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Abstract Based on the Krasnoselskii theorem, we study the existence, multiplicity
and nonexistence of positive solutions of general systems of nonlinear algebraic equa-
tions under superlinearity and sublinearity conditions. Systems of nonlinear algebraic
equations often arise from studies of differential and difference equations. Our results
significantly extend and improve those in the literature. A number of examples and
open questions are given to illustrate these results.
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1 Introduction and main results

Solving algebraic equations is among the oldest problems in mathematics. Perhaps
one of the most useful formulas is the classical quadratic formula

x12 = −B ± √
B2 − 4AC

2A

which determines the number of solutions of the equation Ax2 + Bx + C = 0. Nu-
merous mathematical problems such as numerical solutions of differential equations,
discrete boundary value problems and steady states of a complex dynamic system can
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be reduced to the study of the existence of positive solutions of systems of algebraic
equations. There remains a great deal of algebraic problems, in particular, systems of
algebraic equations, to be further investigated. A recent series of papers by Yang and
Zhang [12], Zhang and Cheng [13], Zhang [14] and Zhang and Feng [15] studied the
solutions of systems of nonlinear algebraic equations arising from systems of differ-
ential and difference equations and obtained a number of interesting results. In many
nonlinear phenomena, only nonnegative solutions make sense and negative solutions
may be translated into positive solutions. Such an algebraic problem can often be
viewed as an eigenvalue problem. In this paper we shall study the positive solutions
of the nonlinear algebraic system

x = λAF(x) (1)

where λ > 0 is a parameter, x = col(x1, x2, . . . , xn), A = (aij ) is a n × n nonnegative
matrix (aij ≥ 0) and F(x) = col(f (1)(x), f (2)(x), . . . , f (n)(x)).

Zhang and Feng [15] studied (1) with a simpler form f (i)(x) = f (i)(xi),

i = 1, . . . , n and A is positive (aij > 0) based on the Krasnoselskii fixed point theo-
rem. They proved the existence, multiplicity and nonexistence of positive solutions of
the special form of (1) (also see [15] and references therein for a list of applications
of (1)). It should be noted that two theorems in [15] need an additional condition (H2
below) to be valid (see Example 2).

In [12–14], the variational arguments are used to study the existence of solutions
of the system of algebraic equations of the form

Bx = λF(x) (2)

where B is a n×n positive definite matrix and f (i)(x) = f (i)(xi), i = 1, . . . , n. Equa-
tion (2) can be converted into (1) by multiplying the inverse of B . Note that [14]
corrects some errors in [13].

An analogous problem to the existence of positive solutions of (1) is the existence
of positive solutions of systems of differential equations, which have been given con-
siderable attention in the last few decades. This connection between algebraic equa-
tions and differential equations was observed in a frequently cited survey paper by
Lions [6] where many types of bifurcation diagrams of positive solutions were dis-
cussed. One of the standard methods ( e.g., [2, 8–11]) is to transform the differential
equations into equivalent integral equations such as

xi(t) = λ

∫
Gi(t, s)f

(i)(x(s))ds, i = 1, . . . , n. (3)

If the integral kernels Gi(t, s) take the Dirac delta function, then (1) can be heuristi-
cally viewed as special case of the general integral equations. Therefore it is not sur-
prising to see the many methods in differential equations can be used to deal with (1).
In particular, the Krasnoselskii’s fixed point theorem on compression and expansion
of a cone can be employed to prove the existence of positive solutions. In general, it
is difficult to find exact intervals of λ for which differential equations have positive
solutions. The first author posed a related question in [10]. However, for algebraic
equations, it is possible to explicitly give optimal intervals of λ as shown in examples
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from Sect. 2. Often this phenomenon can be expressed as bifurcation diagrams such
as Fig. 1. Perhaps, studying algebraic equations would help us further understand the
number of positive solutions of differential equations.

We shall assume A is nonnegative (aij ≥ 0) and every column of A has at least
one positive element. Let R+ = [0,∞), R

n+ = ∏n
i=1 R+,

m = min
i,j=1,...,n

aij ≥ 0, M = max
i,j=1,...,n

aij > 0, σ = m

nM
≥ 0.

For x = (x1, . . . , xn) ∈ R
n, we use the norm

‖x‖ =
n∑

i=1

|xi |.

Denote K by the cone

K = {
x = (x1, . . . , xn) ∈ R

n : xi ≥ 0, xi ≥ σ‖x‖, i = 1, . . . , n
}
. (4)

Note that K = R
n+ if m = σ = 0 or n = 1.

By a positive solution of the system of algebraic equations (1), we understand that
a nontrivial vector x ∈ R

n+ and satisfies (1). Note that some components of a positive
solution of (1) may be zero if K = R

n+. In view of Lemma 2, all components of a
positive solution of (1) are positive if m > 0 (σ > 0) or n = 1.

In order to state our results we use the notation as in [8] by the first author

f
(i)
0 = lim‖u‖→0

f (i)(x)

‖x‖ , f (i)∞ = lim‖x‖→∞
f (i)(x)

‖x‖ , x ∈ K, i = 1, . . . , n,

F0 =
n∑

i=1

f
(i)
0 , F∞ =

n∑
i=1

f (i)∞ .

(5)

It should be noted that there are differences between the cone K and that in [15]. We
use the summation norm, which sometimes makes it easier to compute limits. We also
use the whole first quadrant as a cone for m = 0. Similar cones have been proposed
to study the existence of positive solutions of differential equations in several papers
by the first author [2, 8–11] and other papers as well.

The assumptions for this paper are:

(H1) A = (aij ) is an n × n nonnegative matrix (aij ≥ 0, i, j = 1, . . . , n). Every col-
umn of A has at least one positive element. f (i) : R

n+ → [0,∞) is continuous,
i = 1, . . . , n.

(H2) f (i)(x) > 0 for x ∈ K and ‖x‖ > 0, i = 1, . . . , n.

Our main results for this paper are Theorems 1, 2, 3.

Theorem 1 Assume (H1) holds.

(a) If F0 = 0 and F∞ = ∞, then for all λ > 0 (1) has at least a positive solution.
(b) If F0 = ∞ and F∞ = 0, then for all λ > 0 (1) has at least a positive solution.
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Theorem 2 Assume (H1)–(H2) hold.

(a) If F0 = 0 or F∞ = 0, then there exists a λ0 > 0 such that (1) has at least a positive
solution for λ > λ0.

(b) If F0 = ∞ or F∞ = ∞, then there exists a λ0 > 0 such that (1) has at least a
positive solution for 0 < λ < λ0.

(c) If F0 = F∞ = 0, then there exists a λ0 > 0 such that (1) has at least two positive
solutions for λ > λ0.

(d) If F0 = F∞ = ∞, then there exists a λ0 > 0 such that (1) has at least two positive
solutions for 0 < λ < λ0.

(e) If F0 < ∞ and F∞ < ∞, then there exists a λ0 > 0 such that for all 0 < λ < λ0

(1) has no positive solution.
(f) If F0 > 0 and F∞ > 0, then there exists a λ0 > 0 such that for all λ > λ0 (1) has

no positive solution.

The results above significantly extend the corresponding ones in the literature. Not
only do we extend the results in [15] in such a way that f (i) may depend on all xi

(Example 2), but also all components of the left side of (1) are completely indepen-
dent as A is allowed to be a nonnegative matrix in this paper. While the solutions
of (2) studied in [12–14] are not necessarily positive, some negative solutions may
be converted into nonnegative solutions such as in the case that f (i)(x) = f (i)(xi) is
odd, which is one of the assumptions for the theorems in [13, 14]. In addition, (1) is
more general than (2) in that f (i) in this paper may depend on all xi and A is not
necessarily invertible. Our results in this paper may improve/complement the corre-
sponding results in [12–14]. The method used in [12–14] is based on the critical point
theory and the Morse theory.

Further, by adapting the notion F0 and F∞ from the first author [8], we provide a
unified treatment for the existence of positive solutions of systems of algebraic equa-
tions and the results are better presented and easier to understand. Five examples and
some related open questions are presented in Sect. 2. The proofs of Theorems 1, 2
shall be carried out in Sects. 3, 4, 5. While the general ideas for the proofs are similar
to those from the first author [8] and Zhang and Feng [15], there are some substantial
improvements and simplifications in this paper, in particular, in the proofs of Lem-
mas 2, 3, 4, 5 and 6, as the operator and cones are different.

Finally, we also give criteria for the existence of multiple positive solutions for
general systems of algebraic equations (see Theorem 3). Related results on the num-
ber of positive solutions of systems of polynomials can be viewed as extensions of
classic algebraic formulas to determine the positive solutions of algebraic equations
as we demonstrate in examples.

2 Examples of algebraic equations and open questions

Example 1 We seek positive solutions of the polynomial equation

x = λ(aNxN + aN−1x
N−1 + · · · + a0), λ > 0, ai > 0, i = 1, . . . ,N. (6)
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This is a scalar equation and f (x) = aNxN + aN−1x
N−1 + · · · + a0. K = [0,∞) as

n = 1. It is easy to see that

f0 = lim
x→0

f (x)

x
= ∞, f∞ = lim

x→∞
f (x)

x
= ∞.

Now according to Theorem 2, (6) has two positive solutions for sufficiently small
λ > 0 and no solution for sufficiently large λ. Note that f (x) > 0 is a strictly convex
function and f (0) > 0 and limx→∞ f (x)

x
= ∞. Interpreting the solution of x = λf (x)

as the line ( 1
λ
x) crossing the convex curve (f (x)), we can see that there exists a λ0 > 0

such that (6) has two positive solutions for 0 < λ < λ0; one solution for λ = λ0 and
no solution for λ > λ0.

In fact, for N = 2, we are able to explicitly calculate λ0. Indeed, let A > 0, B > 0,
C > 0 and consider the following quadratic equations

x = λ(Ax2 + Bx + C). (7)

Equation (7) can be rewritten as λAx2 + (λB − 1)x + λC = 0. From the quadratic
formula we have

x±
λ = −(λB − 1) ± √

(λB − 1)2 − 4λ2AC

2λA
.

First, it follows that the necessary and sufficient conditions for (7) having positive
solutions are

λB − 1 < 0, (λB − 1)2 − 4λ2AC ≥ 0.

On the other hand, (λB − 1)2 − 4λ2AC = (λB − 1 − 2λ
√

AC)(λB − 1 + 2λ
√

AC).

Because of λB − 1 < 0, (λB − 1)2 − 4λ2AC ≥ 0 if only if λB − 1 + 2λ
√

AC ≤ 0,
which implies that

λ ≤ 1

B + 2
√

AC
.

Let λ0 = 1
B+2

√
AC

. For λ > λ0 (7) has no positive solution; for λ = λ0, (7)

has one positive solution; for λ < λ0, (7) has two positive solutions, x−
λ =

−(λB−1)−
√

(λB−1)2−4λ2AC

2λA
and x+

λ = −(λB−1)+
√

(λB−1)2−4λ2AC

2λA
. Further calculation

shows that

lim
λ→0

x+
λ = ∞.

Multiplying and dividing −(λB − 1) + √
(λB − 1)2 − 4λ2AC to x−

λ , we can obtain
that

lim
λ→0

x−
λ = 0.

This phenomenon can be summarized in Fig. 1.
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Fig. 1 For λ > 1
B+2

√
AC

,

(7) has no positive solution. For
λ = 1

B+2
√

AC
, (7) has one

positive solution. For
λ < 1

B+2
√

AC
, (7) has two

positive solutions, x±
λ . The

solid line is the branch of x+
λ

and the dotted line is the
branch x−

λ

An open question related to (6) is to determine the number of positive solutions
for systems of higher degree polynomials in multiple variables, the maximum inter-
vals of λ for which the systems have positive solutions and some similar bifurcation
diagrams. Some coefficients of polynomials can be negative. Such a problem may
be related to the finiteness of relative equilibria in the n-body problems of celestial
mechanics, which can be reduced to a system of polynomial equations in multiple
variables (Smale [7]).

Example 2 In [15], it is assumed that A is a positive matrix (m > 0) and F is of
the special form f (i)(x) = f (i)(xi). Then the existence, multiplicity and nonexis-
tence of positive solutions of (1) were studied and its main results are analogous to
Theorems 1, 2. As we indicate in Sect. 1, there are errors in Theorems 4.1 and 4.6.
in [15], which can be corrected by adding a condition (f (i) > 0 for xi > 0). The-
orem 4.1 in [15] states that (1) has one (two) positive solution(s) if f

(i)
0 = 0 or

f
(i)∞ = 0 (f (i)

0 = f
(i)∞ = 0), which are similar to Theorem 2(a, c). It is assumed in

[15] that f (i) are only nonnegative. The result in [15] is not correct unless f (i) > 0
for xi > 0. A simple counterexample for the assertion is that f (i) ≡ 0 for all i, then
f

(i)
0 = f

(i)∞ = 0 for all i. But (1) has only a trivial solution. If f (i) > 0 for xi > 0,
then q(r) > 0 in [15, p. 416, (iv)] and the proofs in [15] hold. The same issue arises
in the proof of [15, Theorem 4.6] where c can be zero unless f (i) > 0 for xi > 0.

Once the condition (f (i) > 0 for xi > 0) is added to Theorems 4.1 and 4.6 in
[15], its conclusions are all valid. Because of the special form of f (i)(x) = f (i)(xi)

in [15], f
(i)
0 , f

(i)∞ in [15] are defined as limxi→p
f (i)(xi )

xi
, p = 0,∞. Since the proofs

are all carried out for x ∈ K , we have

‖x‖ ≥ xi ≥ σ‖x‖, i = 1, . . . , n, σ > 0.
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Thus xi → 0 or ∞ is equivalent to ‖x‖ → 0 or ∞ respectively. Therefore it is easily
shown

lim
xi→p

f (i)(xi)

xi

= 0 implies lim‖x‖→p

f (i)(xi)

‖x‖ = 0, p = 0 or ∞. (8)

and

lim
xi→p

f (i)(xi)

xi

= ∞ implies lim‖x‖→p

f (i)(xi)

‖x‖ = ∞, p = 0 or ∞. (9)

Therefore Theorems 1, 2 include the corresponding results in [15].

Example 3 Consider
(

x1
x2

)
= λ

(
1 1
2 1

)(
x1x2

x1x
2
2

)
, λ > 0. (10)

In this example, f (1) = x1x2, f
(2) = x1x

2
2 , which is not covered in [15]. It is easy to

see that σ = 1
4 and

K =
{

x = (x1, x2) ∈ R
2 : xi ≥ 0, xi ≥ 1

4
(x1 + x2), i = 1,2

}
.

K is the region between the two lines x2 = 3x1 and x2 = 1
3x1 in the first quadrant of

the x1, x2 plane. For (x1, x2) ∈ K , we have

f
(1)
0 = lim

x1+x2→0

x1x2

x1 + x2
≤ lim

x1+x2→0

x1x2

x1
= lim

x1+x2→0
x2 ≤ lim

x1+x2→0
(x1 + x2) = 0

and since x2 > 1
4 (x1 + x2)

f (1)∞ = lim
x1+x2→∞

x1x2

x1 + x2
≥ lim

x1+x2→∞
x1x2

4x1
≥ lim

x1+x2→∞
x1 + x2

16
= ∞.

Thus f
(1)
0 = 0 and f

(1)∞ = ∞. In the same way, we have f
(2)
0 = 0 and f

(2)∞ = ∞.
Now according to Theorem 1, (10) has positive solution for every λ > 0. In fact, by
canceling x1 from the first equation of (11), we have x2

2 + x2 − 1
λ

= 0 and therefore

x2 = −1+
√

1+ 4
λ

2 > 0. Substituting this x2 into the second equation, it follows that
x1 = x2

λ(2x2+x2
2 )

> 0.

An open question is how the matrix A affects the maximum interval of λ for which
(1) has positive solutions. A is not unique as we can rescale F. Some estimates on the
intervals may be given in terms of F0 and F∞ as in the first author [10]. Note that,
under the conditions of Theorem 1, (1) always has solutions.

Example 4 Consider the system of the two equations
{

x1 = λ(x1 + x2)
2

x2 = λex1+x2
λ > 0. (11)
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In this example, A = ( 1 0
0 1

)
, K is R

2+, f (1) = (x1 + x2)
2, f (2) = ex1+x2 , which is not

covered in [15]. For (x1, x2) ∈ K , we have

f
(1)
0 = lim

x1+x2→0

(x1 + x2)
2

x1 + x2
= 0, f (1)∞ = lim

x1+x2→∞
(x1 + x2)

2

x1 + x2
= ∞

and

f
(2)
0 = lim

x1+x2→0

ex1+x2

x1 + x2
= ∞, f (2)∞ = lim

x1+x2→∞
ex1+x2

x1 + x2
= ∞.

Thus F0 = ∞ and F∞ = ∞. Now according to Remark 2, (11) has two positive
solutions for sufficiently small λ and no positive solution for sufficiently large λ. In
fact, by adding the two equations together, we have x1 +x2 = λ((x1 +x2)

2 +ex1+x2),
which suggests that we consider this equation first,

x = λ(x2 + ex) (12)

(12) is a scalar case. We can rewrite (12) as λ = x

x2+ex . Because the maximum value

M̂ of x

x2+ex on [0,∞) is about 0.28. Then we see that for λ > M̂ , (12) has no positive

solution; for λ = M̂ , (12) has one positive solution; for λ < M̂ , (12) has two positive
solutions. See Fig. 2 for the graph of x

x2+ex . Now for λ ≤ M̂ , assume that x is the

corresponding positive solutions of (12). Let x1 = λx2 > 0, x2 = x −λx2 = λex > 0.

It follows that x1 = λ(x1 + x2)
2, x2 = λex1+x2 and therefore (x1, x2) is a solution

of (11). In conclusion, for λ > M̂ , (11) has no positive solution; for λ = M̂ , (11) has
one positive solution; for λ < M̂ , (11) has two positive solutions.

Example 5 Consider the system of equations

{
x1 = λ(x1 + x2)

2

x2 = λ(x1 + x2)
3

λ > 0. (13)

In this example, A = ( 1 0
0 1

)
, K is R

2+ and f (1) = (x1 + x2)
2, f 2 = (x1 + x2)

3, which

is not covered in [15]. For (x1, x2) ∈ K , we have

f
(1)
0 = lim

x1+x2→0

(x1 + x2)
2

x1 + x2
= 0, f (1)∞ = lim

x1+x2→∞
(x1 + x2)

2

x1 + x2
= ∞

and in the same way f
(2)
0 = 0, f

(2)∞ = ∞. Thus F0 = 0 and F∞ = ∞. Now according
to Theorem 1, (13) has positive solutions for all λ > 0. In fact, by adding the two
equations together, we have x1 + x2 = λ((x1 + x2)

2 + (x1 + x2)
3), which suggests

that we consider this equation first,

x = λ(x2 + x3) (14)
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Fig. 2 The maximum value of
x

x2+ex is M̂ ≈ 0.28. For λ > M̂ ,

(12) has no positive solution.
For λ = M̂ , (12) has one
positive solution. For λ < M̂ ,
(12) has two positive solutions

(14) is a scalar case. We can rewrite (14) as λ = 1
x+x2 . For all λ > 0 (14) has one

positive solution x = −1+
√

1+ 4
λ

2 . Now for λ > 0, assume that x = −1+
√

1+ 4
λ

2 is the
corresponding positive solutions of (14). Let x1 = λx2 > 0, x2 = x − x1 = λx3 > 0.

It follows that x1 = λ(x1 + x2)
2, x2 = λ(x1 + x2)

3 and therefore (x1, x2) is a solution
of (13). In conclusion, for all λ > 0, (13) has one positive solution.

3 Preliminaries

We recall some concepts and conclusions of an operator in a cone. Let X be a Banach
space and K be a closed, nonempty subset of X. K is said to be a cone if (i) αu +
βv ∈ K for all u,v ∈ K and all α,β ≥ 0 and (ii) u,−u ∈ K imply u = 0. We shall
need the following well-known Krasnoselskii’s fixed point theorem on cones to prove
our theorems. We essentially use the version of the Krasnoselskii’s theorem in conical
shells, which can also be found in [1, 5]. In this paper, the Banach X is the finite
dimensional space R

n.

Lemma 1 (See [3–5]) Let X be a Banach space and K (⊂ X) be a cone. Assume
that �1, �2 are bounded open subsets of X with 0 ∈ �1, �̄1 ⊂ �2, and let

T : K ∩ (�̄2 \ �1) → K

be completely continuous operator such that either

(i) ‖T u‖ ≥ ‖u‖, u ∈ K ∩ ∂�1 and ‖T u‖ ≤ ‖u‖, u ∈ K ∩ ∂�2; or
(ii) ‖T u‖ ≤ ‖u‖, u ∈ K ∩ ∂�1 and ‖T u‖ ≥ ‖u‖, u ∈ K ∩ ∂�2.

Then T has a fixed point in K ∩ (�̄2\�1).
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In order to use the fixed point theorem, we shall let X = R
n and use the cone K

defined in Sect. 1, and let

�r = {x ∈ K : ‖x‖ < r}.
Note that ∂�r = {x ∈ K : ‖x‖ = r}. Let Tλ : K → X be a map with components
(T

(1)
λ , . . . , T

(n)
λ ), where

T
(i)
λ x = λ

n∑
j=1

aijf
(j)(x). (15)

Lemma 2 is necessary for applying the fixed point theorem to Tλ. As a result of it, all
positive solutions of (1) are in K . Thus all components of a positive solution of (1)
are positive if m > 0.

Lemma 2 Assume (H1) holds. Then Tλ(R
n+) ⊂ K and Tλ : K → K is compact and

continuous.

Proof If m = 0, then K = R
n+, it is clear that Tλ(R

n+) ⊂ K as all components are
nonnegative. For m > 0, let x ∈ R

n+, then, for i = 1, . . . , n

T
(i)
λ x ≤ Mλ

∑
j=1,...,n

f (j)(x);
n∑

i=1

T
(i)
λ x ≤ Mλn

∑
j=1,...,n

f (j)(x)

and therefore,

T
(i)
λ x ≥ mλ

∑
j=1,...,n

f (j)(x) = σMλn
∑

j=1,...,n

f (j)(x) ≥ σ
∑

i=1,...,n

T
(i)
λ x = σ‖Tλx‖.

Thus, Tλ(R
n+) ⊂ K . Since K is a subset of R

n, it is easy to verify that Tλ is compact
and continuous. �

Theorem 3 gives conditions to have multiple positive solutions of (1) for a spe-
cific λ. These type of results are not included in [15]. Theorem 3 can be proved by
applying the fixed point theorem on these cones repeatedly and its proof is omitted
here. For the scalar case, it is just a consequence of the intermediate value theorem.

Theorem 3 Assume (H1) holds and there exists a λ > 0 and a sequence of positive
distinct numbers ri , i = 1, . . . ,N + 1 such that ri < ri+1, i = 1, . . . ,N. If either

‖Tλx‖ > ‖x‖ for all ‖x‖ = ri and all odd i and

‖Tλx‖ < ‖x‖ for all ‖x‖ = ri and all even i

or

‖Tλx‖ < ‖x‖ for all ‖x‖ = ri and all odd i and

‖Tλx‖ > ‖x‖ for all ‖x‖ = ri and all even i

where x ∈ K , then (1) has at least N positive solutions for this λ.
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The following four lemmas will be repeatedly used in the proofs of the main theo-
rems. There are some substantial improvements and simplifications in their proofs as
the operator and cones are different from those in [8] and [15].

Lemma 3 Assume (H1) holds. Let x = (x1, . . . , xn) ∈ K and η > 0. If there exists a
component f (j) of f such that

f (j)(x) ≥ η‖x‖,
then

‖Tλx‖ ≥ λ	η‖x‖.
where 	 > 0 is a constant.

Proof From the fact that every column of A has a positive element, we can always
find i such that aij > 0. From the definition of Tλx it follows that

‖Tλx‖ ≥ T
(i)
λ x ≥ λaijf

(j)(x) ≥ λaij η‖x‖.
Let 	 = aij > 0 and the lemma is proved. �

Lemma 4 Assume (H1) holds and let x = (x1, . . . , xn) ∈ K and ε > 0. If

f (i)(x) ≤ ε‖x‖, i = 1, . . . , n,

then

‖Tλx‖ ≤ λĈε‖x‖,
where the constant Ĉ = Mn2.

Proof From the definition of Tλ, we have for x ∈ K ,

‖Tλx‖ =
n∑

i=1

T
(i)
λ x ≤ Mλ

n∑
i=1

n∑
j=1

f (j)(x) ≤ Mn2λε‖x‖ = λĈε‖x‖.
�

Lemma 5 Assume (H1)–(H2) hold. If x ∈ ∂�r , r > 0, then

‖Tλx‖ ≥ λm̂r	
′

where m̂r = min{f (i)(x) : x ∈ K and ‖x‖ = r , i = 1, . . . , n} > 0 and 	′ > 0 is a
constant.

Proof Since f (i)(x) ≥ m̂r , i = 1, . . . , n and the fact that every column of A has a
positive element, we can always find i such that ai1 > 0. It follows that ‖Tλx‖ ≥
T

(i)
λ x ≥ λai1f

(1)(x) ≥ λai1m̂r . Let 	′ = ai1 > 0 and the lemma is proved. �
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Lemma 6 Assume (H1)–(H2) hold. If x ∈ ∂�r , r > 0, then

‖Tλx‖ ≤ λM̂rĈ,

where M̂r = max{f (i)(x) : x ∈ K and ‖x‖ ≤ r , i = 1, . . . , n} > 0 and Ĉ is the positive
constant defined in Lemma 4.

Proof Since f (i)(x) ≤ M̂r , i = 1, . . . , n, a slight modification of the proof in
Lemma 4 guarantees the result. �

4 Proof of Theorem 1

Now Lemmas 3, 4, 5 and 6 are used to prove Theorem 1 as in [8] (also see [15]).

Proof Part (a). F0 = 0 implies that f
(i)
0 = 0, i = 1, . . . , n. Therefore, we can choose

r1 > 0 so that f (i)(x) ≤ ε‖x‖, i = 1, . . . , n for x ∈ ∂�r1 , where the constant ε > 0
satisfies λεĈ < 1, and Ĉ is the positive constant defined in Lemma 4. We have by
Lemma 4 that

‖Tλx‖ ≤ λεĈ‖x‖ < ‖x‖ for x ∈ ∂�r1 .

Now, since F∞ = ∞, there exists a component f (i) of F such that f
(i)∞ = ∞.

Therefore, there is an Ĥ > 0 such that f (i)(x) ≥ η‖x‖ for x = (x1, . . . , xn) ∈ K

and ‖x‖ ≥ Ĥ , where η > 0 is chosen so that λ	η > 1. Let r2 = max{2r1, Ĥ }. If
x = (x1, . . . , xn) ∈ ∂�r2 , then f (i)(x) ≥ η‖x‖. It follows from Lemma 3 that

‖Tλx‖ ≥ λ	η‖x‖ > ‖x‖ for x ∈ ∂�r2 .

Thus by Lemma 1 Tλ has a fixed point x ∈ �r2 \ �̄r1 . The fixed point x ∈ �r2 \ �̄r1

is the desired positive solution of (1).
Part (b). If F0 = ∞, there exists a component f (i) such that f

(i)
0 = ∞. Therefore,

there is an r1 > 0 such that f (i)(x) ≥ η‖x‖ for x = (x1, . . . , xn) ∈ R
n+ and ‖x‖ ≤ r1,

where η > 0 is chosen so that λ	η > 1. Lemma 3 implies that

‖Tλx‖ ≥ λ	η‖x‖ > ‖x‖ for x ∈ ∂�r1 .

We now determine �r2 . F∞ = 0 implies that f
(i)∞ = 0, i = 1, . . . , n. Therefore there

is an r2 > 2r1 such that f (i)(x) ≤ ε‖x‖, i = 1, . . . , n, x ∈ ∂�r2 where the constant
ε > 0 satisfies λεĈ < 1, and Ĉ is the positive constant defined in Lemma 4. Thus,
we have by Lemma 4 that

‖Tλx‖ ≤ λεĈ‖x‖ < ‖x‖ for x ∈ ∂�r2 .

By Lemma 1, Tλ has a fixed point in �r2 \ �̄r1 , which is the desired positive solution
of (1). �
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5 Proof of Theorem 2

Now Lemmas 3, 4, 5 and 6 are used to prove Theorem 1 as in [8] (also see [15]).

Proof Part (a). Fix a number r1 > 0. Lemma 5 implies that there exists a λ0 > 0 such
that

‖Tλx‖ > ‖x‖, for x ∈ ∂�r1 , λ > λ0.

If F0 = 0, then f
(i)
0 = 0, i = 1, . . . , n. Therefore, we can choose 0 < r2 < r1 so that

f (i)(x) ≤ ε‖x‖, i = 1, . . . , n, x ∈ ∂�r2 where the constant ε > 0 satisfies λεĈ < 1,

and Ĉ is the positive constant defined in Lemma 4. We have by Lemma 4 that

‖Tλx‖ ≤ λεĈ‖x‖ < ‖x‖ for x ∈ ∂�r2 .

If F∞ = 0, then f
(i)∞ = 0, i = 1, . . . , n. Therefore there is an r3 > 2r1 such that

f (i)(x) ≤ ε‖x‖, i = 1, . . . , n, x ∈ ∂�r3 where the constant ε > 0 satisfies λεĈ < 1,

and Ĉ is the positive constant defined in Lemma 4. Thus, we have by Lemma 4 that

‖Tλx‖ ≤ λεĈ‖x‖ < ‖x‖ for x ∈ ∂�r3 .

It follows from Lemma 1 that Tλ has a fixed point in �r1 \ �̄r2 or �r3 \ �̄r1 accord-
ing to F0 = 0 or F∞ = 0, respectively. Consequently, (1) has a positive solution for
λ > λ0.

Part (b). Fix a number r1 > 0. Lemma 6 implies that there exists a λ0 > 0 such
that

‖Tλx‖ < ‖x‖, for x ∈ ∂�r1, 0 < λ < λ0.

If F0 = ∞, there exists a component f (i) of F such that f
(i)
0 = ∞. Therefore, there

is a positive number r2 < r1 such that f (i)(x) ≥ η‖x‖ for x = (x1, . . . , xn) ∈ K and
‖x‖ ≤ r2, where η > 0 is chosen so that λ	η > 1. Then f (i)(x) ≥ η‖x‖, for x =
(x1, . . . , xn) ∈ ∂�r2 . Lemma 3 implies that

‖Tλx‖ ≥ λ	η‖x‖ > ‖x‖ for x ∈ ∂�r2 .

If F∞ = ∞, there exists a component f (i) of F such that f
(i)∞ = ∞. Therefore, there

is an Ĥ > 0 such that f (i)(x) ≥ η‖x‖ for x = (x1, . . . , xn) ∈ K and ‖x‖ ≥ Ĥ , where
η > 0 is chosen so that λ	η > 1. Let r3 = max{2r1, Ĥ }. If x = (x1, . . . , xn) ∈ ∂�r3 ,
then f (i)(x) ≥ η‖x‖. It follows from Lemma 3 that

‖Tλx‖ ≥ λ	η‖x‖ > ‖x‖ for x ∈ ∂�r3 .

It follows from Lemma 1 that Tλ has a fixed point in �r1 \ �̄r2 or �r3 \ �̄r1 according
to F0 = ∞ or F∞ = ∞, respectively. Consequently, (1) has a positive solution for
0 < λ < λ0.
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Part (c). Fix two numbers 0 < r3 < r4. Lemma 5 implies that there exists a λ0 > 0
such that we have, for λ > λ0,

‖Tλx‖ > ‖x‖, for x ∈ ∂�ri (i = 3,4).

Since F0 = 0 and F∞ = 0, it follows from the proof of Theorem 2(a) that we can
choose 0 < r1 < r3/2 and r2 > 2r4 such that

‖Tλx‖ < ‖x‖, for x ∈ ∂�ri (i = 1,2).

It follows from Lemma 1 that Tλ has two fixed points x1 and x2 such that x1 ∈
�r3 \ �̄r1 and x2 ∈ �r2 \ �̄r4 , which are the desired distinct positive solutions of (1)
for λ > λ0 satisfying

r1 < ‖x1‖ < r3 < r4 < ‖x2‖ < r2.

Part (d). Fix two numbers 0 < r3 < r4. Lemma 6 implies that there exists a λ0 > 0
such that we have, for 0 < λ < λ0,

‖Tλx‖ < ‖x‖, for x ∈ ∂�ri (i = 3,4).

Since F0 = ∞ and F∞ = ∞, it follows from the proof of Theorem 2(b) that we can
choose 0 < r1 < r3/2 and r2 > 2r4 such that

‖Tλx‖ > ‖x‖, for x ∈ ∂�ri (i = 1,2).

It follows from Lemma 1 that Tλ has two fixed points x1 and x2 such that x1 ∈
�r3 \ �̄r1 and x2 ∈ �r2 \ �̄r4 , which are the desired distinct positive solutions of (1)
for λ < λ0 satisfying

r1 < ‖x1‖ < r3 < r4 < ‖x2‖ < r2.

Part (e). Since F0 < ∞ and F∞ < ∞, then f
(i)
0 < ∞ and f

(i)∞ < ∞, i = 1, . . . , n.

Therefore, for each i = 1, . . . , n, there exist positive numbers εi
1, εi

2, ri
1 and ri

2 such
that ri

1 < ri
2,

f (i)(x) ≤ εi
1‖x‖ for x ∈ K, ‖x‖ ≤ ri

1,

and

f (i)(x) ≤ εi
2‖x‖ for x ∈ K, ‖x‖ ≥ ri

2.

Let

εi = max

{
εi

1, ε
i
2,max

{
f (i)(x)

‖x‖ : x ∈ K, ri
1 ≤ ‖x‖ ≤ ri

2

}}
> 0

and ε = maxi=1,...,n{εi} > 0. Thus, we have

f (i)(x) ≤ ε‖x‖ for x ∈ K, i = 1, . . . , n.



Minimum speeds and traveling waves 599

Assume v is a positive solution of (1). We will show that this leads to a contradiction
for 0 < λ < λ0, where λ0 = 1

Ĉε
. In fact, for 0 < λ < λ0, since Tλv = v, we have

‖v‖ = ‖Tλv‖ ≤ λĈε‖v‖ < ‖v‖
which is a contradiction.

Part (f). Since F0 > 0 and F∞ > 0, there exist two components f (i) and f (j) of
F such that f

(i)
0 > 0 and f

(j)∞ > 0. Therefore, there exist positive numbers η1, η2, r1
and r2 such that r1 < r2,

f (i)(x) ≥ η1‖x‖ for x ∈ K, ‖x‖ ≤ r1,

and

f (j)(x) ≥ η2‖u‖ for x ∈ K, ‖x‖ ≥ r2.

Let

η = min

{
η1, η2,min

{
f (j)(x)

‖x‖ : x ∈ K, r1 ≤ ‖x‖ ≤ r2

}}
> 0.

Thus, we have

f (i)(x) ≥ η‖x‖ for x ∈ K, ‖x‖ ≤ r1 (16)

and

f (j)(x) ≥ η‖x‖ for x ∈ K, ‖x‖ ≥ r1. (17)

Assume v = (v1, . . . , vn) is a positive solution of (1). We will show that this leads to a
contradiction for λ > λ0 = 1

	η
. In fact, if ‖v‖ ≤ r1, (16) implies that f (i)(v) ≥ η‖v‖.

On the other hand, if ‖v‖ > r1, then (17) implies that f (j)(v) ≥ η‖v‖. Since Tλv = v,
it follows from Lemma 3 that, for λ > λ0,

‖v‖ = ‖Tλv‖ ≥ λ	η‖v‖ > ‖v‖,
which is a contradiction. �
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