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1. Introduction

A variety of population dynamics and physiological processes can be described as the following equation
x0ðtÞ ¼ �aðtÞxðtÞ þ kbðtÞf ðxðtÞÞ: ð1:1Þ
Periodic solutions of the type problems have attracted much attention, see e.g. [6,8,10,12] and references therein.
On the other hand, recently, there are a considerable interest in the existence of positive periodic solutions of singular

systems of the second order differential equations, see Chu et al. [2], Franco and Webb [4], Jiang et al. [5], and the author
[11] and references therein. It has been shown that many results for nonsingular systems still valid for singular cases. In par-
ticular, the author [11] demonstrates that the Krasnoselskii fixed point theorem on compression and expansion of cones can
be effectively used to deal with singular problems. In fact, by choosing appropriate cones, the singularity of the systems is
essentially removed and the associated operator becomes well-defined for certain ranges of functions even there are nega-
tive terms.

Agarwal and O’Regan [1] provided some results on solutions of singular first order differential equations. Chu and Nieto
[3] showed the existence of periodic solutions for singular first order differential equations with impulses based on a non-
linear alternative of Leray–Schauder. The results in [1,3] for first order differential equations deal with a single equation. In
this paper, by employing the Krasnoselskii fixed point theorem on compression and expansion of a cone, we shall establish
the existence and multiplicity of positive x-periodic solutions for the following singular non-autonomous n-dimensional
system
x0iðtÞ ¼ �aiðtÞxiðtÞ þ kbiðtÞfiðx1ðtÞ; . . . ; xnðtÞÞ; i ¼ 1; . . . ;n; ð1:2Þ
where k > 0 is a positive parameter. Our results give an almost complete structure of the existence of positive periodic solu-
tions of (1.2) with an appropriately chosen parameter. Our results further show that there are analogous results between the
first order and second ordinary differential equations.
. All rights reserved.
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First we make assumptions for (1.2). Let R ¼ ð�1;1Þ;Rþ ¼ ½0;1Þ;Rn
þ ¼ Pn

i¼1Rþ and for any u ¼ ðu1; . . . ;unÞ 2 Rn
þ;

kuk ¼
Pn

i¼1juij.

(H1) ai; bi 2 CðR; ½0;1ÞÞ are x-periodic functions such that
Rx

0 aiðtÞdt > 0;
Rx

0 biðtÞdt > 0; i ¼ 1; . . . ;n.
(H2) fi : Rn

þ n f0g ! ð0;1Þ is continuous, i ¼ 1; . . . ;n

Our main results are:

Theorem 1.1. Let (H1), (H2) hold. Assume that limkuk!0 f iðuÞ ¼ 1 for some i ¼ 1; . . . ;n.

(a). If limkuk!1
fiðuÞ
kuk ¼ 0; i ¼ 1; . . . ;n, then, for all k > 0, (1.2) has a positive periodic solution.

(b). If limkuk!1
fiðuÞ
kuk ¼ 1 for i ¼ 1; . . . ;n, then, for all sufficiently small k > 0, (1.2) has two positive periodic solutions.

(c). There exists a k0 > 0 such that (1.2) has a positive periodic solution for 0 < k < k0.

We now give an example for Theorem 1.1. Consider the following system of two equations
_x ¼ �a1ðtÞxþ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� ��a
þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �b
;

_y ¼ �a2ðtÞyþ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� ��a
þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �b
;

8><
>: ð1:3Þ
with a; b > 0; a1 P 0; a2 P 0 are x-periodic continuous in t. Corollary 1.2 is an application of Theorem 1.1. Since we use the
summation norm in our theorems, we only need to note the following inequality
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 jxj þ jyj 6

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

:

Corollary 1.2. Assume that a1; a2 satisfy (H1). Let a > 0; b > 0; k > 0.

(a). If 0 < b < 1, then, for all k > 0, (1.3) has a positive periodic solution.
(b). If b > 1, then, for all sufficiently small k > 0, (1.3) has two positive periodic solutions.
(c). There exists a k0 > 0 such that (1.3) has a positive periodic solution for 0 < k < k0.
Remark 1.3. As discussed in [11], we can extend Theorem 1.1 to the following singular systems with possible negative ei,
x0iðtÞ ¼ �aiðtÞxiðtÞ þ kbiðtÞfiðx1ðtÞ; . . . ; xnðtÞÞ þ keiðtÞ; i ¼ 1; . . . ;n; ð1:4Þ
where eiðtÞ; i ¼ 1; . . . ;n, are continuous x-periodic functions. When eiðtÞ takes negative values, we shall need a stronger con-
dition on biðbi > 0Þ.

Such a result can be proved in the same way as in [11]. We will not give a detailed proof here. The idea to deal with
negative ei is to split biðsÞfiðxðsÞÞ þ eiðtÞ into the two terms 1

2 biðsÞfiðxðsÞÞ and 1
2 biðsÞfiðxðsÞÞ þ eiðtÞ. The first term is always

nonnegative and used to carry out the estimates of the operator. We will make the second term 1
2 biðsÞfiðxðsÞÞ þ eiðtÞ

nonnegative by choosing appropriate domains of fi. This is possible because limkuk!0 f iðxÞ ¼ 1 or limkuk!1fiðxÞ ¼ 1. The
choice of the even split of biðsÞfiðxðsÞÞ here is not necessarily optimal in terms of obtaining maximal k-intervals for the
existence of periodic solutions of the systems.
Remark 1.4. O’Regan and the author [8], and the author [10] established the existence, multiplicity and nonexistence of
positive periodic solution of the first order ODE
x0iðtÞ ¼ aiðtÞgiðxðtÞÞxiðtÞ � kbiðtÞfiðxðt � sðtÞÞÞ; i ¼ 1; . . . ;n; ð1:5Þ
where gi are positive bounded functions and s 2 CðR; ½0;1ÞÞ is a x-periodic function. These results can also be extended to
(1.5) if fi has a singularity at zero.
2. Preliminaries

We recall some concepts and conclusions of an operator in a cone. Let E be a Banach space and K be a closed, nonempty
subset of E. K is said to be a cone if ðiÞ auþ bv 2 K for all u;v 2 K and all a; b P 0 and ðiiÞ u;�u 2 K imply u ¼ 0. The following
well-known result of the fixed point theorem is crucial in our arguments.
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Lemma 2.1 ([7]). Let X be a Banach space and Kð� XÞ be a cone. Assume that X1;X2 are bounded open subsets of X with
0 2 X1; �X1 � X2, and let
T : K \ ðX2 nX1Þ ! K;
be completely continuous operator such that either

(i) kT ukP kuk; u 2 K \ @X1 and kT uk 6 kuk; u 2 K \ @X2; or
(ii) kT uk 6 kuk; u 2 K \ @X1 and kT ukP kuk; u 2 K \ @X2.

Then T has a fixed point in K \ ðX2 nX1Þ.

We now introduce some notation. For r > 0, let
r ¼ min
i¼1;...;n

frig > 0; where ri ¼ e�
R x

0
aiðtÞdt

; i ¼ 1; . . . ;n;

MðrÞ ¼ maxffiðuÞ : u 2 Rn
þ;rr 6 kuk 6 r; i ¼ 1; . . . ;ng > 0;

mðrÞ ¼minffiðuÞ : u 2 Rn
þ;rr 6 kuk 6 r; i ¼ 1; . . . ;ng > 0;

C ¼ r min
n¼1;...;n

R x

0
biðsÞds

r�1
i
�1

� �
> 0; v ¼

Pn
i¼1

r�1
i

r�1
i
�1

Rx
0 biðsÞds > 0:
In order to apply Lemma 2.1 to (1.2), let X be the Banach space defined by
X ¼ fuðtÞ 2 CðR;RnÞ : uðt þxÞ ¼ uðtÞ; t 2 R; i ¼ 1; . . . ;ng;
with a norm kuk ¼
Pn

i¼1supt2½0;x�juiðtÞj, for u ¼ ðu1; . . . ;unÞ 2 X. For u 2 X or Rn
þ; kuk denotes the norm of u in X or Rn

þ,
respectively.

Define
K ¼ fu ¼ ðu1; . . . ;unÞ 2 X : uiðtÞP ri sup
t2½0;x�

juiðtÞj; i ¼ 1; . . . ;n; t 2 ½0;x�g:
It is clear K is cone in X and mint2½0;x�
Pn

i¼1juiðtÞjP rkuk for u ¼ ðu1; . . . ;unÞ 2 K. For r > 0, define Xr ¼ fu 2 K : kuk < rg.It is
clear that @Xr ¼ fu 2 K : kuk ¼ rg. Let Tk : K n f0g ! X be a map with components T1

k ; . . . ; Tn
k

� �
:

Ti
kuðtÞ ¼ k

Z tþx

t
Giðt; sÞbiðsÞfiðuðsÞÞds; i ¼ 1; . . . ; n; ð2:1Þ
where
Giðt; sÞ ¼
e
R s

t
aiðhÞdh

r�1
i � 1
satisfying
1
r�1

i � 1
6 Giðt; sÞ 6

r�1
i

r�1
i � 1

for t 6 s 6 t þx:
Lemma 2.2. Assume (H1)–(H2) hold. Then TkðK n f0gÞ � K and Tk : K n f0g ! K is compact and continuous.
Proof. If u ¼ ðu1; . . . ;unÞ 2 K n f0g, then mint2½0;x�
Pn

i¼1juiðtÞjP rkuk > 0, and then Ti
k is defined. In view of the definition of K,

for u 2 K n f0g, we have, i ¼ 1; . . . ;n,
Ti
ku

� �
ðt þxÞ ¼ k

Z tþ2x

tþx
Giðt þx; sÞbiðsÞfiðuðsÞÞds ¼ k

Z tþx

t
Giðt; sÞbiðsÞfiðuðsÞÞds ¼ Ti

ku
� �

ðtÞ:
It is easy to see that
R tþx

t biðsÞfiðuðsÞÞds is a constant because of the periodicity of biðtÞfiðuðtÞÞ. One can show that, for
u 2 K n f0gand t 2 ½0;x�; i ¼ 1; . . . ;n,
Ti
kuðtÞP 1

r�1
i � 1

k
Z tþx

t
biðsÞfiðuðsÞÞds ¼ ri

r�1
i

r�1
i � 1

k
Z x

0
biðsÞfiðuðsÞÞds P ri sup

t2½0;x�
jTi

kuðtÞj:
Thus TkðK n f0gÞ � K and it is easy to show that Tk : K n f0g ! K is compact and continuous. h
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Lemma 2.3. Assume that (H1)–(H2) hold. Then u 2 K n f0gis a positive periodic solution of (1.2) if and only if it is a fixed point of
Tk in K n f0g
Proof. If u ¼ ðu1; . . . ;unÞ 2 K n f0g and Tku ¼ u, then, for i ¼ 1; . . . ;n,
u0iðtÞ ¼
d
dt

k
Z tþx

t
Giðt; sÞbiðsÞfiðuðsÞÞds

� �
¼ kGiðt; t þxÞbiðt þxÞfiðuðt þxÞ � kGiðt; tÞbiðtÞfiðuðtÞÞ � aiðtÞTi

kuðtÞ

¼ k½Giðt; t þxÞ � Giðt; tÞ�biðtÞfiðuðtÞÞ � aiðtÞTi
kuðtÞ ¼ �aiðtÞuiðtÞ þ kbiðtÞfiðuðtÞÞ:
Thus u is a positive x-periodic solution of (1.2). On the other hand, if u ¼ ðu1; . . . ;unÞ is a positive x-periodic function, then
kbiðtÞfiðuðtÞÞ ¼ aiðtÞuiðtÞ þ u0iðtÞ and
Ti
kuðtÞ ¼ k

Z tþx

t
Giðt; sÞbiðsÞfiðuðsÞÞds ¼

Z tþx

t
Giðt; sÞðaiðsÞuiðsÞ þ u0iðsÞÞds ¼

Z tþx

t
Giðt; sÞaiðsÞuðsÞdsþ

Z tþx

t
Giðt; sÞu0iðsÞds

¼
Z tþx

t
Giðt; sÞaiðsÞuðsÞdsþ Giðt; sÞuðsÞjtþx

t �
Z tþx

t
Giðt; sÞaiðsÞuiðsÞds ¼ uiðtÞ:
Thus, Tku ¼ u, Furthermore, in view of the proof of Lemma 2.2, we also have uiðtÞP risupt2½0;x�uiðtÞ for t 2 ½0;x�. That is, u is
a fixed point of Tk in K n f0g. h
Lemma 2.4. Assume that (H1)–(H2) hold. For any g > 0 and u ¼ ðu1; . . . ;unÞ 2 K n f0g, if there exists a fi such that
fiðuðtÞÞP

Pn
j¼1ujðtÞg for t 2 ½0;x�, then kTkukP kCgkuk.
Proof. Since u 2 K n f0g and fiðuðtÞÞP
Pn

j¼1ujðtÞg for t 2 ½0;x�, we have
ðTi
kuÞðtÞP 1

r�1
i � 1

k
Z x

0
biðsÞfiðuðsÞÞds P

1
r�1

i � 1
k
Z x

0
biðsÞ

Xn

j¼1

ujðsÞgds P
1

r�1
i � 1

k
Z x

0
biðsÞds

Xn

j¼1

rj sup
t2½0;x�

ujðtÞg

P k min
i¼1;...;n

frig
Rx

0 biðsÞds
r�1

i � 1
gkuk:
Thus kTkukP kCgkuk. h

Let f̂ i : ½1;1Þ ! Rþ be the function given by
f̂ iðhÞ ¼max fiðuÞ : u 2 Rn
þ and 1 6 juj 6 h

	 

; i ¼ 1; . . . ;n:
It is easy to see that f̂ iðhÞ is a nondecreasing function on ½1;1Þ. The following lemma is essentially the same as [11, Lemma
3.6] and [9, Lemma 2.8].

Lemma 2.5 ([9,11]). Assume (H1) holds. If limjxj!1
fiðxÞ
jxj exists (which can be infinity), then limh!1

f̂ iðhÞ
h exists and

limh!1
f̂ iðhÞ

h ¼ limjxj!1
fiðxÞ
jxj .
Lemma 2.6. Assume that (H1)–(H2) hold. Let r > 1
r and if there exists an e > 0 such that
f̂ iðrÞ 6 er; i ¼ 1; . . . ; n;
then
kTkuk 6 kvekuk
for u ¼ ðu1; . . . ;unÞ 2 @Xr .
Proof. From the definition of T, for u 2 @Xr , we have
kTkuk 6
Xn

i¼1

r�1
i

r�1
i � 1

k
Z x

0
biðsÞfiðuðsÞÞds 6

Xn

i¼1

r�1
i

r�1
i � 1

k
Z x

0
biðsÞf̂ iðrÞds 6

Xn

i¼1

r�1
i

r�1
i � 1

k
Z x

0
biðsÞds ekuk

¼ kvekuk: �

In view of the definitions of mðrÞ and MðrÞ, it follows that MðrÞP fiðuðtÞÞP mðrÞ for t 2 ½0;x�; i ¼ 1; . . . ;n if

u 2 @Xr ; r > 0. Thus it is easy to see that the following two lemmas can be shown in similar manners as in Lemmas 2.4
and 2.6.
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Lemma 2.7. Assume (H1)–(H2) hold. If u 2 @Xr; r > 0, then kTkukP k C
r mðrÞ.
Lemma 2.8. Assume (H1)–(H2) hold. If u 2 @Xr; r > 0, then kTkuk 6 kvMðrÞ.
3. Proof of Theorem 1.1

Part (a). From the assumptions, there is an r1 > 0 such that
fiðuÞP gkuk;
for u ¼ ðu1; . . . ; unÞ 2 Rn
þ and 0 < kuk 6 r1, where g > 0 is chosen so that
kCg > 1:
If u ¼ ðu1; . . . ;unÞ 2 @Xr1 , then
fiðuðtÞÞP g
Xn

i¼1

uiðtÞ; for t 2 ½0;1�:
Lemma 2.4 implies that
kTkukP kCgkuk > kuk for u 2 @Xr1 :
We now determine Xr2 . Since limkuk!1
fiðxÞ
kuk ¼ 0; i ¼ 1; . . . ;n it follows from Lemma 2.5 that limh!1

f̂ iðhÞ
h ¼ 0; i ¼ 1; . . . ;n.

Therefore there is an r2 > max 2r1;
1
r

	 

such that
f̂ iðr2Þ 6 er2; i ¼ 1; . . . ;n;
where the constant e > 0 satisfies
kev < 1:
Thus, we have by Lemma 2.6 that
kTkuk 6 kevkuk < kuk for u 2 @Xr2 :
By Lemma 2.1, it follows that Tk has a fixed point in Xr2 n �Xr1 , which is the desired positive solution of (1.2). h

Part (b). Fix a number r1 > 0. Lemma 2.8 implies that there exists a k0 > 0 such that
kTkuk < kuk; for u 2 @Xr1 ; 0 < k < k0:
In view of limkuk!0 f iðxÞ ¼ 1, there is a positive number r2 < r1 such that
fiðuÞP gkuk
for u ¼ ðu1; . . . ; unÞ 2 Rn
þ and 0 < kuk 6 r2, where g > 0 is chosen so that
kCg > 1:
Then
fiðuðtÞÞP g
Xn

i¼1

uiðtÞ;
for u ¼ ðu1; . . . ; unÞ 2 @Xr2 ; t 2 ½0;1�. Lemma 2.4 implies that
kTkukP kCgkuk > kuk for u 2 @Xr2 :
On the other hand, since limkuk!1
fi
kuk ¼ 1, there is an bH > 0 such that
fiðuÞP gkuk;
for u ¼ ðu1; . . . ; unÞ 2 Rn
þ and kukP bH , where g > 0 is chosen so that
kCg > 1:� �

Let r3 ¼max 2r1;

bH
r . If u ¼ ðu1; . . . ;unÞ 2 @Xr3 , then
min
06t6x

Xn

i¼1

uiðtÞP rkuk ¼ rr3 P bH;

which implies that
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fiðuðtÞÞP g
Xn

i¼1

uiðtÞ for t 2 ½0;x�:
It follows from Lemma 2.4 that
kTkukP kCgkuk > kuk for u 2 @Xr3 :
It follows from Lemma 2.1 that Tk has two fixed points u1in Xr1 nXr2 and u22 Xr3 nXr1 such that
r2 < ku1k < r1 < ku2k < r3:
Consequently, (1.2) has two positive solutions for 0 < k < k0.
Part (c). Fix a number r1 > 0. Lemma 2.7 implies that there exists a k0 > 0 such that
kTkuk < kuk; for u 2 @Xr1 ; 0 < k < k0:
In view of limx!0fiðxÞ ¼ 1, there is a positive number r2 < r1 such that
fiðuÞP gkuk;
for u ¼ ðu1; . . . ;unÞ 2 Rn
þ and 0 < kuk 6 r2, where g > 0 is chosen so that
kCg > 1:
Then
fiðuðtÞÞP g
Xn

i¼1

uiðtÞ;
for u ¼ ðu1; . . . ;unÞ 2 @Xr2 ; t 2 ½0;1�. Lemma 2.4 implies that
kTkukP kCgkuk > kuk for u 2 @Xr2 :
It follows from Lemma 2.1 that Tk has a fixed point in Xr1 nXr2 . Consequently, (1.2) has a positive solution for 0 < k < k0.
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