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Abstract. Ensemble methods can achieve excellent performance relying on mem-
ber classifiers” accuracy and diversity. We conduct an empirical study of the re-

lationship of ensemble sizes with ensemble accuracy and diversity, respectively.

Experiments with benchmark data sets show that it is feasible to keep a small en-

semble while maintaining accuracy and diversity similar to those of a full ensem-

ble. We propose a heuristic method that can effectively select member classifiers
to form a compact ensemble. The idea of compact ensembles is motivated to use

them for effective active learning in tasks of classification of unlabeled data.
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1 Introduction

Many Applications generate massive unlabeled data in forms of text, image, audio or
multimedia. A commonly seen task in real-world applications is classification. Using an
image classification task as an example, a user may be able to carefully study a few im-
ages at a time, but may not have the patience and consistent performance to hand-label
a hundred of training images. To make things worse, new images are being collected
and waiting to be classified. A real-world problem we face is to classify Egerai Densa in
images. Egeria is an exotic submerged aquatic weed causing navigation and reservoir-
pumping problems in the west coast of the USA. As a part of a control program to
manage Egeria, classification of Egeria regions in aerial images is required. This task
can be stated more specifically as one of classifying massive data without class labels.
Relying on human experts for labeling Egeria regions is not only time-consuming and
costly, but also inconsistent in their performance of labeling. Massive manual classifi-
cation becomes impractical when images are complex with many different objects (e.g.,
water, land, Egeria) under varying picture-taking conditions (e.g., deep water, sun glint).
In order to automate Egeria classification, we need to ask experts to label images, but
want to minimize the task.

Many data mining methods for classification are available to help massively pro-
cess image data. In order for classification methods to work, labeled data is needed for
training purpose. We face a dilemma: to classify unlabeled data, we need to rely on a
classification algorithm; in order for the classification algorithm to learn from the train-
ing data, we need to have data labeled. Since we have to have labeled data for training,



we ask if it is possible that the classification algorithm can learn with as few labeled
data as possible. By doing so, we can minimize the labeling efforts by experts to turn
unlabeled data to labeled one. Active learning [5] is an effective learning framework
that can be applied in the above process of working with domain experts and using
as few labeled data as possible and learn to perform classification through an iterative
(re)learning process. Active learning requires highly accurate classifiers that ideally
can generalize well with a small set of labeled data. Therefore, we examine one type of
highly accurate classifiers - ensemble methods. We analyze one ensemble method (Bag-
ging [2]) with experiments on benchmark data sets, observe interesting results from the
experiments, and evaluate its feasibility and effectiveness to use compact ensembles for
active learning.

2 Ensemble Methods

Ensemble methods are learning algorithms that construct a set of classifiers and then
classify new instances by combining the individual predictions. An ensemble often has
smaller expected loss or error rate than any of the n individual (member) classifiers [7].
A good ensemble is one whose members are both accurate and diverse [3].

An accurate classifier is one that has an error rate of better than random guessing on
new instances; more specifically, each member classifier should have its error rate below
0.5. Two classifiers are diverse if they make different (or uncorrelated) errors on new
data points. In reality, the errors made by member classifiers will never be completely
independent of each other, unless the predictions themselves are completely random
(in which case the error rate will be greater than 0.5) [3]. However, so long as each
member’s error rate is below 0.5, with a sufficient number of members in an ensemble
making somewhat uncorrelated errors, the ensemble’s error rate can be very small as
a result of voting. Out of the many proposed ensemble methods, we consider Bagging
in this work as it is the most straightforward way of manipulating the training data [3].
Bagging relies on bootstrap replicates of the original training data to generate multiple
classifiers that form an ensemble. Each bootstrap replicate contains, on the average,
63.2% of the original data, with several instances appearing multiple times.

Ensembles can be assessed by three measures: predictive accuracy, diversity, and
size. Accuracy can be estimated using cross validation. Diversity measures how differ-
ent the predictions member classifiers made in an ensemble. The first two measures are
of the goodness of an ensemble. The last one is about ensemble size - the number of
member classifiers required for ensemble learning. Ensemble size mainly hinges on the
complexity of the training data. For a fixed type of classifier (say, decision trees), the
more complex the underlying function of the data is, the more members an ensemble
needs. The complexity of the function can always be compensated by increasing the
number of members for a given type of classifier until the error rate converges.

Following [4], let Y (z) = §1(z), ...in (z) the set of the predictions made by mem-
ber classifiers a, ..., ¢, of ensemble C on instance (x,y) where z is input, and y is
prediction. The ensemble prediction of a uniform voting ensemble for input 2 under
loss function 1 is §(z) = arg minycy Eccc[l(y, Jc(x)]. The ensemble prediction is the
one that minimizes the expected loss between the ensemble prediction and the predic-



tions made by each member classifier ¢ for the instance (z, y). The loss of an ensemble
on instance (z, y) under loss function [ is given by L({x,y)) = I(¢(z),y). The error
rate of a data set with IV instances can be calculated as e = & S L; where L; is the
loss for instance ;. Accuracy of an ensemble is 1 — e*. The diversity of an ensemble
on input z under loss function [ is given by D = E.cc[l(9.(z), §(z))].

The diversity is the expected loss incurred by the predictions of the member classi-
fiers relative to the ensemble prediction. Commonly used loss functions include square
loss (I2(9,y) = (§ — y)?), absolute loss (I;(§,y) = |§ — y|), and zero-one loss
(lo1(9,y) = 0iff § = y; lo1(g,y) = 1 otherwise). We use zero-one loss in this work.
We conduct experiments below.
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Fig. 1. Plots for normalized diversity and error rates.

Having ensemble loss (or accuracy) and diversity defined, we investigate how en-
semble sizes influence ensemble accuracy and diversity. We use benchmark data sets [1]
in the experiments. These data sets have different numbers of classes, different types of
attributes and are from different application domains.

We use the Weka [6] implementation of Bagging [2] as the ensemble generation
method and used J4.8 (the Weka’s implementation of C4.5 without pruning as the base
learning algorithm. For each data set, we run 10-fold cross validation of Bagging and
increase ensemble sizes from 5 to 151 and record each ensemble’s error rate e and
diversity D. Their average values € and D are calculated.

We have run experiments with 18 ensemble sizes (5, 7, 9, 11, 21, 31, 41, 51, 61, 71,
81, 91, 101, 111, 121, 131, 141, and 151) with 10-fold cross validation for each data
set (29 sets in total). In Figure 1, two illustrative sets of curves are demonstrated. Both
diversity values (dashed lines) and error rates (solid lines) are normalized for plotting
purposes. The vertical axis shows percentage (p). The maximum values of diversity and
error rate are given in each figure. We can derive absolute values for diversity and error
rates following Max x p. The trends of diversity and error rates are of our interest. We

1 We use loss and error interchangeably in this paper.



can observe a general trend that diversity values increase and approach to the maximum,
and error rates decrease and become stable as ensemble size increases.

The results of this study prompt us to think that if we can find the ensemble with
minimum size for every application while maintaining accuracy and diversity, we will
be able to make the retraining of the ensemble very fast. One way of searching for
such ensembles is what we did in our experiments: increasing ensemble sizes until
the curves of error rates and diversity stabilize. However, this is a very costly process
when ensemble sizes are large. For example, to estimate error rate and diversity of
an ensemble with 100 member classifiers using 10-fold cross validation, we need to
build 100 x 10 classifiers. The total number of classifiers required to build starting an
ensemble with 5 classifiers is (5 + 6 + ... + 100) x 10 = 50,400 with each classifier
taking O(N log N) time to train, where N is the number of instances of a training data
set. There is a need for an alternative that can determine ensemble size without training
so many classifiers.

3 Compact Ensembles via Classifier Selection

In general, 50-100 member classifiers have been used to build ensembles. In the context
of active leaning, since the initial training of ensembles is off-line, it is feasible to have
an ensemble with 100 member classifiers. To generate a training set for the task of
selecting member classifiers, we first perform Bagging with 100 member classifiers.
We then use the learned classifiers (q;) to generate predictions for instance (x;,y;) :
§¥ = cx (). The resulting data set consists of instances of the form (9, ..., 9M), v:).
After this data set is constructed, the problem of selecting member classifiers becomes
one of feature selection.

As discussed before, when ggjecting Diverse Classifiers
member classifiers are equally
good, the key issue to find a
subset of classifiers that main-
tain diversity. When we have the
newly formed training data, select-
ing a subset of diverse classifiers is
equivalent to selecting a subset of
features using diversity of the sub-
set as the goodness criteria. In or-
der to build dual ensembles, we di-
vide data D,,.,, into two data sets
D}, and D?_  according to the
class labels. For each data set, we
can calculate the full ensemble’s
diversity, then look for the smallest Fig. 2. Searching for small ensembles.
subset of classifiers that can main-
tain this diversity. This will result in two ensembles E; for D! . and E, for DO, .

We implement a modified version of LV F' - a filter model of feature selection al-
gorithm (its implementation can be found in Weka [6]) and we call it LV F'd as it uses

1. Divide data D.., according to its last column y;
form data D2,,, and D2, for classes 1 and 0;
2. For data set D).,
Calculate diversity Dy, for ensemble E .,
Svest = Sfuil;
Dyest = D yuur;
Apply LV Fd with Dy,,; as a goodness criterion:
Eemp 1S generated by LV Fd,
Calculate Diemp and Siemp fOr Eremp
If Diemp = Dyuir N Stemp < Shest
Dyest = Diemp;
Stest = Stemp;
3. Repeat step 2 for data D2,




diversity instead of consistency as the goodness measure of feature subsets. The basic
idea is as follows: randomly generate a subset of classifiers as Ei.,,p; calculate the di-
VErsity Diepmp and size Siemp OF Eremp; if Diemyp i similar to the diversity Dy, of
the full ensemble C, Ei.,;,’s diversity and size are remembered as Dpes: and Spest;
in the subsequent steps, only if a New Ecpr,p’s diversity Diep,y, is similar to D, and
Size Siemyp is smaller than Syege, Dpest and Speqr With Ey.s; are updated with those of
Eiemp. LV Fd stops when Sy does not change after a given number of iterations. The
algorithm of LV F'd is given in Figure 2 in which ~ means “is similar to”. Similarity can
be defined by the measures for two comparing ensembles. In our implementation, we
define p > 1 as a threshold for similarity definition: if the difference between the two
measures is less than p%, we consider they are similar. p is set as 1 in our experiments.

4 Experiments

Table 1. Selected Compact vs. Full Ensembles for training data

Efun B -

Dataset | ey [DivET|DivEO|| Accurayy |DivE1|DivEo0|SizcBi]Size 0| O
breast ||[9843 £ 0.12] 0.04 | 018 [[97.00L 051 004 | 002 | 8 3 || 143
bresstc|(8321 + 1.72| 021 | 006 ||79.72+ 153| 022 | 007 | 1733 | 7 -350
colic ||87.64+ 1.05| 008 | 0.04 ||87.77+115| 009 | 005 | 2633 | 11 || 013
credit-a ||9362 + 0.24| 007 | 008 ||9174+ 051 007 | 009 | 1833 | 5 188
credit-g||92.90 + 0.64| 027 | 010 ||e830+026| 026 | 010 | 19 10 || -460
diabetes||95.31 + 0.16| 021 | 010 ||90.36+056| 021 | 011 | 1833 | 11 || -495
heartst || 966740 | 013 | 010 |[9278+200] 094 | 011 | 1833 | 10 || -389
hepatits |[94.84 + 0.52| 006 | 0.26 ||89.36+ 164| 008 | 028 | 833 | 19 || -5.48
ionosphr||99.72 + 0.12| 0.03 | 009 ||9558+137] 004 | 010 | 367 | 13 || -413
ke ||99.56+ 005| 001 | 001 ||99.23%+ 016 001 | 001 | 633 4 033
labor ||73.68+813| 009 | 012 || 921140 | 011 | 014 | 767 | 22 | 1842
vote ||97.36+0.25| 002 | 002 |l9678+047| 003 | 002 | 833 | 11 || -058

We now conduct some further study on the benchmark data sets and evaluate if
we can apply the algorithm in Figure 2 to find compact ensembles with comparable
performance of full ensembles.

Among the benchmark data sets used in Sec- Table 2.Selected Compact vs.
tion 2, we use those with binary classes for fur- Full Ensemble for testing data
ther experiments using dual ensembles - build-
ing one ensemble for each class. As we discussed | Dataset Afcfu?élcy - ccb;;‘acy Acc Diff

earlier, an ensemble with 100% accurate member [breast [[9657 % 0.73(|95.85 = 1.04|| 0.72
ifi i i i breast-c ||68.51 + 2.70||65.71 + 2.62|| -2.80
classifiers has diversity value 0. Hence, this data | "==¢| /2020302 0P 202l Bea
set is excluded. 3-fold cross validation is con- | credit-a||87.39 + 0.36||83.04 = 0.71|| -4.35
i i i credit-g |[75.60 4 0.85(|69.80 £+ 0.75|| -5.80

ducted in this experiment. We record the results | ©5% 9 11220 ol 01 T 250|625
in the training and testing phases. For the train- | heart-st ||80.74 + 1.32||74.81 + 1.68|| -5.93
H i H 1 hepatits |[80.67 &+ 1.74(|76.80 £+ 2.33|| -3.87
ing data, we record diversity values for. Ey,; and ionoepiv||6202 £ 166|[66:32 £ 15| 5.70
EY,andfor E} and EY as well as their accuracy |k 199.28 + 0.09|/98.78 + 0.16|| -0.50
R H : labor |[77.19 4+ 3.79|| 84.21+0 7.02

rates in Table in Elgure 3. VYe also recordthe av- | [ o 19540 = 0.82|lo4.04 + 050l -0.46
erage ensemble sizes for £} and E?.
We observe that (1) Diversity - Selected ensembles can maintain similar or higher

diversity than those of full ensembles (Table 1) on the training data. (2) Ensemble




size - Average sizes for E4 and Ey are 13.33 and 11.33, the size difference between
selected ensembles and full ensembles is about 75 (the reduction is significant). (3)
Accuracy - Selected ensembles have lower accuracy than that of the full ensemble on
both training and testing data (on average, 1.01% and 2.49% less, respectively). Along
with the reduction in ensemble size, it is reasonable.

5 Conclusions

Classification of unlabeled data is a common task in real-world applications. We dis-
cuss an application of classifying unlabeled images for the purpose of detecting Egeria.

Motivated by this application and aiming to alleviate the burden of experts to manu-

ally label numerous images, we propose to employ active learning. We analyze what is

required to apply active learning and conclude that highly accurate ensemble methods

can be used as base classifiers for active learning with class-specific ensembles (e.g.,
dual ensembles for a binary class problem). As active learning is an iterative process,

it requires that each base classifier is efficient to train and test. This directly translates
to the necessity of using compact ensembles. We suggest that ensemble size can be re-

duced as long as its diversity is maintained. A classifier selection algorithm is proposed
to find the smallest ensemble that maintains similar accuracy. Various experiments are
conducted using benchmark data sets for demonstration and validation purposes.
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