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Abstract. We study, both experimentally and through mathematical model-
ing, the response of wild type and mutant yeast strains to systematic variations
of extracellular calcium abundance. We extend a previously developed math-
ematical model (Cui and Kaandorp, Cell Calcium, 39, 337 (2006))[3], that
explicitly considers the population and activity of proteins with key roles in
calcium homeostasis. Modifications of the model can directly address the re-
sponses of mutants lacking these proteins. We present experimental results
for the response of yeast cells to sharp, step-like variations in external Ca++

concentrations. We analyze the properties of the model and use it to simulate
the experimental conditions investigated. The model and experiments diverge
more markedly in the case of mutants laking the Pmc1 protein. We discuss
possible extensions of the model to address these findings.

1. Introduction. Studying the response to calcium stress is an important area of
research as it naturally appears in many biologically relevant contexts, including
fertilization of eggs and muscle contraction. Calcium is necessary for a wide variety
of enzymatic functions and is used as a cellular messenger. However, too much
calcium in the cell can lead to hyperosmolarity, which changes the cellular ion
concentrations and pH and is detrimental to most cellular functions. Thus cells
must carefully control their cellular calcium, although extracellular calcium may
vary widely.

In many contexts, it is more effective to use a model cellular system than the
actual tissue. For example, the budding Saccharomyces cerevisiae has been used
for over forty years as a model organism for a wide variety of cellular processes.
S. cerevisiae is a true eukaryote, and as such, has all the cellular organelles that
humans do. S. cerevisiae also responds to extracellular signals with changes in
intracellular chemistry and gene expression. Furthermore, in this yeast, researchers
have been able to develop many genetic methods for easy analysis, such as the
ability to quickly delete, add, or move genes of interest [5].

Yeast also will respond to extracellular stressors in the way human tissues do,
acting to return the intracellular milieu to homeostasis. Homeostasis is the pro-
cess by which cells respond to intracellular and extracellular changes in rapid and
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dynamic ways to maintain a stable internal environment, conducive to life. Homeo-
static responses can include sequestering molecules, pumping ions into the cytosol,
moving ions or small molecules into or out of the cell, or gene expression. Thus,
these studies greatly benefit of the use of yeast as a model organism, as it shares the
basic homeostatic mechanism with more complex organisms and it is much more
easily manipulated in the lab.

The complex behavior of the response to calcium stresses has not been fully
explored. The intracellular response to extracellular calcium stress is not quantita-
tively understood, although mathematical modeling will help describe this phenom-
enon. Furthermore, there have been quantitative descriptions of cellular response to
more complex signals, such as increasing extracellular calcium in a step-wise fash-
ion or the cellular response to extracellular calcium and sodium. In this article, we
revisit the original model of Cui and Kaandorp [3] that sought to mathematically
model the response to an extracellular calcium pulse in S. cerevisiae. This model
addresses both short and longer time scale phenomenon. Movement and sequestra-
tion of molecules occurs on short time scales, such as milliseconds to seconds, while
gene expression takes much longer to occur, in the range of fifteen minutes or more.

We address a number of mathematical properties of the model and use it to
discuss the properties of four yeast strains. In this model, the activity of key proteins
involved in calcium homeostasis are explicitly considered so that their absence in
specific mutants is easily implemented in the model. We prove that the model
is well behaved with respect to the crucial variables describing the production of
new proteins mediated by Crz1p and calcineurin. We also describe the nature of the
equilibrium states of the systems after the change in external calcium concentration.
The model is used to simulate the response to steep calcium concentration changes
of four yeast cell varieties, the wild type and three single mutants. We address the
ability of the model to qualitatively reproduce results observed in pulse experiments
carried out in our labs. We conclude by proposing modifications to the model that
may better reflect the activity of the protein network that regulates calcium.

2. Model. We restate the model proposed by Cui and Kaandorp [3] with some
minor changes of notation. The model is based on the control diagram presented in
Fig. 1. This model assumes that calcium in the cytosol, at concentration x (in µM),
is acquired from the external environment, where it is present at concentration Cex.
The calcium ions are brought into the cytosol mainly through an as yet unknown
Channel X [4]; however, some have speculated that this uptake may be performed
by the known plasma membrane channel, Cch1p/Mid1p [16]. However, whether or
not Cch1p/Mid1p is involved is controversial and we will use the nomenclature of
[3]. Calcium uptake occurs continuously, and to avoid deviations from the preferred
cytosol concentration levels, the calcium ions are pumped into the nucleus, vacuole,
endoplasmic reticulum and Golgi apparatus. The model also considers a small
depletion of calcium in individual cells due to the growth and division of the cell.
The pumping activity of calcium into the vacuole is carried out by the Pmc1 and
Vcx1 proteins, while pumping into the endoplasmatic reticulum is carried out by
Pmr1p [17]. The uptake of calcium and the pumping into the ER and vacuole
is assumed to follow Michaelis-Menten dynamics and is on the order of millisecond
time scales. The population and activity of these proteins is in turn regulated by the
calcium concentration itself. Calcium binds to calmodulin, which in turn activates
the protein phosphatase calcineurin. The activation of calmodulin, which in turn
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regulates calcineurin, is proposed to follow from a simple calcium binding process.
After several minutes, calcinuerin indirectly inactivates the Vcx1p vacuolar calcium
transport protein [2]. Calcineurin, then in turn, also dephosphorylates Crz1p, which
then translocates to the nucleus to stimulate transcription [8, 15]. In the model, h
is the total nuclear fraction of Crz1p. This variable is thus the fraction of Crz1p
available for transcriptional activity in response to calcium. The nuclear Crz1p
stimulates the production of many proteins including Pmc1p, a vacuolar calcium
transporter, and Pmr1p, the Golgi calcium transporter. It is assumed that the
starting population of activated Crz1p is equal in both cytosol and nucleus. The
fraction of the total population of Crz1p present in the nucleus, the nuclear fraction
(h), is determined by means of a simple model of transport across the nuclear
boundary. The overall activation of Crz1p is assumed to depend on the number of
occupied calcium binding sites on calmodulin.

Figure 1. Control block diagram of calcium homeostasis, adapted
from [3]. We let m(t), z(t), h(t), x(t) denote the concentration
of Ca2+-bound calmodulin, the concentration of activated cal-
cineurin, total nuclear fraction of Crz1p, and cytosolic calcium ion
concentration respectively. Fig. 1 is the control block diagram
of calcium homeostasis. The production of Pmr1p and Pmc1p is
proportional to the level of nuclear activation θ, which is gene ex-
pression, on a time scale of minutes. The transport of Crz1p into
the nucleus occurs in proportion of the transporters activation rate
φ, on a time scale of seconds. The model discussed above leads to
the following set of equations [3]:
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We let m(t), z(t), h(t), x(t) denote the concentration of Ca2+-bound calmodulin,
the concentration of activated calcineurin, total nuclear fraction, and cytosolic cal-
cium ion concentration respectively. Fig. 1 is the control block diagram of calcium
homeostasis. The model discussed above leads to the following set of equations [3]:

m′ = k1(c1 − m)x3 − k2m (1)

z′ = k3(c2 − z)m − k4z (2)

h′ = d1(φ(z))(1 − h) − d2(1 − φ(z))h (3)

x′ =
V4Cex

K4 + Cex
− [hθ(z)]

V1x

K1 + x
− [hθ(z)]

V2x

K2 + x
−

1

1 + kcz

V3x

K3 + x
− αx (4)

with initial conditions m(0) = m0 ≥ 0, z(0) = z0 ≥ 0, h(0) = h0 ≥ 0, x(0) = x0 ≥ 0,
and with Cex > 0 a prescribed function of time. These expressions use the functions
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(
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and

θ(z) = (1 + L0)
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+
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(
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z )N+1 − 1

)

λ
z − 1

]

−1

, (6)

where L0 = 10−N/2. The parameters of the model (1-4) were estimated in [3] and
references therein. Table A in Appendix A lists values of these parameters and their
descriptions.

3. Mathematical analysis. This section addresses three separate mathematical
properties of the model. First, we note that the model considers the activity of two
of the proteins, Pmr1p and Pmc1p, as modulated by the presence of Crz1p in the
nucleus. This modulation appears in the model as a multiplicative factor to the
Michaelis-Menten term associated with these proteins. It is then useful to state, in
the form of a theorem that these functions have a suitable behavior with respect to
their independent variables.

As the variables of the models are the concentrations of specific molecules in the
yeast cells, it is important to establish that they satisfy the physical conditions of
positivity and boundedness throughout the evolution of the system. The second
subsection of the analysis shows that this is the case in this model.

Next, we consider the stability properties of the dynamical system described by
the variables x, m, y, z. While an exhaustive analysis of the properties of these
points is not possible in general, we state fairly general conditions for their stabil-
ity and obtain useful formulas that simplify this analysis for specific cases where
numerical values of the parameters are specified. The information encoded in the
stability properties of the system is relevant to our investigations in two ways. First,
it allows to identify the possibility of non-trivial behavior such as stable cycles, or
the presence of decaying oscillations in the approach to equilibrium. Both possibil-
ities could be directly observed with common experimental techniques and would
validate the assumptions of the model. In addition, explicit characterization of the
equilibrium states of the system help the process of numerical analysis by distin-
guishing between transient but long lived states and the actual final equilibrium
condition.
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3.1. Properties of φ and θ. We shall state φ and θ are continuously differen-
tiable functions in this subsection and Lemmas 3.1, 3.2. Their proofs appear in the
appendix. The graphs of φ(x) and θ(x) are shown in Fig. 2.
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Figure 2. Left: graph of φ(x)(λ = 5, N = 13). Right: graph of
θ(x)(λ = 5, N = 13)

Lemma 3.1. For a positive integer N > 1 and λ > 1, φ(x) in (5) is defined on
[0,∞). Moreover φ is continuously differentiable on [0,∞), 0 < φ(x) < 1, φ′(x) >

0, x ∈ (0,∞), 0 < limx→0 φ(x) < 1 and 0 < limx→∞ φ(x) < 1. Furthermore,
limx→0 φ′(x) = 0 and limx→∞ φ′(x) = 0. For λ = 1, φ(x) is a positive constant.

Lemma 3.2. For a positive integer N > 1 and λ > 1, θ(x) in (6) is defined on
[0,∞). Moreover θ is continuously differentiable on [0,∞), 0 < θ(x) < 1, θ′(x) >

0, x ∈ [0,∞). limx→0 θ(x) = 0, limx→∞ θ(x) = 1. limx→0 θ′(x) = 0, limx→∞ θ′(x) =
0.

3.2. Positiveness and bounded of solutions. We shall show that all solutions
exist for all t > 0 and bounded from above and below in this subsection.

Lemma 3.3. All solutions of (1-4) exist for t > 0, and they are positive and bounded
from above.

Proof. Let (m(t), z(t), h(t), x(t)) be a solution of the model equations (1-4). As-
sume x(t) = 0 for some t > 0. Let t0 = inf{t : x(t) ≤ 0}. Then x(t0) = 0 and
x′(t0) ≤ 0. However,

x′(t0) =
V4Cex

K4 + Cex
> 0,

which is a contradiction. Therefore, x(t) > 0 for t > 0. By the same argument,
m(t), z(t), h(t) are all positive for all t > 0.

Now we show the boundedness of the solutions. We start with h(t). Since
0 < φ(x) < 1, x ∈ [0,∞), we have

h′(t) ≤ d1 − d∗h,

where d∗ > 0 is the lower bound of d1φ + d2(1 − φ) on [0,∞]. Therefore,

h(t) ≤ h(0)e−d∗t +
d1

d∗
, for t > 0
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The boundedness also implies that h(t) exists for all t > 0. From (4), one can see
that

x′(t) ≤
V4Cex

K4 + Cex
− αx,

and further

lim sup
t→∞

x(t) ≤
V4Cex

(K4 + Cex)α
. (7)

Now from (1), for any ǫ > 0 and some t0 > 0, one has that x(t) ≤ V4Cex

(K4+Cex)α + ǫ,

for t > t0 > 0,

m′(t) ≤ k1c1(
V4Cex

(K4 + Cex)α
+ ǫ)3 − k2m, t > t0

and

m(t) ≤ m(t0)e
−k2t +

k1c1(
V4Cex

(K4+Cex)α + ǫ)3

k2
, t > t0,

which further implies that

lim sup
t→∞

m(t) ≤
k1c1(

V4Cex

(K4+Cex)α + ǫ)3

k2
.

Thus, letting ǫ → 0 gives

lim sup
t→∞

m(t) ≤
k1c1(

V4Cex

(K4+Cex)α )3

k2
. (8)

By the same method, we can get the estimate for z(t)

lim sup
t→∞

z(t) ≤
k3c2

k4

k1c1

k2
(

V4Cex

(K4 + Cex)α
)3. (9)

The boundedness of x, h, m, z also implies that they exist for all t > 0. �

We introduce the following notation for upper and lower limits of a function v(t):

v = lim sup
t→∞

v(t), v = lim inf
t→∞

v(t).

Now, let (m(t), z(t), h(t), x(t)) be a solution of (1-4). Lemma 3.3 implies that
m, m, z, z, h, h, x, x are all finite. The well known fluctuation lemma is stated below
without proof. Its proof can be found in, e.g., Hirsch et al.[6].

Lemma 3.4. Let f : R → R be a differentiable function. If l = lim inft→∞ f(t) <

lim supt→∞
f(t) = L, then there are sequences {tk} ↑ ∞, {sk} ↑ ∞ such that for all

k, f ′(tk) = f ′(sk) = 0, limk→∞ f(tk) = l and limk→∞ f(sk) = L.

Lemma 3.5. (1−4) is uniformly persistent, i.e. solutions of (1−4) are eventually
uniformly bounded from above and away from zero.

Proof. We only show that x > 0. The same argument can be used to show
that m, z, h > 0. First, if x < x, by the fluctuation lemma, there exist a sequence
{t′k} ↑ ∞ such that

x′(t′k) = 0, lim
k→∞

x(t′k) = x.
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Now if we assume x = 0, (4) gives , for all k,

0 = x′(t′k) =
V4Cex

K4 + Cex
− h(t′k)θ(z(t′k))

V1x(t′k)

K1 + x(t′k)
− h(t′k)θ(z(t′k))

V2x(t′k)

K2 + x(t′k)

−
1

1 + kcz(t′k)

V3x(t′k)

K3 + x(t)
− αx(t′k).

Since θ(z), h are bounded, by taking the limit, we have

0 =
V4Cex

K4 + Cex
,

which is a contradiction. If x = x = 0, then limt→∞ x(t) = 0. It follows that
lim inft→∞ x′(t) ≥ 0. Thus the boundedness of x(t) implies that lim inft→∞ x′(t) =
0. Again, by taking the limit at (4), we have the same contradiction. Thus x > 0.
This completes the proof of the lemma. �

3.3. Equilibrium and stability. In this section, we establish the existence and
uniqueness of the equilibrium of (1-4). Also we shall show that the equilibrium is
locally stable by Routh-Hurwitz method.

Theorem 3.6. There exists a number σ > 0 such that if V4Cex

K4+Cex
> σ, the system

(1-4) has a unique equilibrium (m∗, z∗, h∗, x∗).

Proof. If (m∗, z∗, h∗, x∗) is an equilibrium of (1-4), then

m∗ = g1(x
∗) :=

k1c1(x
∗)3

k1(x∗)3 + k2
,

z∗ = g2(m
∗) :=

k3c2m
∗

k3m∗ + k4
,

h∗ = g3(z
∗) :=

d1φ(z∗)

d1φ(z∗) + d2(1 − φ(z∗))
=

1

1 + d2

d1
( 1

φ(z∗) − 1)
.

Since g1, g2, g3 are all increasing functions, the composition
h∗ = h1(x∗) := g3(g2((g1(x

∗))) is increasing as well. Let us define the following
function G

G(x) =h1(x)θ(g2(g1(x)))
V1x

K1 + x
+ h1(x)θ(g2(g1(x)))

V2x

K2 + x

+
1

1 + kcg2(g1(x))

V3x

K3 + x
+ αx.

(10)

It is clear that G(0) = 0 and limx→∞ G(x) = ∞. Now if G(x∗) = V4Cex

K4+Cex
, then x∗ >

0. We can obtain h∗ > 0, z∗ > 0, m∗ > 0 by the above formulas and (m∗, z∗, h∗, x∗)
is an equilibrium of (1-4). In addition, h∗ satisfies 0 < h∗ < 1. Because of the
boundness of the first three terms in (10), we can verify that there is a number
x̄ > 0 such that G(x) is monotone increasing for x ≥ x̄. By letting σ = G−1(x̄), we
complete the proof. �

We now consider the stability of the equilibrium of (1-4). The linearilization of
(1-4) at an equilibrium (m∗, z∗, h∗, x∗) is

X′ = AX, (11)
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where the variational matrix A is given by

A =









−a1 0 0 a2

a3 −a4 0 0
0 a5 −a6 0
0 −a7 −a8 −a9









and

a1 = k1(x
∗)3+k2 > 0, a2 = 3k1(c1−m∗)(x∗)2, a3 = k3(c2−z∗), a4 = k3m

∗+k4 > 0,

a5 = d1φ
′(z∗)(1 − h∗) + d2φ

′(z∗)h∗ > 0,

a6 = d1φ(z∗) + d2(1 − φ(z∗)) > 0,

a7 = h∗θ′(z∗)
V1x

∗

K1 + x∗
+ h∗θ′(z∗)

V2x
∗

K2 + x∗
−

kc

(1 + kcz∗)2
V3x

∗

K3 + x∗

a8 = θ(z∗)
V1x

∗

K1 + x∗
+ θ(z∗)

V2x
∗

K2 + x∗
> 0

and

a9 = h∗θ(z∗)
V1K1

(K1 + x∗)2
+ h∗θ(z∗)

V2K2

(K2 + x∗)2
+

1

1 + kcz∗
V3K3

(K3 + x∗)2
+ α > 0

If γ is an eigenvalue of A, then

det









−a1 − γ 0 0 a2

a3 −a4 − γ 0 0
0 a5 −a6 − γ 0
0 −a7 −a8 −a9 − γ









= 0,

which is

(−a1 − γ)(−a4 − γ)(−a6 − γ)(−a9 − γ) + a2a3(a5a8 + a7a6 + a7γ) = 0.

Now we have the charactistic equation of A

γ4 + Bγ3 + Cγ2 + Dγ + E = 0. (12)

where

B = a1 + a4 + a6 + a9, C = a1a4 + a1a6 + a1a9 + a4a9 + a6a9,

D = a1a4a6 + a1a4a9 + a1a6a9 + a4a6a9 + a2a3a7,

and

E = a1a4a6a9 + a2a3a7a6 + a2a3a5a8.

The well known Routh-Hurwitz method is stated below without proof.

Lemma 3.7. [9] The necessary and sufficient condition that the real parts of the
roots of (12) shall all be negative is that B, C, D, E, and BCD − D2 − EB2 all be
positive.

Now we are in a position to give sufficient conditions to guarantee the stability
of an equilibrium (m∗, z∗, h∗, x∗).

Theorem 3.8. If B, C, D, E, BCD−D2−EB2 defined above are all positive, then
the equilibrium (m∗, z∗, h∗, x∗) is locally asymptotically stable.
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If Cex is greater than 1µM , then (1 − 4) has only one equilibrium. For Cex =
1µM , we calculate the unique equilibrium of (1−4) is (x = 0.0073, m = 0.00004862,

z = 0.0012, h = 0.0102657). The eigenvalues of A are

(−99.4948 + 4.2941 ∗ i,−.10077,−4.8013,−99.494− 4.2941 ∗ i)

and the equilibrium is locally stable. In fact, we can compute B = 200.8899, C =
10399.13383, D = 50493.43576, E = 4978.097 and BCD−D2−EB2 = 1.027343890∗
1011. The stability of the equilibrium is also confirmed by Theorem 3.8. We note
that in this example, the real part of the complex eigenvectors is dominant, and the
decaying oscillatory behavior associated with these roots is negligible.

4. Experimental and simulation results. A key feature of the model presented
is the explicit separation of contributions to calcium sequestration. Mathematical
analysis of mutants’ response, where the key pumping proteins are absent, is eas-
ily carried out by simple deletion of relevant terms. Comparative analysis of the
response of mutants to similar changes in external conditions is, of course, also feasi-
ble experimentally. In this section we present experimental determinations of these
responses and compare them with results from simulations based on the model.

Table 1. Yeast strains.

Strain Genotype

SEY6210 [13] Matα leu2-3,112 ura3-52 his3-∆200 trp1∆901 lys2-801 suc2-∆9

DB279 [10] Mata leu2-3,112 ura3-52 his3-∆200 trp1∆901 lys2-801 suc2-∆9

pmr1∆::LEU2

DB224 [10] Matα leu2-3,112 ura3-52 his3-∆200 trp1∆901 lys2-801 suc2-∆9

pmc1∆::TRP1

DB225 [10] Matα leu2-3,112 ura3-52 his3-∆200 trp1∆901 lys2-801 suc2-∆9

vcx1∆::URA3

4.1. Experimental procedure and results. The genotype of the strains used
appears in Table 4.1. SEY6210 is the yeast strain without any mutations. DB224 is
the yeast strain lacking the vacuolar calcium ATPase; this strain can be modeled by
deletion of the second term in 4. DB279 lacks the endoplasmic reticulum calcium
magnesium ATPase, and is modeled by deletion of the third term in 4. DB225 is
the yeast strain lacking the vacuolar calcium exchanger, modeled by deletion of the
fourth term in 4. Cells were transformed using the Yeast Easy Transformation Kit
II (Zymo Research, Orange, CA) with the appropriate plasmid (SEY6210, DB224,
and DB279 with pDB617 and DB225 with pEVP11/AEQ) and plated on selective
media [5]. Yeast cultures were grown overnight in synthetic dextrose media with
the appropriate supplements [5], back diluted into the same media in the morning,
and grown to mid-log phase.

The plasmid carries a gene that codes for the apoaequorin protein [12]. This
protein will luminesce (give off light) in response to calcium; the higher the calcium
the more light it will give off. The apoaequorin must be reconstituted in order
to luminesce. 10 µl of 590 µM coelenterazine (dissolved in methanol) was added
to 0.2 ml of the cells, and the cells were incubated for 20 minutes at 30oC, in
order to reconstitute the protein. Cells were then washed two times with media
and resuspended in media. Cells were placed in a Sirius Luminometer (Berthold
Detection Systems -USA, Oak Ridge, TN) and cytosolic calcium was measured as a
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light pulse in response to a single pulse of 100 mM (final concentration) extracellular
calcium. Examples of experimental results in these conditions are shown in Fig. 3.
Similar experiments have been reported for wild strains, and mutants vcx1∆ and
pmc1∆ , with similar results [10, 11].

We note that the values of the parameters of the model have been selected to
generate results similar to those presented in this section, but that a qualitative
agreement has not been attempted. An specific difficulty in this task is the lack of
a more precise determination of the relation between luminometer intensity units
to cytosolic concentration. In the work of Miseta et al. [10] an approximate lin-
ear relation between the logarithms of luminosity and calcium concentration was
obtained for the wild case, but further data for all other mutants is also necessary.

We note the following features of the experimental results. First, the data for wild
type shows a sharp increase in cytosolic concentration of calcium upon introduction
of a high concentration of ions to the extracellular environment. Cells are challenged
with 100 mM extracellular calcium and internal calcium jumps precipitously. This
calcium concentration then decays towards a new equilibrium value. The decay of
the calcium concentration is monotonic. Next, the data for mutants with a deleted
PMC1 protein shows a very similar behavior with a lower maximum concentration.
The mutant with deletion of pmr1, however, shows very similar behavior as that of
the wild type, with only a slightly enhanced maximum concentration value. Finally,
mutants with a deleted VCX1 show two new distinct features. Their initial response
is even larger than that of the wild and pmr1 and pmc1 deletion types and, in
addition, its decay occurs much more slowly than the wild and other mutant types.
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Figure 3. Experimentally observed luminosity versus time for
four varieties of yeast cells. The luminosity indirectly reports the
cytosolic calcium concentration.
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4.2. Simulations and discussion. Next we show results of simulations of the
model using the parameter set estimated by Cui and Kaandorp [3]. The simulation
of mutants is obtained by simply setting to zero the terms related to activity of each
of the deleted proteins. The deletions of PMC1, PMR1 and VCX1, are obtained
from elimination of the second, third, and fourth terms of the equation for x′ in 4.

The numerical integration of the equations is carried out starting from an arbi-
trary state and allowing equilibration of the variables into a reference state with
external calcium concentration of 0.01 µM. The calcium is then elevated to 100 mM.
Results of simulations in this case are shown in Fig. 4.

Simulations of the wild case behavior reproduce, broadly, the behavior observed
in experiments. There is a sharp rise and second phase of slower decay towards an
equilibrium state. The equilibrium concentration is much smaller than the maxi-
mum height of the peak. The parameters chosen by Cui and Kaandorp lead to a
reasonable time scale for the decay of the initial concentration increase. The behav-
ior in these simulations for deletions of PMR1 and VCX1, for large external values
of the external calcium is near identical to that of the wild case.

The most striking feature of these results, however, is the fact that the simulation
of the deletion of PMC1 results in a very different type of response. The response
to a large external concentration of calcium converges to a state with very large val-
ues of cytosolic calcium and cannot be considered as a successful regulation. The
Pmc1p term in the model is dominant with respect to other contributions and its
absence allows equilibrium only through the extraction of Ca2+ ions by methods not
directly associated with sequestration. The equilibrium in this case is established
by the growth of the cell term. This behavior is observed in the PMC1 deletion sim-
ulation for final external calcium concentrations Cex values above (approximately)
100µM. For external concentrations below this threshold the response of the system
is qualitatively similar to the wild and other mutant cases.

5. Conclusions and future studies. With the originally proposed selection of
parameters for the model, we have found an important regime of external concen-
trations for which the model does not agree with observed behavior. Given these
results, it would appear that a search for optimized parameters should be further
attempted. However, several features of the system might be better addressed
through modifications of the model. For example, as shown in Fig. 3, the near
identical response of the wild and PMC1 deletion indicates a quantitatively small
role of Pmc1p in the regulatory network, while it is in fact the dominant term in the
model. Another issue is the experimentally observed longer decay time for VCX1
deletion. This points to the fact that Pmr1p and Pmc1p must be first produced in
larger numbers by the cell to assist in regulation, and this process requires a rela-
tively long time. Activated production of proteins might be best considered within
models with time delays between activation

events and protein production.
In spite of the problems above mentioned and the possible need for modified

models, we note that the key results of the mathematical analysis presented remain
schematically useful for a range of models. The activation functions studied have
a broad scope of applications. The equilibrium analysis of other models without
delay features might also run through very similar methods.

For both future experimental and theoretical investigations of the yeast cell sys-
tem, it will be important to consider a larger variety of external influences. We
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Figure 4. Simulation results for cytosolic calcium concentration.

propose in particular the use of sinusoidal and trains of step-like external calcium
pulses. The use of such external variations have the ability of more directly re-
vealing both stability properties and the presence of built-in delays in the calcium
regulatory network. Current technology already allows the application of repeated
accumulative pulses of external calcium. Our group of is currently working on
analysis and experimental investigation of these cases.

Another important extension of this work will address the effects induced by the
life cycle of the cells. Our experiments have probed the response of a yeast popu-
lation to an increase in extracellular calcium. This response, however, is obtained
from contributions of cells at different points in their life cycles. Specific features in
the response of cells in one particular phase might be overshadow by the response of
a larger population in a different phase. For example, RNA synthesis is extremely
low in cells mitosis phase of the cell cycle; thus this population of cells (approxi-
mately 25% of the cells), would not be responding to the calcium with increased
gene expression. The mathematical model does not address the individual nature
of each of the cells, and in fact treat the population as if it were one whole. Future
work will include synchronizing the cells so that we can assay the response to an
extracellular calcium pulse in a population of cells that are not in the mitotic phase
and thus are all able to response with changes in gene expression.
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Appendix A. Model parameters. The table below presents a description of the
parameters of the model and its numerical values.

Table 2. Estimates of model parameters.

Parameter Value Description
K1 4.3 µM Binding constant of Pmc1p
K2 0.1 µM Binding constant of Pmr1p
K3 100 µM Binding constant of Vcx1p
K4 500 µM Binding constant of Cch1/Mid1 channel
V1 30000 µM min−1 Rate parameter of Pmc1p
V2 100 µM min−1 Rate parameter of Pmr1p
V3 10000µM min−1 Rate parameter of Vcx1p
V4 1000 µM min−1 Rate parameter of Cch1/Mid1 channel
kc 10 Feedback control constant
k1 500 (µM)−3 min−1 Forward rate constant of m-equation in (1)
k2 100 min−1 Backward rate constant of m-equation in (1)
k3 5 (µM)−3 min−1 Forward rate constant of z-equation in (2)
k4 5 min−1 Backward rate constant of z-equation in (2)
c1 25 µM Total calmodulin concentration
c2 25 µ M Total calcineurin concentration
d1 0.4 min−1 Nuclear import rate constant
d2 0.1 min−1 Nuclear export rate constant
N 13 Number of regulatory phosphorylation sites
λ 5 Increment factor
α 0.006 Growth rate constant

Appendix B. Proof of Lemmas. In this appendix, we provide proof of Lemmas
3.1 and 3.2.

B.1. Proof of Lemma 3.1. Proof. Let

ζ(x) =
xN+1 − 1

x − 1
=

N
∑

i=0

xi > 0, x ∈ [0,∞).

It is easy to see that ζ(x) and φ(x) = 1

1+10−
N
2

ζ( λ
x

)

ζ( 1
x

)

are continuously differentiable

on (0,∞). We can verify that limx→0 ζ(x) = 1, limx→0 ζ′(x) = 1, limx→∞ ζ(x) =

∞, limx→∞ ζ′(x) = ∞, limx→0
ζ(λx)
ζ(x) = 1, and limx→∞

ζ(λx)
ζ(x) = λN . Therefore,

limx→0 φ(x) = 1

1+10−
N
2 λN

< 1 and limx→∞ φ(x) = 1

1+10−
N
2

< 1. Thus, φ(x) is

continuous on [0,∞).
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In order to find the derivative of φ(x), We first calculate the derivative of ζ(λx)
ζ(x) .

Since ζ′(x) =
∑N

i=1 ixi−1, the derivative of ζ(λx)
ζ(x) can be calculated as

(ζ(λx))′ζ(x) − ζ(λx)ζ′(x)

(ζ(x))2
=

∑N
k=0

∑N
i=1 iλixkxi−1 −

∑N
k=1

∑N
i=0 kxk−1λixi

(ζ(x))2
.

By regrouping the terms with k = 0, i = 0, the above term becomes
∑N

i=1 iλixi−1 −
∑N

k=1 kxk−1 +
∑N

k=1

∑N
i=1 iλixkxi−1 −

∑N
k=1

∑N
i=1 kxk−1λixi

(ζ(x))2
,

which is
∑N

i=1 i(λi − 1)xi−1 +
∑N

k,i=1(i − k)λixi+k−1

(ζ(x))2
.

It is easy to see that
∑N

i=1 i(λi − 1)xi−1 > 0 because of λ > 1 and
∑N

k,i=1(i −

k)λixi+k−1 > 0 because of the symmetry of i, k. Thus the derivative of ζ(λx)
ζ(x) is

positive and continuous for x ∈ [0,∞). We now turn to φ′(x). By the quotient rule,
we have

φ′(x) =
10−

N
2 ( ζ(λx)

ζ(x) )′| 1
x

1
x2

(

1 + 10−
N
2

ζ( λ
x
)

ζ( 1
x
)

)2
=

10−
N
2

∑

N
i=1 i(λi

−1)( 1
x
)i−1+

∑

N
k,i=1(i−k)λi( 1

x
)i+k−1

(ζ( 1
x
))2

1
x2

(

1 + 10−
N
2

ζ( λ
x
)

ζ( 1
x
)

)2
,

Recall that ζ(x) = xN+1
−1

x−1 =
∑N

i=0 xi, we further have

φ′(x) =
10−

N
2

∑ N
i=1 i(λi

−1)( 1
x
)i−1+

∑ N
k,i=1(i−k)λi( 1

x
)i+k−1

(
∑

N
i=0(

1
x
)i−1)2

1
x2

(

1 + 10−
N
2

ζ( λ
x
)

ζ( 1
x
)

)2
,

Thus, φ′(x) > 0, x ∈ (0,∞), limx→0 φ′(x) = 0 and limx→∞ φ′(x) = 0. �

B.2. Proof of Lemma 3.2. Proof. Again let

ζ(x) =
xN+1 − 1

x − 1
=

N
∑

i=0

xi > 0, x ∈ (0,∞).

Then

θ(x) =
1 + 10−

N
2

ζ( 1
x ) + 10−

N
2 ζ(λ

x )
,

lim
x→0

θ(x) = 0,

and
lim

x→∞

θ(x) = 1.

One can verify that

θ′(x) =

(

1 + 10−
N
2

)(

ζ′( 1
x) 1

x2 + 10−
N
2 λζ′(λ

x ) 1
x2

)

(ζ( 1
x) + 10−

N
2 ζ(λ

x ))2

Since ζ′ > 0, we have θ′(x) > 0 for x ∈ (0,∞). We can further calculate the limits
of θ at zero and infinity.

lim
x→0

θ′(x) = 0, lim
x→∞

θ′(x) = 0.
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This completes the proof. �
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