
 – The user can respond more quickly if she is available soon after the question is posted. It can be estimated using the previous posting times
 – A user responds to questions faster if she has replied promptly to similar questions in the past

• Relevance
 – Users whose previous content is similar to the question have higher relevance and their response is more likely to be a relevant answer

• Timeliness and relevance are integrated by combining the ranking scores
Searching for Credible Information

- A Unique Challenge
 - Ground truth
- Additional Challenges
 - Credibility verification
 - Dynamic change
 - Timeliness
- Alternative Approaches
 - Rumor Detection
 - Spam Detection
 - Bot Detection
 - Inferring Distrust

General Elimination Methodology

以其之矛还其之盾
Thank You All

- Professor Yang’s kind invitation and warm hospitality
- Funding support from ONR, NSF, ARO, among others
- DMML Lab former and current members, and Liang Wu for helping with the preparation of this presentation

Search for “Huan Liu” for more information about DMML

Repositories and Recent Books

- scikit-feature – an open source feature selection repository in Python
- Social Computing Repository
Social Media Mining
An Introduction

A Textbook by Cambridge University Press

Reza Zafarani
Mohammad Ali Abbasi
Huan Liu

Syracuse University
Machine Zone
Arizona State University

Accessed 90,000+ times
from 160+ countries and 1200+ Universities

The growth of social media over the last decade has revolutionized the way individuals interact and

http://dmml.asu.edu/SMN/
References

