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a b s t r a c t

In this paper,we study global bifurcation phenomena for the following Kirchhoff type prob-
lem −M


Ω

|∇u(x)|2 dx


∆u = λf (x, u) in Ω,

u = 0 on ∂Ω,

where M is a continuous function. Under some natural hypotheses, we show that
(λ1(a)M(0), 0) is a bifurcation point and there is a global continuum C emanating from
(λ1(a)M(0), 0), where λ1(a) denotes the first eigenvalue of the above problem with
f (x, s) = a(x)s. As an application of the above result, we study the existence of positive
solution for this problem with asymptotically linear nonlinearity.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following Kirchhoff type problem−M


Ω

|∇u(x)|2 dx


1u = λa(x)u(x) + g(x, u, λ) in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω , M is a continuous function on R+, a ∈ L∞(Ω) with
a ≢ 0, λ > 0 is a parameter, g : Ω × R2

→ R satisfies the carathéodory condition in the first two variables and

lim
s→0

g(x, s, λ)

s
= 0 (1.2)

uniformly for a.e. x ∈ Ω and λ on bounded sets. Moreover, we also assume that g satisfies the growth restriction
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(G) There exist c > 0 and p ∈ (1, 2∗) such that

|g(x, s, λ)| ≤ c

1 + |s|p−1

for a.e. x ∈ Ω and λ on bounded sets, where

2∗
=


2N

N − 2
, if N > 2,

+∞, if N ≤ 2.

The problem (1.1) is nonlocal as the appearance of the term


Ω
|∇u(x)|2 dxwhich implies that it is not a pointwise iden-

tity. This causes some mathematical difficulties which make the study of problem (1.1) particularly interesting. Moreover,
problem (1.1) is related to the stationary problem of a model introduced by Kirchhoff in 1883 to describe the transversal
oscillations of a stretched string [1]. After the famous paper by Lions [2], this type of problems has been the subject of nu-
merous studies, and some important and interesting results have been obtained, for example, see [3–6]. Recently, there are
many mathematicians studying this kind of problems by variational method, see [7–13] and the references therein. We re-
fer to [14–20] for Kirchhoff models with critical exponents. For evolution problems, we refer to [21–23] and the references
therein.

To the best of our knowledge, there are few papers that studied Kirchhoff type problems using the bifurcation theory, see
for example [24,25]. The first aim of this paper is to study global bifurcation phenomena for problem (1.1). Let λ1(a) denote
the first eigenvalue of the following problem

−1u = λa(x)u in Ω,
u = 0 on ∂Ω.

(1.3)

It is well known that λ1(a) is simple, isolated and is the unique principle eigenvalue of problem (1.3). Now, we make the
following assumptions onM .

(M0) M is a continuous function on R+ such that for some m0 > 0, we have

M(t) ≥ m0, for all t ∈ R+
;

(M1) there existsm1 > 0, such that limt→+∞ M(t) = m1.

The hypothesis (M0) shows that our problem is non-degenerate. In [14,16] the so-called ‘‘degenerate’’ case is covered (see
also [22,23,20]), that is the main Kirchhoff non-negative functionM could be zero at 0.

Our first main result is the following theorem.

Theorem 1.1. Assume that (1.2), (G) and (M0) hold. Then (λ1(a)M(0), 0) is a bifurcation point of problem (1.1) and the
associated bifurcation continuum C in R × H1

0 (Ω), whose closure contains (λ1(a)M(0), 0), is either unbounded or contains
a pair (µM(0), 0), where µ is another eigenvalue of problem (1.3).

On the basis of Theorem1.1, the second aim of this paper is to determine the interval of λ, forwhich there exists a positive
solution for the following Kirchhoff type problem−M


Ω

|∇u(x)|2 dx


1u = λf (x, u) in Ω,

u = 0 on ∂Ω,

(1.4)

where f ∈ C

Ω × R


satisfies that

(f1) f : Ω × R+
→ R+ such that f (x, s)s > 0 for x ∈ Ω and any s > 0;

(f2) lims→0+
f (x,s)

s = a(x), lims→+∞
f (x,s)

s = c(x) ≢ 0 uniformly in x ∈ Ω , where a(x), c(x) such that they are strict positive
on some subset of positive measure in Ω and λ1(c)m1 ≠ λ1(a)M(0).

The following theorem is our second main result.

Theorem 1.2. Suppose that (M0) –(M1) and (f1) –(f2) hold, then for

λ ∈ (min {λ1(c)m1, λ1(a)M(0)} , max {λ1(c)m1, λ1(a)M(0)}) ,

problem (1.4) possesses at least one positive solution.

Remark 1.3. Note that the corresponding existence result of [7] is a corollary of Theorem 1.2. In fact, by the monotonicity
of eigenvalue with respect to weight, we get 1 ∈ (λ1(a)M(0), λ1(c)m1) under the assumptions of Theorem 1 in [7]. So
problem (1.4) with λ = 1 possesses at least one positive solution. Clearly, our assumptions are weaker than corresponding
ones of [7]. Therefore, we improve and extend the corresponding result of [7].

The rest of this paper is organized as follows. Sections 2 and 3 present the proofs of Theorems 1.1 and 1.2, respectively.
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2. Global bifurcation

Firstly, we study the global bifurcation phenomena for the following fully nonlinear abstract operator equation

u = F(λ, u), u ∈ X (2.1)

where λ varies in R, X is a real Banach space with norm ∥·∥, F : R×X → X is completely continuous. Moreover, we assume
that there exists a linear, completely continuous operator L such that

F(λ, u) − λLu = o(∥u∥)

for u ∈ X near 0 uniformly on bounded λ intervals.
Let r (L) denote the set of real characteristic values of L, and S be the closure of the set of nontrivial solution pairs of Eq.

(2.1). Using Theorem 1.3 of [26], we can easily get the following lemma.

Lemma 2.1. If µ ∈ r (L) \ {0} has odd algebraic multiplicity, then S possesses a component Cµ such that (µ, 0) ∈ Cµ and Cµ

either

(i) meets infinity in R × X, or
(ii) meets (µ, 0), whereµ is another characteristic value of L.

Clearly, problem (1.1) can be equivalently written as

u = (−∆)−1


1

M


Ω
|∇u|2 dx

 (λau + H(λ, u))


where H(λ, ·) denotes the usual Nemitsky operator associated with g . We write X := H1

0 (Ω) with the norm ∥u∥ =
Ω

|∇u|2 dx
1/2.

Proof of Theorem 1.1. Let

Lu =
(−∆)−1(au)

M(0)
, H(λ, u) =

(−∆)−1(H(λ, u))
M

∥u∥2

 +
λ

M(0) − M


∥u∥2


M(0)M


∥u∥2

 (−∆)−1(au).

Clearly, L : X → X is linear completely continuous. From condition (G), (M0) and noting 2 < 2∗, we can see that H :

R × X → X is completely continuous. Moreover, it is easy to see that λ1(a)M(0) is a simple characteristic value of L. Then

(−∆)−1


1

M

∥u∥2

 (λu + H(λ, u))


= λLu +H(λ, u).

Next, we show thatH = o(∥u∥) at u = 0 uniformly on bounded λ intervals. It is sufficient to show that

lim
∥u∥→0

H (x, u)
∥u∥

= 0 in Lp
′

(Ω).

Without loss of generality, we may assume that p > 2. Otherwise, we can consider p̃ = cp, c > 1 such that p̃ ∈ (2, 2∗).
From p < 2∗, we can see that

p′(p − 2)
2∗

<
2∗

− p′

2∗
.

So we can choose a real number r > 1 such that

p′(p − 2)
2∗

≤
1
r

≤
2∗

− p′

2∗
.

It follows that

p′r(p − 2) ≤ 2∗ and p′r ′
≤ 2∗. (2.2)

For any ε > 0, in view of (1.2) and (G), we can choose positive numbers δ = δ(ε) andM = M(δ) such that for a.e. x ∈ Ω ,
the following relations hold:g(x, s, λ)

s

 ≤ ε for 0 < |s| ≤ δ,g(x, s, λ)

s

 ≤ M|s|p−2 for |s| > δ.
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Then we can obtain that
Ω

H (λ, u)
u

p′r

dx ≤ ε|Ω| + Mp′r


Ω

|u|p
′r(p−2) dx.

From this inequality, (2.2) and u → 0 in X , we get thatH (λ, u)
u

p′

→ 0 in Lr(Ω). (2.3)

Let v = u/∥u∥. By the boundedness of v in X , (2.2) and the continuous embedding of X ↩→ L2
∗

(Ω), we have that
Ω

|v|
p′r ′ dx ≤ c (2.4)

for some constant c > 0. Then from (2.3), (2.4) and Hölder’s inequality, we obtain that
Ω

H (λ, u)
∥u∥

p′

dx =


Ω

H (λ, u)
|u|

p′

|v|
p′

dx

≤


Ω

H (λ, u)
u

p′r

dx

1/r 
Ω

|v|
p′r ′ dx

1/r ′

→ 0.

Now, from Lemma 2.1, we get the existence of a global branch of the set of nontrivial solution of problem (1.1) emanating
from (λ1(a)M(0), 0). �

3. Positive solution

In this section, based on the Theorem 1.1, we study the existence of positive solution for problem (1.4).

Lemma 3.1. Assume that (M0) and (f1) –(f2) hold. Then (λ1(a)M(0), 0) is a bifurcation point of problem (1.4) and the associated
bifurcation branchC inR×X whose closure contains (λ1(a)M(0), 0), is either unbounded or contains a pair (µM(0), 0) in which
µ is another eigenvalue of problem (1.3).

Proof. Let ϑ : Ω × R+
→ R+ be a continuous function such that

f (x, u) = a(x)u + ϑ(x, u)

with

lim
s→0+

ϑ(x, s)
s

= 0 and lim
s→+∞

ϑ(x, s)
s

= c(x) − a(x) uniformly in Ω. (3.1)

From (3.1), we can see that λϑ(x, u) satisfies the hypotheses of (1.2) and (G). Now, Theorem 1.1 can be applied to get the
desired results. �

Next, we shall prove that the first choice of the alternatives of Lemma 3.1 is valid. Let P denote the set of functions in X
which are positive in Ω . Let K = R × P under the product topology.

Lemma 3.2. We have C ⊆ (K ∪ {(λ1(a)M(0), 0)}) and the last alternative of Lemma 3.1 is impossible.

Proof. Clearly, we have u ≥ 0 for any nontrivial solution (λ, u) ∈ C because f ≥ 0. By the strong maximum principle [27],
we know that u > 0 in the whole domain for any nontrivial solution (λ, u) ∈ C. So we have C ⊆ (K ∪ (R × {0})). Suppose
on the contrary, if there exists (λm, um) → (µM(0), 0) when m → +∞ with (λm, um) ∈ C, um ≢ 0 and µ ≠ λ1(a). Let
vm := um/ ∥um∥, then vm satisfies

vm = (−∆)−1


λma(x)vm(x)
M(∥um∥)

+
λmϑ (x, um(x))
M(∥um∥) ∥um∥


.

By an argument similar to that of Theorem1.1,we obtain that for some convenient subsequence, vm → v0 ≠ 0 asm → +∞.
It is easy to see that v0 verifies the equation

−1v0(x) = µa(x)v0 in Ω,
v0 = 0 on ∂Ω.

So it follows from [28] that v0 must change its sign. This is a contradiction. �
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Proof of Theorem 1.2. We only need to show C links (λ1(a)M(0), 0) to (λ1(c)m1, +∞) in R × X . Let (λn, un) ∈ C with
un ≢ 0 satisfies

λn + ∥un∥ → +∞.

We note that λn > 0 for all n ∈ N, since (0, 0) is the only solution of (1.4) for λ = 0 and C ∩ ({0} × X) = ∅.
We claim that there exists a constantM > 0 such that

λn ⊂ (0,M]

for n ∈ N large enough. On the contrary, we suppose that limn→∞ λn → +∞. Since (λn, un) ∈ C, it follows that

−1un(x) =
λn

M(∥un∥)

f (x, un)

un
un in Ω.

It follows from (M0)–(M1) that there exists C > 0 such that 1
M(∥un∥)

≥ 1/C . It follows from (f2) that there exists some open
subset Ω0 of positive measure in Ω such that a, c are positive on Ω0. Furthermore, there exist two positive constants δ1, δ2
such that δ1 < δ2,

f (x, s)
s

>
a(x)
2

for s ∈ (0, δ1) , x ∈ Ω0

and
f (x, s)

s
>

c(x)
2

for s ∈ (δ2, +∞) , x ∈ Ω0.

Let

σ1 = min
Ω0×[δ1,δ2]

f (x, s)
s

.

Then (f1) shows that σ1 > 0. Clearly, we have a, c ∈ C

Ω

. Let

σ = min

δ1,min

Ω0

a(x)
2

,min
Ω0

c(x)
2


.

Obviously, one has σ > 0. Then we can see that f (x,un)
un

≥ σ all x ∈ Ω0, n ∈ N. Set

un =


un if x ∈ Ω0,
0 if x ∈ Ω \ Ω0.

Then we have that
−1un(x) ≥

σ

C
λnun in Ω0,un = 0 on ∂Ω0.

(3.2)

Multiplying the first equation of problem (3.2) by a positive eigenfunction ϕ1 associated to λ1(1), we get that

λ1 ≥
σ

C
λn,

an absurdum.
Therefore, we get that ∥un∥ → ∞. Let ξ : Ω × R+

→ R+ be a continuous function such that

f (x, u) = c(x)u + ξ(x, u)

with

lim
s→+∞

ξ(x, s)
s

= 0 and lim
s→0+

ξ(x, s)
s

= a(x) − c(x) uniformly in Ω. (3.3)

We divide the equation−1un(x) =
λnc(x)un(x)
M(∥un∥)

+
λnξ (x, un(x))

M(∥un∥)
in Ω,

un = 0 on ∂Ω

by ∥un∥ and set un = un/ ∥un∥. Since un is bounded in X , after taking a subsequence if necessary, we have that un ⇀ u for
some u ∈ X and un → u in L2(Ω).
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It follows from (3.3) that for any ε > 0, there exists a constant C such that

|ξ (x, un) | ≤ C + ε |un| . (3.4)

By (3.4), we can easily show that

lim
n→+∞

ξ (x, un(x))
∥un∥

= 0 in L2(Ω).

By the compactness of (−∆)−1
: L2(Ω) → X , we obtain−1u(x) =

λ

m1
c(x)u(x) in Ω,

u = 0 on ∂Ω,

where λ = lim
n→+∞

λn, again choosing a subsequence and relabeling it if necessary.

It is clear that u ∈ C ⊆ C since C is closed in R × X . So λ = λ1(c)m1. Therefore, C links (λ1(a)M(0), 0) to (λ1(c)m1, ∞)
in R × X . �
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