Advancing the Frontier in Social Media Mining

Huan Liu

Joint work with
DMML Members and Collaborators

http://dmml.asu.edu/
Social Media Mining

An Introduction

A Textbook by Cambridge University Press

Reza Zafarani
Mohammad Ali Abbasi
Huan Liu

Arizona State University

The growth of social media over the last decade has revolutionized the way individuals interact and industries conduct business. Individuals produce data at an unprecedented rate by interacting, sharing, and consuming content through social media. Understanding and processing this new type of data to glean actionable patterns presents challenges and opportunities for interdisciplinary research, novel algorithms, and tool development. Social Media Mining integrates social media, social network analysis, and data mining to provide a convenient and coherent platform for students, practitioners, researchers, and project managers to understand the basics and potentials of social media mining. It introduces the unique problems arising from social media data and presents fundamental concepts, emerging issues, and effective algorithms for network analysis and data mining. Suitable for use in advanced undergraduate and beginning graduate courses as well as professional short courses, the text contains exercises of different degrees of difficulty that improve understanding and help apply concepts, principles, and methods in various scenarios of social media mining.

http://dmml.asu.edu/smm/
Traditional Media and Data

Broadcast Media
One-to-Many

Communication Media
One-to-One

Traditional Data
Social Media: Many-to-Many

- Everyone can be a media outlet or producer
- Disappearing communication barrier
- Distinct characteristics
 - User generated content: Massive, dynamic, extensive, instant, and noisy
 - Rich user interactions: Linked data
 - Collaborative environment: Wisdom of the crowd
 - Many small groups: The long tail phenomenon; and
 - Attention is hard to get
Research with Social Media

• Novel phenomena to be observed from people’s *interactions* in social media

• Unprecedented opportunities for *interdisciplinary and collaborative* research
 – How to use social media to study human behavior?
 • It’s rich, noisy, free-form, and definitely BIG
 – With so much data, how can we **make sense** of it?
 • Putting “bricks” together to build a useful (meaningful) “edifice”
 • Expanding the frontier by developing new methods/tools for social media mining
Some Challenges in Mining Social Media

• A Big-Data Paradox
 – Lack of data with big social media data

• Noise-Removal Fallacy
 – Can we remove noise without losing much information?

• Studying Distrust in Social Media
 – Is distrust simply the negation of trust? Where to find distrust information with “one-way” relations?

• Sampling Bias
 – Often we get a small sample of (still big) data. Would that data suffice to obtain credible findings?
A Big-Data Paradox

• Collectively, social media data is indeed big
• For an individual, however, the data is little
 – How much activity data do we generate daily?
 – How many posts did we post this week?
 – How many friends do we have?
• We use different social media services for varied purposes
 – Facebook, Twitter, Instagram, YouTube, ...
• When “big” social media data isn’t big,
 – Searching for more data with little data
An Example

- **Little** data about an individual

+ **Many** social media sites

- **Partial** Information

+ **Complementary** Information

> **Better** User Profiles

Reza Zafarani

LinkedIn

<table>
<thead>
<tr>
<th>Twitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Location</td>
</tr>
<tr>
<td>Education</td>
</tr>
</tbody>
</table>

Connectivity is not available

Consistency in Information Availability

Can we connect individuals across sites?

Searching for More Data with Little Data

• Each social media site can have varied amount of user information

• Which information definitely exists for all sites?
 – **Usernames**
 – But, a user’s usernames on different sites can be different

• Our work is to verify if the information provided across sites belong to the same individual
• Information shared across sites provides a behavioral fingerprint
 – How to capture and use differentiable attributes

- Behavioral Modeling
- Machine Learning

MOBIUS
MOdeling Behavior for Identifying Users across Sites
A Behavioral Modeling Approach with Learning

Behavior 1 \rightarrow Information Redundancy \rightarrow Feature Set 1

Behavior 2 \rightarrow Information Redundancy \rightarrow Feature Set 2

Behavior n \rightarrow Information Redundancy \rightarrow Feature Set n

Identification Function

Learning Framework

Captured Via

Generates

Data
Behaviors

Human Limitation

Exogenous Factors

- Time & Memory Limitation
- Knowledge Limitation
- Typing Patterns
- Language Patterns

Endogenous Factors

- Personal Attributes & Traits
- Habits

Endogenous Factors

- Personal Attributes & Traits
- Habits
Using Same Usernames

Username Length Likelihood

59% of individuals use the same username
Knowledge Limitation

Limited Vocabulary

Identifying individuals by their vocabulary size

Limited Alphabet

Alphabet Size is correlated to language:

शमंत कुमार -> Shamanth Kumar
Typing Patterns

QWERTY Keyboard
Variants: AZERTY, QWERTZ

DVORAK Keyboard

Keyboard type impacts your usernames
We compute features that capture typing patterns:
the distance you travel for typing the username,
the number of times you change hands when typing it, etc.
Habits - old habits die hard

- Modifying Previous Usernames
- Creating Similar Usernames
- Username Observation Likelihood

- Adding Prefixes/Suffixes, Abbreviating, Swapping or Adding/Removing Characters
- Nametag and Gateman
- Usernames come from a language model

Advancing the Frontier of Social Media Mining
Arizona State University
Data Mining and Machine Learning Lab
Sept 5, 2014 CIDSE Faculty Talk 16
Obtaining Features from Usernames

For each username:

414 Features

Similar Previous Methods:
1) Zafarani and Liu, 2009
2) Perito et al., 2011

Baselines:
1) Exact Username Match
2) Substring Match
3) Patterns in Letters
Summary

• Many a time, big data may not be sufficiently big for a data mining task
• Gathering more data is often necessary for effective data mining
• Social media data provides unique opportunities to do so by using numerous sites and abundant user-generated content
• Traditionally available data can also be tapped to make thin data “thicker”

Some Challenges in Mining Social Media

- A Big-Data Paradox
- Noise-Removal Fallacy
- Studying Distrust in Social Media
- Sampling Bias
Noise Removal Fallacy

• We often learn that:
 – Noise should be removed before data mining; and
 – “99% Twitter data is useless.”
 • “Had eggs, sunny-side-up, this morning”

• Can we remove noise as we usually do in DM?

• What is left after noise removal?
 – Twitter data can be rendered useless after conventional noise removal

• As we are certain there is noise in data and there is a peril of removing it, what can we do?
Feature Selection for Social Media Data

• Massive and high-dimensional social media data poses unique challenges to data mining tasks
 – Scalability
 – Curse of dimensionality

• Social media data is inherently linked
 – A key difference between social media data and attribute-value data

Jiliang Tang and Huan Liu. ``Feature Selection with Linked Data in Social Media'', SIAM International Conference on Data Mining (SDM), 2012.
Feature Selection of Social Data

• Feature selection has been widely used to prepare large-scale, high-dimensional data for effective data mining

• Traditional feature selection algorithms deal with only “flat" data (*attribute-value data*).
 – Independent and Identically Distributed (i.i.d.)

• We need to take advantage of linked data for feature selection
Representation for Social Media Data

User-post relations

\[u_1 \quad p_1 \quad p_2 \quad \ldots \quad f_m \quad \ldots c_k \]

\[u_2 \quad p_4 \quad p_5 \]
\[u_3 \quad p_6 \quad p_7 \]
\[u_4 \quad p_8 \]

\[u_1 \quad u_2 \quad u_3 \quad u_4 \]

1 1 1 1
1 1 1
1 1
1 1
Representation for Social Media Data

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>u_2</td>
<td>u_3</td>
<td>u_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_1</td>
<td>p_4</td>
<td>p_6</td>
<td>p_8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_2</td>
<td>p_5</td>
<td>p_7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User-user relations
Representation for Social Media Data

Social Context

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>u_2</td>
<td>u_3</td>
<td>u_4</td>
<td></td>
</tr>
<tr>
<td>f_m</td>
<td>c_k</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- u_1, u_2, u_3, u_4 represent users.
- p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8 represent features.

Diagram

- Red squares represent positive feedback.
- Blue squares represent negative feedback.
- Purple squares represent neutral feedback.

Arizona State University

Data Mining and Machine Learning Lab

Sept 5, 2014 CIDSE Faculty Talk
Problem Statement

- Given labeled data X and its label indicator matrix Y, the dataset F, its social context including user-user following relationships S and user-post relationships P.
- Select k most relevant features from m features on dataset F with its social context S and P.
How to Use Link Information

• The new question is how to proceed with additional information for feature selection

• Two basic technical problems
 – Relation extraction: What are distinctive relations that can be extracted from linked data
 – Mathematical representation: How to use these relations in feature selection formulation

• Do we have theories to guide us in this effort?
Relation Extraction

1. CoPost
2. CoFollowing
3. CoFollowed
4. Following
Relations, Social Theories, Hypotheses

• Social correlation theories suggest that the four relations may affect the relationships between posts

• Social correlation theories
 – Homophily: People with similar interests are more likely to be linked
 – Influence: People who are linked are more likely to have similar interests

• Thus, four relations lead to four hypotheses for verification
Modeling CoFollowing Relation

- Two co-following users have similar topics of interests

Users' topic interests

\[T(u_k) = \frac{\sum_{f_i \in F_k} T(f_i)}{|F_k|} = \frac{\sum W^T f_i}{|F_k|} \]

\[\min_W \| X^T W - Y \|_F^2 + \alpha \| W \|_{2,1} + \beta \sum_u \sum_{u_i, u_j \in N_u} \| T(u_i) - T(u_j) \|_2^2 \]
Evaluation Results on Digg

Table 3: Classification Accuracy of Different Feature Selection Algorithms in Digg

<table>
<thead>
<tr>
<th>Datasets</th>
<th># Features</th>
<th>Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TT</td>
</tr>
<tr>
<td>(T_5)</td>
<td>50</td>
<td>45.45</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>48.43</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>53.50</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>54.04</td>
</tr>
<tr>
<td>(T_{25})</td>
<td>50</td>
<td>49.91</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>53.32</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>59.97</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>60.49</td>
</tr>
<tr>
<td>(T_{50})</td>
<td>50</td>
<td>50.95</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>53.60</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>59.59</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>61.47</td>
</tr>
<tr>
<td>(T_{100})</td>
<td>50</td>
<td>51.74</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>55.31</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>60.49</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>62.97</td>
</tr>
</tbody>
</table>
Evaluation Results on Digg

Table 3: Classification Accuracy of Different Feature Selection Algorithms in Digg

<table>
<thead>
<tr>
<th>Datasets</th>
<th># Features</th>
<th>Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TT</td>
</tr>
<tr>
<td>\mathcal{T}_5</td>
<td>50</td>
<td>45.45</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>48.43</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>53.50</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>54.04</td>
</tr>
<tr>
<td>\mathcal{T}_{25}</td>
<td>50</td>
<td>49.91</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>53.32</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>59.97</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>60.49</td>
</tr>
<tr>
<td>\mathcal{T}_{50}</td>
<td>50</td>
<td>50.95</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>53.60</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>59.59</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>61.47</td>
</tr>
<tr>
<td>\mathcal{T}_{100}</td>
<td>50</td>
<td>51.74</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>55.31</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>60.49</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>62.97</td>
</tr>
</tbody>
</table>
Summary

• LinkedFS is evaluated under varied circumstances to understand how it works.
 — Link information can help feature selection for social media data.

• Unlabeled data is more often in social media, unsupervised learning is more sensible, but also more challenging.

Jiliang Tang and Huan Liu. ``Unsupervised Feature Selection for Linked Social Media Data'', the Eighteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012.

Some Challenges in Mining Social Media

• A Big-Data Paradox

• Noise-Removal Fallacy

• Studying Distrust in Social Media

• Sampling Bias
Studying Distrust in Social Media

WWW2014 Tutorial on Trust in Social Computing
Seoul, South Korea. 4/7/14
http://www.public.asu.edu/~jtang20/tTrust.htm
Distrust in Social Sciences

- Distrust can be as important as trust
- Both trust and distrust help a decision maker reduce the uncertainty and vulnerability associated with decision consequences
- Distrust may play an equally important, if not more, critical role as trust in consumer decisions
Understandings of Distrust from Social Sciences

• Distrust is the negation of trust
 - Low trust is equivalent to high distrust
 - The absence of distrust means high trust
 - Lack of the studying of distrust matters little

• Distrust is a new dimension of trust
 - Trust and distrust are two separate concepts
 - Trust and distrust can co-exist
 - A study ignoring distrust would yield an incomplete estimate of the effect of trust

Distrust in Social Media

- Distrust is rarely studied in social media
- Challenge 1: Lack of computational understanding of distrust with social media data
 - Social media data is based on passive observations
 - Lack of some information social sciences use to study distrust
- Challenge 2: Distrust information is usually not publicly available
 - Trust is a desired property while distrust is an unwanted one for an online social community
Computational Understanding of Distrust

• Design computational tasks to help understand distrust with passively observed social media data
 ▪ Task 1: Is distrust the negation of trust?
 – If distrust is the negation of trust, distrust should be predictable from only trust
 ▪ Task 2: Can we predict trust better with distrust?
 – If distrust is a new dimension of trust, distrust should have added value on trust and can improve trust prediction

• The first step to understand distrust is to make distrust computable in trust models
Understandings of Distrust from Social Sciences

Distrust is the negation of trust

- Low trust is equivalent to high distrust
- The absence of distrust means high trust
- Lack of distrust study matters little

Distrust is a new dimension of trust

- Trust and distrust are two different concepts
- A study ignoring distrust would yield an incomplete estimate of the effect of trust

No Consensus
A Computational Understanding of Distrust

• Social media data is a new type of social data
 – Passively observed
 – Large scale

• Task 1: Predicting distrust from only trust
 – Is distrust the negation of trust?

• Task 2: Predicting trust with distrust
 – Does distrust have added value on trust?
Task 1: Is Distrust the Negation of Trust?

• If distrust is the negation of trust, low trust is equivalent to distrust and distrust should be predictable from trust

IF

Distrust

≡

Low Trust

THEN

Predicting Distrust

≡

Predicting Low Trust

• Given the transitivity of trust, we resort to trust prediction algorithms to compute trust scores for pairs of users in the same trust network
Evaluation of Task 1

- The performance of using low trust to predict distrust is consistently worse than randomly guessing
- Task 1 fails to predict distrust with only trust; and distrust is not the negation of trust

<table>
<thead>
<tr>
<th>x (%)</th>
<th>dTP ($\times 10^{-5}$)</th>
<th>dMF ($\times 10^{-5}$)</th>
<th>dTP-MF ($\times 10^{-5}$)</th>
<th>Random ($\times 10^{-5}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4.8941</td>
<td>4.8941</td>
<td>4.8941</td>
<td>5.6824</td>
</tr>
<tr>
<td>55</td>
<td>5.6236</td>
<td>5.6236</td>
<td>5.6236</td>
<td>8.1182</td>
</tr>
<tr>
<td>60</td>
<td>7.1885</td>
<td>7.1885</td>
<td>7.1885</td>
<td>15.814</td>
</tr>
<tr>
<td>65</td>
<td>11.985</td>
<td>11.985</td>
<td>11.985</td>
<td>19.717</td>
</tr>
<tr>
<td>70</td>
<td>13.532</td>
<td>13.532</td>
<td>13.532</td>
<td>18.826</td>
</tr>
<tr>
<td>80</td>
<td>10.844</td>
<td>10.844</td>
<td>10.844</td>
<td>16.266</td>
</tr>
<tr>
<td>90</td>
<td>12.720</td>
<td>12.720</td>
<td>12.720</td>
<td>25.457</td>
</tr>
</tbody>
</table>

- dTP: It uses trust propagation to calculate trust scores for pairs of users
- dMF: It uses the matrix factorization based predictor to compute trust scores for pairs of users
- dTP-MF: It is the combination of dTP and dMF using OR
Task 2: Can we predict Trust better with Distrust

- If distrust is not the negation of trust, distrust may provide additional information about users, and could have added value beyond trust.

- We seek answer to the questions - whether using both trust and distrust information can help achieve better performance than using only trust information.

- We can add distrust propagation in trust propagation to incorporate distrust.
Evaluation of Trust and Distrust Propagation

- Incorporating distrust propagation into trust propagation can improve the performance of trust measurement
- One step distrust propagation usually outperforms multiple step distrust propagation

<table>
<thead>
<tr>
<th></th>
<th>50%</th>
<th>55%</th>
<th>60%</th>
<th>65%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>0.1376</td>
<td>0.1354</td>
<td>0.1293</td>
<td>0.1264</td>
<td>0.1201</td>
<td>0.1156</td>
<td>0.1098</td>
</tr>
<tr>
<td>disTP-s</td>
<td>0.1435</td>
<td>0.1418</td>
<td>0.1372</td>
<td>0.1359</td>
<td>0.1296</td>
<td>0.1207</td>
<td>0.1176</td>
</tr>
<tr>
<td>disTP-m</td>
<td>0.1422</td>
<td>0.1398</td>
<td>0.1359</td>
<td>0.1355</td>
<td>0.1279</td>
<td>0.1207</td>
<td>0.1173</td>
</tr>
<tr>
<td>Random</td>
<td>0.0023</td>
<td>0.0023</td>
<td>0.0020</td>
<td>0.0019</td>
<td>0.0018</td>
<td>0.0015</td>
<td>0.0013</td>
</tr>
</tbody>
</table>
Experimental Settings for Task 2

- x% of pairs of users with trust relations are chosen as old trust relations and the remaining as new trust relations.

- Task 2 predicts \(|A_T^n|\) pairs of users P from \(N_T^x\) as new trust relations.

- The performance is computed as

\[
PA = \frac{|A_T^n \cap P|}{|A_T^n|}
\]
Findings from the Computational Understanding

• Task 1 shows that distrust is not the negation of trust
 – Low trust is not equivalent to distrust
• Task 2 shows that trust can be better measured by incorporating distrust
 – Distrust has added value in addition to trust
• This computational understanding suggests that it is necessary to compute distrust in social media
• What is the next step of distrust research?
Some Challenges in Mining Social Media

• A Big-Data Paradox

• Noise-Removal Fallacy

• Studying Distrust in Social Media

• Sampling Bias
Sampling Bias in Social Media Data

• Twitter provides two main outlets for researchers to access tweets in real time:
 – Streaming API (~1% of all public tweets, **free**)
 – Firehose (100% of all public tweets, **costly**)

• Streaming API data is often used by researchers to validate hypotheses.

• How **well** does the sampled Streaming API data measure the true activity on Twitter?

F. Morstatter, J. Pfeffer, H. Liu, and K. Carley. *Is the Sample Good Enough? Comparing Data from Twitter’s Streaming API and Data from Twitter’s Firehose*. ICWSM, 2013.
Facets of Twitter Data

• Compare the data along different facets
• Selected facets commonly used in social media mining:
 – Top Hashtags
 – Topic Extraction
 – Network Measures
 – Geographic Distributions
Preliminary Results

<table>
<thead>
<tr>
<th>Top Hashtags</th>
<th>Topic Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>No clear correlation between Streaming and Firehose data.</td>
<td>Topics are close to those found in the Firehose.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network Measures</th>
<th>Geographic Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Found ~50% of the top tweeters by different centrality measures.</td>
<td>Streaming data gets >90% of the geotagged tweets.</td>
</tr>
<tr>
<td>Graph-level measures give similar results between the two datasets.</td>
<td>Consequently, the distribution of tweets by continent is very similar.</td>
</tr>
</tbody>
</table>
How are These Results?

• Accuracy of streaming API can vary with analysis performed
• These results are about single cases of streaming API
• Are these findings significant, or just an artifact of random sampling?
• How can we verify that our results indicate sampling bias or not?
Histogram of JS Distances in Topic Comparison

- This is just one streaming dataset against Firehose
- Are we confident about this set of results?
- Can we leverage another streaming dataset?
- Unfortunately, we cannot rewind after our dataset was collected using the streaming API
Verification

• Created 100 of our own “Streaming API” results by sampling the Firehose data.
Comparison with Random Samples

(a) Min. $S = 0.024$, $\hat{\mu} = 0.017$, $\hat{\sigma} = 0.002$, $z = 3.500$.
(b) Q1. $S = 0.018$, $\hat{\mu} = 0.012$, $\hat{\sigma} = 0.001$, $z = 6.000$.
(c) Median. $S = 0.018$, $\hat{\mu} = 0.013$, $\hat{\sigma} = 0.001$, $z = 5.000$.
(d) Q3. $S = 0.014$, $\hat{\mu} = 0.013$, $\hat{\sigma} = 0.001$, $z = 1.000$.
(e) Max. $S = 0.016$, $\hat{\mu} = 0.013$, $\hat{\sigma} = 0.001$, $z = 3.000$.

Arizona State University
Data Mining and Machine Learning Lab
Advancing the Frontier of Social Media Mining
Sept 5, 2014
CIDSE Faculty Talk
Summary

• Streaming API data could be biased in some facets
• Our results were obtained with the help of Firehose
• Without Firehose data, it’s challenging to figure out which facets might have bias, and how to compensate them in search of credible mining results

F. Morstatter, J. Pfeffer, H. Liu, and K. Carley. *Is the Sample Good Enough? Comparing Data from Twitter’s Streaming API and Data from Twitter’s Firehose*. ICWSM, 2013.

THANK YOU ...

• For this opportunity to share our research
• Acknowledgments
 – Grants from NSF, ONR, and ARO
 – DMML members and project leaders
 – Collaborators
Concluding Remarks

- A Big-Data Paradox
- Noise Removal Fallacy
- Studying Distrust in Social Media
- Sampling Bias in Social Media Data