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1. Introduction

A variety of population dynamics and physiological processes can be described as the following equation

X(t) = —a(t)x(t) + b(OF (x(t)). (1.1)

Periodic solutions of the type problems have attracted much attention, see e.g. [6,8,10,12] and references therein.

On the other hand, recently, there are a considerable interest in the existence of positive periodic solutions of singular
systems of the second order differential equations, see Chu et al. [2], Franco and Webb [4], Jiang et al. [5], and the author
[11] and references therein. It has been shown that many results for nonsingular systems still valid for singular cases. In par-
ticular, the author [11] demonstrates that the Krasnoselskii fixed point theorem on compression and expansion of cones can
be effectively used to deal with singular problems. In fact, by choosing appropriate cones, the singularity of the systems is
essentially removed and the associated operator becomes well-defined for certain ranges of functions even there are nega-
tive terms.

Agarwal and O’Regan [1] provided some results on solutions of singular first order differential equations. Chu and Nieto
[3] showed the existence of periodic solutions for singular first order differential equations with impulses based on a non-
linear alternative of Leray-Schauder. The results in [1,3] for first order differential equations deal with a single equation. In
this paper, by employing the Krasnoselskii fixed point theorem on compression and expansion of a cone, we shall establish
the existence and multiplicity of positive w-periodic solutions for the following singular non-autonomous n-dimensional
system

X(t) = —ai(O)x;(t) + bi(t)fi(x1(¢), ..., xn(t)), 1=1,...,1, (1.2)

where 4 > 0 is a positive parameter. Our results give an almost complete structure of the existence of positive periodic solu-
tions of (1.2) with an appropriately chosen parameter. Our results further show that there are analogous results between the
first order and second ordinary differential equations.
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First we make assumptions for (1.2). Let R = (—oco,00), Ry = [0,00),R" =TI ;R, and for any u= (uy,...,u,) € R",

] = 32 [uil.

(H1) a;, b; € C(R, [0, 00)) are w-periodic functions such that )’ a;(t)dt > 0, [’ bi(t)dt >0, i=1,...,n.
(H2) f;i : R} \ {0} — (0,00) is continuous,i=1,...,n

Our main results are:
Theorem 1.1. Let (H1), (H2) hold. Assume that limyy_o f;(u) = co for somei=1,...,n.

(a). Iflimuuuﬂcf"(—:’ =0, i=1,...,n, then, for all » >0, (1.2) has a positive periodic solution.
(b). IfliInHl,H%j‘{H =oo for i=1,...,n, then, for all sufficiently small . > 0, (1.2) has two positive periodic solutions.

(c). There exists a Ao > 0 such that (1.2) has a positive periodic solution for 0 < /. < Jq.

We now give an example for Theorem 1.1. Consider the following system of two equations

X=—a (X + A(\/W)ﬁ + z(\/m)ﬁ,
y=—ay+ (Vi) +i(veiy)

(1.3)
with o, 8 > 0, a; > 0,a, > 0 are w-periodic continuous in t. Corollary 1.2 is an application of Theorem 1.1. Since we use the
summation norm in our theorems, we only need to note the following inequality

VR Y2 x|+ |yl < V2y/x2 -y

Corollary 1.2. Assume that aq,a, satisfy (H1). Let « > 0,8 > 0,2 > 0.

(a). If 0 < B < 1, then, for all > 0, (1.3) has a positive periodic solution.
(b). If B> 1, then, for all sufficiently small 2 > 0, (1.3) has two positive periodic solutions.
(c). There exists a Ao > 0 such that (1.3) has a positive periodic solution for 0 < ). < Jq.

Remark 1.3. As discussed in [11], we can extend Theorem 1.1 to the following singular systems with possible negative e;,
Xj(t) = —ai(t)x;(t) + bi(O)fi(x1 (L), ..., Xa(£)) + 2&i(t), i=1,...,n, (1.4)

where e;(t), i =1,...,n, are continuous w-periodic functions. When e;(t) takes negative values, we shall need a stronger con-
dition on b;(b; > 0).

Such a result can be proved in the same way as in [11]. We will not give a detailed proof here. The idea to deal with
negative e; is to split b;(s)fi(x(s)) + e;(t) into the two terms 1b;(s)fi(x(s)) and 1b;(s)fi(x(s)) + e;(t). The first term is always
nonnegative and used to carry out the estimates of the operator. We will make the second term 1b;(s)fi(x(s)) + e;(t)
nonnegative by choosing appropriate domains of f;. This is possible because limy_o f;(X) = oo or limy_..fi(X) = co. The
choice of the even split of b;(s)f;(x(s)) here is not necessarily optimal in terms of obtaining maximal /-intervals for the
existence of periodic solutions of the systems.

Remark 1.4. O’Regan and the author [8], and the author [10] established the existence, multiplicity and nonexistence of
positive periodic solution of the first order ODE

Xi(t) = ai(t)gi(x(O)xi(t) — Ab(O)fi(x(t — (1)), i=1,....m, (1.5)
where g; are positive bounded functions and 7 € C(R, [0, c0)) is a w-periodic function. These results can also be extended to

(1.5) if f; has a singularity at zero.

2. Preliminaries

We recall some concepts and conclusions of an operator in a cone. Let E be a Banach space and K be a closed, nonempty
subset of E. K is said to be a cone if (i) au + pv € K forallu, v € Kand all o, § > 0 and (ii) u, —u € K imply u = 0. The following
well-known result of the fixed point theorem is crucial in our arguments.
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Lemma 2.1 ([7]). Let X be a Banach space and K(C X) be a cone. Assume that Q;,Q, are bounded open subsets of X with
0e€ Q1,01 CQ, and let

TKﬂ(ﬁz\Ql)—)K

be completely continuous operator such that either

(i) |Tu|l = |jull, ueKnoQ, and | Tu|| < |lull, ueKno,; or
(i) |Tul| < |Jull, uvueKno and | Tu| = |lull, ueKnoQ,.

Then T has a fixed point in KN (Q, \ Q).
We now introduce some notation. For r > 0, let
a—m1n{o,}>0 where g; =¢e~ Jo at , i=1,...,n,

M(r) = max{fi(w):u e R, or < |u||<r, i=1,...,n} >0,
m(r) =min{fi(w) :ue R}, or < |ju||<r, i=1,...,n} >0,

I = ¢ min {105_,1"71} >0, 1= E;lllfo i(s)ds > 0.
i i—1 i

n=1,..,

In order to apply Lemma 2.1 to (1.2), let X be the Banach space defined by

X={ult) e C(R,R") :ut+w)=ut), teR, i=1,...,n},

with a norm |[ju|| = >°i';sup,. g |ti(t)], for w= (uy,...,u;) € X. For u e X or R}, ||u|| denotes the norm of u in X or R,
respectively.
Define
K={u=(u,...,up) €eX:u(t) = ag; sup |y;(t)|, i=1,...,n, t€0, ]}
te0,m]
It is clear K is cone in X and minecp > i, |ui(t)| = olu|| foru= (uy,...,u;) € K. Forr > 0, define Q, = {u € K : |ju|| < r}.It is

clear that 9Q, = {u e K : ||u|| =r}. Let T, : K\ {0} — X be a map with components (T}, R Tf):

t+w

Tu) =4[  Gtsb(s)fiu(s)ds, i=1,..,n, 2.1)
t
where
e]: a;(0)do
Gi(tvs) OTI 1
satisfying
! < Gi(t s)<o-+_1 for t<s<t+w
07] -l = (AN =< 0'.71 —1 =< S .

Lemma 2.2. Assume (H1)-(H2) hold. Then T,(K \ {0}) c K and T, : K\ {0} — K is compact and continuous.

Proof. Ifu = (u1,...,u;) € K\ {0}, then mingco, > 1, |ti(t)| > o|ju|| > 0, and then T! is defined. In view of the definition of K,
foru e K\ {0}, we have,i=1,...,n,
. t+2w t+w .
(Thu)(t+w) =2 /t Gi(t + @, 9bi(s)f(u(e)ds = | Gi(t,9)bi(s)f(u(s))ds = (Tu) ).
+m

t+(u

It is easy to see that [, )f(u(s))ds is a constant because of the periodicity of b;(t)fi(u(t)). One can show that, for

ueK\{O}andte[O w], 1_1

T'u(t) _1 /‘ S)fi(u ds_o', _] / bi(s)fi(u(s))ds > o; sup |Tiu(t)|.

te[0,m]

Thus T, (K \ {0}) Cc K and it is easy to show that T, : K\ {0} — K is compact and continuous. O
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Lemma 2.3. Assume that (H1)-(H2) hold. Then u € K \ {0}is a positive periodic solution of (1.2) if and only if it is a fixed point of
T, in K\ {0}

Proof. If u = (uy,...,u,) € K\ {0} and T,u =y, then, fori=1,...,n,

()= g (4 [ Gl bE ) ) =G+ )b+ (e +0) ~ G OB O - aOTu(o)

= J[Gi(t,t + @) = Gi(t, t)]bi(E)fi(u(t)) — a(O)Tu(t) = —ai(t)ui(t) + Zbi(6)fi(u(t)).
Thus u is a positive w-periodic solution of (1.2). On the other hand, if u = (uy, ..., u,) is a positive w-periodic function, then
Abi(t)fi(u(t)) = ai(t)u;(t) + ui(t) and
nt4+@ t+m

Thu(t) = / Gt bFs)ds = [ Ges @sus) +us)ds = [ Gesa@usds+ / Gi(t. 9)u(s)ds

t Jt

:/ch,»(m)a,()()ds+GfS / Gt =)

Thus, T,u = u, Furthermore, in view of the proof of Lemma 2.2, we also have u;(t) > 0iSup;q,ui(t) for t € [0, w]. That is, u is
a fixed point of T, in K\ {0}. O

Lemma 2.4. Assume that (H1)-(H2) hold. For any n >0 and u= (uq,...,u,) € K\ {0}, if there exists a f; such that
fiu(t)) = 31 ui(t)n for t € [0,w), then [Tu| > iTn|u.

Proof. Since u € K\ {0} and fi(u(t)) > > u;(t)n for t € [0, w], we have

‘l w
)/ bi(s mi/o Zu, (s)nds =

} bi(s)ds
o

(Tu)(t)

/1/ bi(s aj sup u;(t)y

te[0,m]

> mm {0',}

Thus |T;u|| > AT'xllu. O

Let f; : [1,00) — R, be the function given by
fi(0) =max{fiu):ueR! and 1<|u/<6}, i=1,...,n

It is easy to see thatf,-(()) is a nondecreasing function on [1, o). The following lemma is essentially the same as [11, Lemma
3.6] and [9, Lemma 2.8].

Lemma_ 2.5 ([9,11]). Assume (H1) holds. If limm%o’M exists (which can be infinity), then lim()%of"g—)”) exists and

. ) x|
llm[)ﬂaof'—[) = llm‘ X|— wf‘i‘)

Lemma 2.6. Assume that (H1)-(H2) hold. Let r > 1 and if there exists an & > 0 such that
firy<er, i=1,...,n,

then
T < Zzéllul|

foru=(uq,...,uy) € Q.

Proof. From the definition of T, for u € 6Q,, we have

S<Z

n

T <"
i=1

bi(s 0 bi(s)d
g [ bt S s el
= yeful. O
In view of the definitions of m(r) and M(r), it follows that M(r) > fi(u(t)) = m(r) for t € [0,w], i=1,...,n if
u € 9Q;, r> 0. Thus it is easy to see that the following two lemmas can be shown in similar manners as in Lemmas 2.4
and 2.6.
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Lemma 2.7. Assume (H1)-(H2) hold. If u € 0Q:, r > 0, then | T,ul| > 2Zm(r).
Lemma 2.8. Assume (H1)-(H2) hold. If u € 8Q;, 1 > 0, then ||T,u|| < AyM(r).

3. Proof of Theorem 1.1

Part (a). From the assumptions, there is an r; > 0 such that

fi(w) = nfjul],
foru= (uy,...,u;) € R} and O < |lu|| < 1y, where 1 > 0 is chosen so that
I >1.

Ifu=(u,...,uy) € 0Q;,, then
ﬁ(u(t)) = nzui(t)v for te [071]
i=1

Lemma 2.4 implies that

Tou| > iTx|u| > [u]] for ue Q.

We now determine €,,. Since limH.,‘Hx"f*‘(T"H) =0, i=1,...,n it follows from Lemma 2.5 that lim, .. /2 =0, i=1,...,n.
Therefore there is an r, > max {2r;,1} such that

f’,~(r2) <éry,, i=1,...,n,
where the constant ¢ > 0 satisfies
ey < 1.
Thus, we have by Lemma 2.6 that
ITu| < 2ey|uf| < |lul] for wueoQ,,.

By Lemma 2.1, it follows that T, has a fixed point in Qy, \ Q.,, which is the desired positive solution of (1.2). O
Part (b). Fix a number r; > 0. Lemma 2.8 implies that there exists a /o > 0 such that

ITu| <|uf, for wedQ,, 0<i<i.

In view of limyy_o f;(X) = oo, there is a positive number r; < r; such that

fiw) = nlul]
foru= (uy,...,u;) € R} and 0 < |lu|| < 12, where 1 > 0 is chosen so that
Irn>1.
Then
fitu(®)) =0 wi(t),
i=1
foru = (uy,...,un) € 9Q,, t € [0,1]. Lemma 2.4 implies that

|Tu|| = Ax|lu|| > |lu| for wu e oQ,,.

On the other hand, since limHn%xH,f,—'” — oo, there is an H > 0 such that

fi(w) = nflul],
foru=(uy,...,u;) € R} and |Ju| > H, where 1 > 0 is chosen so that
A > 1.

Let r3 = max {Zrl,g}. Ifu=(uy,...,uy) € 0Q,, then
n

min ui(t) = a|u|| =ors = Itl,
o<t<w I

which implies that
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fiu) =nd w(t) for tel0,w]

i1
It follows from Lemma 2.4 that
Tul| = ilx|lu|| > |lu|| for u e dQ,,.
It follows from Lemma 2.1 that T, has two fixed points u;in Q, \ﬁ,z and € Q,, \ﬁrl such that
< |w] <r <|uy <rs.

Consequently, (1.2) has two positive solutions for 0 < 2 < o.
Part (c). Fix a number r; > 0. Lemma 2.7 implies that there exists a 4o > 0 such that

ITu| <|uf, for wedQ,, 0<i<i.

In view of lim,_ofi(x) = oo, there is a positive number r, < r; such that

fitw) = nlull,
foru= (uy,...,u;) € R} and 0 < |lu|| < rp, where # > 0 is chosen so that
rn>1.

Then

foru= (uy,...,un) € 9Q,, t €[0,1]. Lemma 2.4 implies that
Tu| = ilx|lul| > |lu|| for wu e oQ,,.

It follows from Lemma 2.1 that T, has a fixed point in Q;, \ Q,,. Consequently, (1.2) has a positive solution for 0 < 4 < Jo.
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