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1. Introduction

There have been extensive studies in traveling wave solutions for reaction–diffusion equations
without delay in the literature, see, e.g., Murray [12]. Consider the following reaction–diffusion equa-
tion

wt(t, x) = dwxx(t, x) + h
(

w(t, x)
)
, x ∈ R, t � 0, (1.1)

where h satisfies h(0) = h(K ) = 0, K > 0, and 0 < h(w) � h′(0)w , w ∈ (0, K ). A traveling wave
solution of (1.1) is a special translation invariant solution of the form w(t, x) = u(x + ct), where
u ∈ C2(R,R) is the profile of the wave that propagates through the one-dimensional spatial domain
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at a constant velocity c > 0. Substituting w(t, x) = u(x + ct) into (1.1) and letting ξ = x + ct , we obtain
the associated ordinary differential equation

du′′(ξ) − cu′(ξ) + h
(
u(ξ)

) = 0, ξ ∈ R. (1.2)

It has been shown that there is a minimal wave speed cmin = 2
√

dh′(0) such that for every c > cmin ,
there exists an increasing traveling wave solution of (1.1) with the form w(t, x) = u(x + ct) and
u(−∞) = 0, u(∞) = K .

Reaction–diffusion equations with delays often arise in biology and other disciplines. Schaaf [13]
systematically studied scalar reaction–diffusion equations with a discrete delay. Wu and Zou [19], Ma
[10,11], and Wang, Li and Ruan [17] and others obtained the existence of traveling wave solutions by
constructing lower solutions and upper solutions of the associated ordinary differential equation and
applying monotone iteration techniques or fixed point theorems. Al-Omari and Gourley [1], Gourley
[6] studied the traveling wave solutions of an age-structured reaction–diffusion model with nonlocal
delay and a nonlocal Fisher equation. Related results can also be found in [5,21].

In a recent paper [2], Boumenir and Nguyen revisited the existence of traveling wave solutions of
reaction–diffusion equations with delays by the monotone iteration method. They pointed out upper
and lower solutions of the associated ordinary differential equations are required to be smooth func-
tions due to a failure of the Perron Theorem for weak solutions. A counterexample is given in [2] to
explain the pitfalls of non-smooth upper solutions. However, as pointed in [2] it is often more difficult
to construct smooth upper and lower solutions. More recently, Wu and Zou [20] addressed the prob-
lem by adding extra conditions on the upper and lower solutions at these points where smoothness
is not satisfied. A related result can also be found in [22].

In this paper, we present a remedy to the problem due to the non-smooth upper and lower so-
lutions. Instead of verifying upper and lower solutions through the associated ordinary differential
equation, we carefully analyze and calculate the associated integrals and are able to verify upper and
lower solutions through the associated integral equations. Smoothness is not required for the up-
per and lower solutions for the associated integral equations (see Definition 4.1). Identities between
parameters are established to simplify the proof. The monotone iteration technique combined with
upper and lower solutions has also been used to construct wave fronts for integral equations. See
Diekmann [3], Weinberger [18], Thieme and Zhao [16], and more recently, Hsu and Zhao [8]. How-
ever, as remarked by Wu and Zou [19, Remark 5.2.9], the associated integral equations in this paper
are derived from reaction–diffusion equations with delays and more complicated than those integral
equations in [3,8,16,18].

One of the common assumptions to guarantee the existence of traveling wave solutions is quasi-
monotonicity assumptions on reaction terms. In general, reaction–diffusion equations with delay are
not necessarily monotone and even may not satisfy quasi-monotonicity assumptions. For equations
without quasi-monotonicity assumptions, Ma [11] obtained the existence of traveling wave solutions
of (1.7) by the Schauder’s fixed point theorem. Hsu and Zhao [8] also established the existence of
traveling waves for a class of nonmonotone discrete-time integrodifference equation models by the
Schauder’s fixed point theorem. Other related results for nonmonotone equations can also be found
in [4,9,15].

In this paper, we consider a more general reaction–diffusion equation with nonlocal delays (1.3)
where the term f may not be monotone or quasi-monotone:

wt(t, x) = dwxx(t, x) + g

(
w,

∫
R

f
(

w(t − r, τ )
)

J (x − τ )dτ

)
, (1.3)

where g, f , J satisfy (H1)–(H4). (1.3) includes several important reaction–diffusion systems from the
literature. When g(x, y) = −α1x + α2 y, α1,α2 > 0, and J (x) = δ(x), the Dirac delta function, (1.3)
reduces the equation

wt(t, x) = dwxx(t, x) − α1 w(t, x) + α2 f
(

w(t − r, x)
)
. (1.4)
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(1.3) also includes the nonlocal reaction–diffusion equation by So, Wu and Zou [14]

wt(t, x) = dwxx(t, x) − α1 w(t, x) + α2

∫
R

1√
4πα3

e
− (x−τ )2

4α3 f
(

w(t − r, τ )
)

dτ , (1.5)

where α3 > 0. Clearly, (1.3) also includes the nonlocal reaction–diffusion equation by Gourley and
Kuang [7]

wt(t, x) = dwxx(t, x) − α1 w2(t, x) + α2

∫
R

1√
4πα3

e
− (x−τ )2

4α3 f
(

w(t − r, τ )
)

dτ . (1.6)

Finally, with appropriate conditions on f1, f2 and g(x, y) = − f1(x) + f2(x)y, (1.3) also covers the
reaction–diffusion equations (1.7) with nonlocal delays in Ma [11]

wt(t, x) = dwxx(t, x) − f1(w) + f2(w)

∫
R

f
(

w(t − r, τ )
)

J (x − τ )dτ . (1.7)

2. Main results

We are interested in finding traveling waves w(t, x) = u(x + ct) of (1.3), where u ∈ C2(R,R). To
this end, we need to find a solution u(ξ) where ξ = x + ct , for the following associated ordinary
differential equation:

du′′(ξ) − cu′(ξ) + g

(
u(ξ),

∫
R

f
(
u(ξ − τ − cr)

)
J (τ )dτ

)
= 0. (2.8)

Based on the above examples, we make the following assumptions.

(H1) Let r � 0. J (τ ) � 0 is integrable on R, and J (τ ) = J (−τ ), τ ∈ (−∞,+∞), and∫
R

J (τ )dτ = 1,

∫
R

J (τ )eλτ dτ < ∞,

for all λ > 0.

(H2) Let K > 0. f is Lipschitz continuous on [0, K ] and f ′′(0) exists, f (0) = 0, f ′(0) > 0, f (x) > 0 for
x ∈ (0, K ], f (x) � f (K ) for x ∈ [0, K ], and there is a θ (0 < θ < K ) such that f is increasing on
[0, θ]. Further assume

f (x) � f ′(0)x, x ∈ [0, K ].

(H3) g(x, y) ∈ C2([0, K ] × [0, f (K )],R), g y(x, y) > 0 for (x, y) ∈ [0, K ] × [0, f (K )], g(0,0) = 0,
g(K , f (K )) = 0 and g(x, f (x)) > 0 for x ∈ (0, K ); gx(0,0) + g y(0,0) f ′(0) > 0. Further assume
that

g(x, y) � gx(0,0)x + g y(0,0)y, (x, y) ∈ [0, K ] × [
0, f (K )

]
.

(H4) There exists a positive θ1 < K such that for each y ∈ (0, θ1), g(x, y) = 0 has a solution x ∈ (0, θ)

(θ is defined in (H2)).

We now can state our main results on the existence of a traveling wave to (1.3).
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Theorem 2.1. Assume (H1)–(H4) hold. Then there exists a c∗ > 0 such that for c > c∗ , (1.3) admits a traveling
wave solution w(t, x) = u(x + ct) such that 0 < u(ξ) � K , ξ ∈ R, lim infξ→∞ u(ξ) > 0, limξ→−∞ u(ξ) = 0.
If, in addition, f is nondecreasing on [0, K ], then u(ξ) is nondecreasing on R and limξ→∞ u(ξ) = K .

Remark 2.2. The traveling wave solution w(t, x) = u(x + ct) in Theorem 2.1 also satisfies
limξ→−∞ u(ξ)e−Λ1ξ = 1, where Λ1 is defined in Lemma 3.1.

Remark 2.3. With appropriately choosing the parameters and f1, f2, it is easy to see that g(x, y) =
−α1x + α2 y, g(x, y) = −α1x2 + α2 y and g(x, y) = − f1(x) + f2(x)y satisfy (H3) and (H4). Thus, The-
orem 2.1 covers corresponding results in the literature. It is worthwhile to note that the linearities
g(w(t, x), w(t − r, x)) in Schaaf [13] do not cover some of the models above. For example, [13] re-
quires g(x, y) � 0 for (x, y) ∈ [0, K ]2 ( f (x) = x). For the case that g admits an intermediate steady
state, [13] requires gx(0,0) + g y(0,0) < 0 ( f (x) = x).

Remark 2.4. For the case that f is nondecreasing, Theorem 2.1 is valid even without assumption (H4).
(H4) is only used in Section 6.

Remark 2.5. We believe it is equally important to present our theorems in a way that they can be
easily verified. As such, some of our conditions can be stated in more general ways. For example,
the assumption that f ′′(0) exists in (H2) can be replaced by the following conditions: there exists
some small number δ1 > 0, σ 1 > 1 and a > 0 such that f (u) � f ′(0)u − auσ1 , u ∈ [0, δ1] [8,16,18]; or

lim supu→0+
f ′(0)− f (u)

u
uν < ∞, ν ∈ (0,1] [11].

Remark 2.6. With some additional assumptions (see [8,11]), the traveling wave solution u(ξ) in The-
orem 2.1 can satisfy limξ→∞ u(ξ) = K . Also the assumption that f (x) � f (K ), x ∈ [0, K ], in (H2) can
be replaced with other conditions [8,11]. In this case, the function f + in Section 6 will be slightly
different. Theorem 2.1 can be extended to an n-dimensional system of reaction–diffusion equations.

3. Preliminary results

Let

�(c, λ) = dλ2 − cλ + gx(0,0) + g y(0,0) f ′(0)

∫
R

e−λ(τ+cr) J (τ )dτ . (3.9)

Then it is easy to verify the following properties:

�(c,0) = gx(0,0) + g y(0,0) f ′(0) > 0,

limλ→∞ �(c, λ) = ∞ for all c � 0,

∂2�(c, λ)

∂λ2
= 2d + g y(0,0) f ′(0)

∫
R

τ 2e−λ(τ+cr) J (τ )dτ > 0,

∂�(c, λ)

∂c
= −λ − λrg y(0,0) f ′(0)

∫
R

e−λ(τ+cr) J (τ )dτ < 0,

limc→∞ �(c, λ) = −∞ for λ > 0 and finally �(0, λ) > 0. Based on these properties of �(c, λ), we
state Lemma 3.1 which is similar to Lemma 2.1 [11] and Lemma 2.5 [13].
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Lemma 3.1. Assume that (H1)–(H3) hold. Then there exists a unique c∗ > 0 such that:

(1) If c � c∗ , then there exist two positive numbers Λ1,Λ2 (which are dependent on c) with Λ1 � Λ2 such
that

�(c,Λ1) = �(c,Λ2) = 0.

(2) If c < c∗ , then �(c, λ) > 0 for all λ > 0.
(3) If c = c∗ , then Λ1 = Λ2; and if c > c∗ , then Λ1 < Λ2 ,

�(c, λ) < 0, for λ ∈ (Λ1,Λ2), �(c, λ) > 0, for λ ∈ [0,∞) \ [Λ1,Λ2].

Now let β > max(x,y)∈[0,K ]×[0, f (K )] |g′
x(x, y)| > 0. For c > c∗ , the two solutions of the following

equation

dλ2 − cλ − β = 0 (3.10)

are −λ1 and λ2 where

λ1 = −c + √
c2 + 4βd

2d
> 0, λ2 = c + √

c2 + 4βd

2d
> 0.

We choose β sufficiently large so that

λ2 > λ1 > max{2Λ1,Λ2}. (3.11)

Define an operator by

T [u](ξ) = 1

d(λ1 + λ2)

( ξ∫
−∞

e−λ1(ξ−s)H
(
u(s)

)
ds +

∞∫
ξ

eλ2(ξ−s)H
(
u(s)

)
ds

)
, (3.12)

where

H
(
u(s)

) = βu(s) + g

(
u(s),

∫
R

f
(
u(s − τ − cr)

)
J (τ )dτ

)
.

T [u] is defined on R if H(u) is a bounded continuous function. In fact, the following identity holds:

1

d(λ1 + λ2)

( ξ∫
−∞

e−λ1(ξ−s)βK ds +
∞∫

ξ

eλ2(ξ−s)βK ds

)

= βK

d(λ1 + λ2)

(
1

λ1
+ 1

λ2

)
= βK

d(λ1λ2)

= K . (3.13)

We shall show that a fixed point u of T or solution of the equation

u(ξ) = T [u](ξ), ξ ∈ R, (3.14)

is a traveling wave solution of (1.3). Similar results for different reaction terms can be found in [10,11,
19] and others. More additional properties of T will be discussed in Section 5.
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Lemma 3.2. Assume (H1)–(H3) hold. If u ∈ C(R, [0, K ]) is a fixed point of T [u],

u(ξ) = T [u](ξ), ξ ∈ R,

then u ∈ C2(R, [0, K ]) and is solution of (2.8).

Proof. First if u ∈ C(R, [0, K ]), then
∫

R
f (u(t − τ − cr)) J (τ )dτ is a bounded continuous function.

Indeed, for s, t ∈ R, ∣∣∣∣ ∫
R

f
(
u(t − τ − cr)

)
J (τ )dτ −

∫
R

f
(
u(s − τ − cr)

)
J (τ )dτ

∣∣∣∣
�

∫
R

f
(
u(s − τ − cr)

)∣∣ J (t − s + τ ) − J (τ )
∣∣dτ

� f (K )

∫
R

∣∣ J (t − s + τ ) − J (τ )
∣∣dτ .

The fact that
∫

R
| J (t − s + τ ) − J (τ )|dτ → 0 if |t − s| → 0 implies that

∫
R

f (u(t − τ − cr)) J (τ )dτ
and H(u(s)) are continuous functions on R. Thus T [u](ξ) is defined and differentiable on R. Direct
calculations show

(
T [u](ξ)

)′ = 1

d(λ1 + λ2)

(
−λ1

ξ∫
−∞

e−λ1(ξ−s)H
(
u(s)

)
ds + λ2

∞∫
ξ

eλ2(ξ−s)H
(
u(s)

)
ds

)

and

(
T [u](ξ)

)′′ = 1

d(λ1 + λ2)

(
λ2

1

ξ∫
−∞

e−λ1(ξ−s)H
(
u(s)

)
ds

+ λ2
2

∞∫
ξ

eλ2(ξ−s)H
(
u(s)

)
ds − λ1 H

(
u(ξ)

) − λ2 H
(
u(ξ)

))
.

Noting that −λ1, λ2 are solutions of (3.10), one can evaluate the following expression

d
(

T [u](ξ)
)′′ − c

(
T [u](ξ)

)′ − βT [u](ξ) = dλ2
1 + cλ1

d(λ1 + λ2)

ξ∫
−∞

e−λ1(ξ−s)H
(
u(s)

)
ds

+ dλ2
2 − cλ2

d(λ1 + λ2)

∞∫
ξ

eλ2(ξ−s)H
(
u(s)

)
ds − H

(
u(ξ)

) − βT [u](ξ)

= βT [u](ξ) − H
(
u(ξ)

) − βT [u](ξ)

= −H
(
u(ξ)

)
.

Now if u(ξ) = T [u](ξ), ξ ∈ R, then u ∈ C2(R, [0, K ]) and is solution of (2.8). �
We also need the following two lemmas to estimate T [u] in Section 4.
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Lemma 3.3. Assume (H2)–(H3) hold. There exist positive constants D1 , D2 , D3 such that

g(x, y) � gx(0,0)x + g y(0,0)y − D1x2 − D2 y2, for x, y ∈ [0, K ] × [
0, f (K )

]
,

and

f (x) � f ′(0)x − D3x2, for x ∈ [0, K ].

Proof. According to Taylor’s theorem in two variables, there exist positive constants D1, D2 such that

g(x, y) � gx(0,0)x + g y(0,0)y − D1x2 − D2 y2, for x, y ∈ [0, K ] × [
0, f (K )

]
.

Since f ′′(0) exists, we can find an interval [0, η], 0 < η < K , and D4 > 0 such that

f ′(u) − f ′(0) � −2D4u, u ∈ [0, η].

Integrating from 0 to u will produce, for u ∈ [0, η],

f (u) � f ′(0)u − D4u2.

For u ∈ [η, K ], we can always find positive constant D5 such that

f (u) � f ′(0)u − D5u2.

Now take D3 = max{D4, D5} and we have, for u ∈ [0, K ],

f (u) � f ′(0)u − D3u2. �
4. Upper and lower solutions of integral equations

In this section, we give the definition of upper and lower solutions of (3.14) and show φ+ and φ−
defined below are an upper and lower solution of (3.14).

Definition 4.1. A bounded continuous function u(t) ∈ C(R, [0,∞)) is an upper solution of (3.14) if

T [u](ξ) � u(ξ), for all ξ ∈ R;

a bounded continuous function u(t) ∈ C(R, [0,∞)) is a lower solution of (3.14) if

T [u](ξ) � u(ξ), for all ξ ∈ R.

Let c > c∗ , γ > 1, q > 1 and

φ+(ξ) = min
{

K , eΛ1ξ
}
, ξ ∈ R,

and

φ−(ξ) = max
{

0, eΛ1ξ − qeγ Λ1ξ
}
, ξ ∈ R.

It is clear that if ξ � ln K
Λ1

, φ+(ξ) = K , and ξ < ln K
Λ1

, φ+(ξ) = eΛ1ξ . Similarly, if ξ � ln q
(1−γ )Λ1

, φ−(ξ) = 0,

and ξ <
ln q

(1−γ )Λ1
, φ−(ξ) = eΛ1ξ − qeγ Λ1ξ . By choosing q > 1 large so that ln K

Λ1
>

ln q
(1−γ )Λ1

, we have

φ−(ξ) < φ+(ξ), ξ ∈ R.
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Before verifying the upper and lower solutions, we give an identity which will simply our proof in
this section. First for Λ > 0 let

M(Λ) = β + gx(0,0) + g y(0,0) f ′(0)

∫
R

e−Λ(τ+cr) J (τ )dτ > 0. (4.15)

Then we can show the following lemma.

Lemma 4.2. Assume (H1)–(H3) hold. Then

M(Λ1)

d(λ1 + λ2)

(
1

λ1 + Λ1
+ 1

λ2 − Λ1

)
= 1. (4.16)

Proof. Since Λ1 is a zero of (3.9), it follows that

M(Λ1)

d(λ1 + λ2)

(
1

λ1 + Λ1
+ 1

λ2 − Λ1

)
= M(Λ1)

d(λ1 + λ2)

(λ1 + λ2)

λ1λ2 + (λ2 − λ1)Λ1 − Λ2
1

= M(Λ1)

d

1
β
d + c

d Λ1 − Λ2
1

= M(Λ1)

β + cΛ1 − dΛ2
1

= β + gx(0,0) + g y(0,0) f ′(0)
∫

R
e−Λ1(τ+cr) J (τ )dτ

β + cΛ1 − dΛ2
1

= 1. � (4.17)

Lemma 4.3. Assume (H1)–(H3) hold. For any c > c∗ , φ+ defined above is an upper solution of (3.14).

Proof. Let ξ∗ = ln K
Λ1

. φ+(ξ) = K if ξ � ξ∗ , and φ+(ξ) = eΛ1ξ if ξ < ξ∗ . Note that φ+(ξ) � eΛ1ξ , ξ ∈ R,
and then ∫

R

φ+(ξ − τ − cr) J (τ )dτ � eΛ1ξ

∫
R

e−Λ1(τ+cr) J (τ )dτ , ξ ∈ R.

In view of (H2)–(H3) we have, for s ∈ R,

H
(
φ+(s)

) = βφ+(s) + g

(
φ+(s),

∫
R

f
(
φ+(s − τ − cr)

)
J (τ )dτ

)

� βφ+(s) + gx(0,0)φ+(s) + g y(0,0) f ′(0)

∫
R

φ+(s − τ − cr) J (τ )dτ

� M(Λ1)eΛ1s.

For s � ξ∗ , because of (H2) and (H3), we have

H
(
φ+(s)

) = βK + g

(
K ,

∫
f
(
φ+(s − τ − cr)

)
J (τ )dτ

)
� βK + g

(
K , f (K )

) = βK .
R
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Thus, for ξ � ξ∗ , we get

T [φ+](ξ) � M(Λ1)

d(λ1 + λ2)

ξ∗∫
−∞

e−λ1(ξ−s)eΛ1s ds

+ 1

d(λ1 + λ2)

[ ξ∫
ξ∗

e−λ1(ξ−s)βK ds +
∞∫

ξ

eλ2(ξ−s)βK ds

]
. (4.18)

Thus in view of (3.13), we add and subtract the term βK
d(λ1+λ2)

∫ ξ∗
−∞ e−λ1(ξ−s) ds at the left of (4.18).

Now for ξ � ξ∗ , noting that eΛ1ξ∗ = K , (4.18) can be written as

T [φ+](ξ) � K + 1

d(λ1 + λ2)

(
M(Λ1)

ξ∗∫
−∞

e−λ1(ξ−s)eΛ1s ds − βK

ξ∗∫
−∞

e−λ1(ξ−s) ds

)

= K + 1

d(λ1 + λ2)

(
M(Λ1)

e−λ1ξ e(λ1+Λ1)ξ∗

λ1 + Λ1
− βK

e−λ1ξ eλ1ξ∗

λ1

)

= K + K e−λ1ξ eλ1ξ∗

d(λ1 + λ2)

(
M(Λ1)

λ1 + Λ1
− β

λ1

)

= K + K e−λ1ξ eλ1ξ∗

d(λ1 + λ2)(λ1 + Λ1)λ1

(
λ1

(
M(Λ1) − β

) − βΛ1
)
. (4.19)

And noting Λ1 is a zero of (3.9), we have

λ1
(
M(Λ1) − β

) − βΛ1 = λ1
(
cΛ1 − dΛ2

1

) − βΛ1

= 4βd

2d(
√

c2 + 4βd + c)

(
cΛ1 − dΛ2

1

) − βΛ1

= 4βd(cΛ1 − dΛ2
1) − 2d(

√
c2 + 4βd + c)βΛ1

2d(
√

c2 + 4βd + c)

= 2dβΛ1(2c − 2dΛ1 − √
c2 + 4βd − c)

2d(
√

c2 + 4βd + c)

= 2dβΛ1(c − 2dΛ1 − √
c2 + 4βd)

2d(
√

c2 + 4βd + c)

< 0. (4.20)

Combining (4.19) and (4.20), we see that for ξ � ξ∗ ,

T [φ+](ξ) � K . (4.21)

Similarly, noting eΛ1ξ∗ = K , one can see that, for ξ � ξ∗ ,
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T [φ+](ξ) � M(Λ1)

d(λ1 + λ2)

( ξ∫
−∞

e−λ1(ξ−s)eΛ1s ds +
ξ∗∫

ξ

eλ2(ξ−s)eΛ1s ds

)
+ 1

d(λ1 + λ2)

∞∫
ξ∗

eλ2(ξ−s)βK ds

= M(Λ1)

d(λ1 + λ2)

(
eΛ1ξ

λ1 + Λ1
+ eΛ1ξ

λ2 − Λ1
− eλ2ξ e−(λ2−Λ1)ξ∗

λ2 − Λ1

)
+ βK

d(λ1 + λ2)

eλ2ξ e−λ2ξ∗

λ2

= eΛ1ξ M(Λ1)

d(λ1 + λ2)

(
1

λ1 + Λ1
+ 1

λ2 − Λ1

)

+ M(Λ1)eλ2ξ−λ2ξ∗

d(λ1 + λ2)

( −K

λ2 − Λ1
+ βK

M(Λ1)λ2

)
. (4.22)

Note that

−K

λ2 − Λ1
+ βK

M(Λ1)λ2
= K

(−M(Λ1) + β)λ2 − Λ1β

(λ2 − Λ1)λ2M(Λ1)

= K
−gx(0,0)λ2 − g y(0,0) f ′(0)

∫
R

e−Λ1(τ+cr) J (τ )dτ λ2 − Λ1β

(λ2 − Λ1)λ2M(Λ1)

� 0. (4.23)

Combining (4.16), (4.22) and (4.23) leads to for ξ � ξ∗ ,

T [φ+](ξ) � eΛ1ξ .

And therefore, for ξ ∈ R,

T [φ+](ξ) � φ+(ξ). (4.24)

This completes the proof of Lemma 4.3. �
Lemma 4.4. Assume (H1)–(H3) hold. For any c > c∗ , φ− defined above is a lower solution of (3.14) if 1 < γ <

min{2, Λ2
Λ1

} and q (which is independent of ξ ) is sufficiently large.

Proof. Again let ξ∗ = ln q
(1−γ )Λ1

. If ξ � ξ∗ , φ−(ξ) = 0, and if ξ < ξ∗ , φ−(ξ) = eΛ1ξ − qeγ Λ1ξ . For ξ ∈ R,
it follows that

H
(
φ−(ξ)

) = βφ−(ξ) + g

(
φ−(ξ),

∫
R

f
(
φ−(ξ − τ − cr)

)
J (τ )dτ

)

� βφ−(ξ) + g
(
φ−(ξ),0

)
= βφ−(ξ) + g

(
φ−(ξ),0

) − g(0,0)

= (
β + gx(ζ1,0)

)
φ−(ξ)

� 0,

where ζ1 ∈ [0, K ].
Thus, for ξ � ξ∗ ,

T [φ−](ξ) � φ−(ξ).
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We now consider the case ξ < ξ∗ . It is easy to see that

eΛ1ξ � φ−(ξ) � eΛ1ξ − qeγ Λ1ξ , ξ ∈ R, (4.25)

and, for ξ ∈ R,

eΛ1ξ

∫
R

e−Λ1(τ+cr) J (τ )dτ �
∫
R

φ−(ξ − τ − cr) J (τ )dτ

� eΛ1ξ

∫
R

e−Λ1(τ+cr) J (τ )dτ − qeγ Λ1ξ

∫
R

e−γ Λ1(τ+cr) J (τ )dτ . (4.26)

In view of Lemma 3.3, (4.25) and (4.26), we have, for ξ ∈ R,

H
(
φ−(ξ)

) = βφ−(ξ) + g

(
φ−(ξ),

∫
R

f
(
φ−(ξ − τ − cr)

)
J (τ )dτ

)

� βφ−(ξ) + gx(0,0)φ−(ξ) + g y(0,0)

∫
R

f
(
φ−(ξ − τ − cr)

)
J (τ )dτ

− D1
(
φ−(ξ)

)2 − D2

(∫
R

f
(
φ−(ξ − τ − cr)

)
J (τ )dτ

)2

� βφ−(ξ) + gx(0,0)φ−(ξ) + g y(0,0) f ′(0)

∫
R

φ−(ξ − τ − cr) J (τ )dτ

− D1
(
φ−(ξ)

)2 − D2
(

f ′(0)
)2

(∫
R

φ−(ξ − τ − cr) J (τ )dτ

)2

− g y(0,0)D3

∫
R

(
φ−(ξ − τ − cr)

)2
J (τ )dτ

� M(Λ1)eΛ1ξ − qM(γΛ1)eγ Λ1ξ − M̂e2Λ1ξ , (4.27)

where M(·) is defined in (4.15) and

M̂ = D1 + D2
(

f ′(0)
)2

(∫
R

e−Λ1(τ+cr) J (τ )dτ

)2

+ g y(0,0)D3

∫
R

e−2Λ1(τ+cr) J (τ )dτ

> 0. (4.28)

Observe that

g

(
0,

∫
f
(
φ−(ξ − τ − cr)

)
J (τ )dτ

)
� g(0,0) = 0
R
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and we ignore the term
∫ ∞
ξ∗ eλ2(ξ−s)H(φ−(s))ds in (4.29). Now we are able to estimate T [φ−] for

ξ � ξ∗:

T [φ−](ξ) � 1

d(λ1 + λ2)

( ξ∫
−∞

e−λ1(ξ−s)M(Λ1)eΛ1s ds

− q

ξ∫
−∞

e−λ1(ξ−s)M(γΛ1)eγ Λ1s ds − M̂

ξ∫
−∞

e−λ1(ξ−s)e2Λ1s ds

+
ξ∗∫

ξ

eλ2(ξ−s)M(Λ1)eΛ1s ds − q

ξ∗∫
ξ

eλ2(ξ−s)M(γΛ1)eγ Λ1s ds − M̂

ξ∗∫
ξ

eλ2(ξ−s)e2Λ1s ds

)

= 1

d(λ1 + λ2)

(
M(Λ1)eΛ1ξ

λ1 + Λ1
− q

M(γΛ1)eγ Λ1ξ

λ1 + γΛ1

− M̂
e2Λ1ξ

λ1 + 2Λ1
+ eΛ1ξ∗−λ2ξ∗+λ2ξ − eΛ1ξ

Λ1 − λ2
M(Λ1)

− q
eγ Λ1ξ∗−λ2ξ∗+λ2ξ − eγ Λ1ξ

γΛ1 − λ2
M(γΛ1) − M̂

e2Λ1ξ∗−λ2ξ∗+λ2ξ − e2Λ1ξ

2Λ1 − λ2

)
. (4.29)

In view of the identity (4.16), we subtract two terms to make up a term −qeγ Λ1ξ and thus we need
to add the terms. Recall that γΛ1 < 2Λ1 < λ2. We ignore two positive terms

q
M(γΛ1)

(λ2 − γΛ1)d(λ1 + λ2)
e(γ Λ1−λ2)ξ∗+λ2ξ and

M̂

(λ2 − 2Λ1)d(λ1 + λ2)
e(2Λ1−λ2)ξ∗+λ2ξ .

Thus,

T [φ−](ξ) � M(Λ1)

d(λ1 + λ2)

(
1

λ1 + Λ1
+ 1

λ2 − Λ1

)
eΛ1ξ

− M(Λ1)

d(λ1 + λ2)

(
1

λ1 + Λ1
+ 1

λ2 − Λ1

)
qeγ Λ1ξ

+ eγ Λ1ξ

d(λ1 + λ2)

(
q

(
M(Λ1)

λ1 + Λ1
+ M(Λ1)

λ2 − Λ1
− M(γΛ1)

λ1 + γΛ1
− M(γΛ1)

λ2 − γΛ1

)

− M̂

(λ1 + 2Λ1)
e(2−γ )Λ1ξ − M(Λ1)e(Λ1−λ2)ξ∗

(λ2 − Λ1)
e(λ2−γ Λ1)ξ

− M̂

(λ2 − 2Λ1)
e(2−γ )Λ1ξ

)
. (4.30)

For ξ � ξ∗, e(2−γ )Λ1ξ , e(λ2−γ Λ1)ξ are bounded above. Because of the identity (4.16), (4.30) can be
further simplified as

T [φ−](ξ) � eΛ1ξ − qeγ Λ1ξ

+ eγ Λ1ξ

d(λ + λ )

(
q

(
M(Λ1)

λ + Λ
+ M(Λ1)

λ − Λ
− M(γΛ1)

λ + γΛ
− M(γΛ1)

λ − γΛ

)

1 2 1 1 2 1 1 1 2 1
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− M̂

(λ1 + 2Λ1)
e(2−γ )Λ1ξ∗ − M(Λ1)e(Λ1−λ2)ξ∗

(λ2 − Λ1)
e(λ2−γ Λ1)ξ∗

− M̂

(λ2 − 2Λ1)
e(2−γ )Λ1ξ∗

)
. (4.31)

Now we only need to show that

M(Λ1)

λ1 + Λ1
+ M(Λ1)

λ2 − Λ1
− M(γΛ1)

λ1 + γΛ1
− M(γΛ1)

λ2 − γΛ1
> 0.

Note M(Λ1) = β + cΛ1 − dΛ2
1 because Λ1 is a zero of (3.9). Lemma 3.1(3) implies that

M(γΛ1)

β + cγΛ1 − d(γΛ1)2
< 1.

Thus, we have

M(Λ1)

λ1 + Λ1
+ M(Λ1)

λ2 − Λ1
− M(γΛ1)

λ1 + γΛ1
− M(γΛ1)

λ2 − γΛ1

= (λ1 + λ2)M(Λ1)

λ1λ2 + (λ2 − λ1)Λ1 − Λ2
1

− (λ1 + λ2)M(γΛ1)

λ1λ2 + (λ2 − λ1)γΛ1 − (γΛ1)2

=
√

c2+4βd
d M(Λ1)

β
d + c

d Λ1 − Λ2
1

−
√

c2+4βd
d M(γΛ1)

β
d + c

d γΛ1 − (γΛ1)2

=
√

c2 + 4βd

(
M(Λ1)

β + cΛ1 − dΛ2
1

− M(γΛ1)

β + cγΛ1 − d(γΛ1)2

)

=
√

c2 + 4βd

(
1 − M(γΛ1)

β + cγΛ1 − d(γΛ1)2

)
> 0. (4.32)

Finally, from (4.31) and (4.32), we conclude that there exists q > 0, which is independent of ξ , such
that, for ξ � ξ∗ ,

T [φ−](ξ) � eΛ1ξ − qeγ Λ1ξ . (4.33)

And therefore,

T [φ−](ξ) � φ−(ξ), ξ ∈ R.

This completes the proof. �
5. Proof of Theorem 2.1 with the monotonicity of f

In this section, we assume that f is nondecreasing on [0, K ] and prove Theorem 2.1. To this end,
define the following Banach space

Cρ =
{

u: u ∈ C(R), sup
ξ∈R

∣∣u(ξ)
∣∣e−ρξ < ∞

}
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equipped with weighted norm

‖u‖ρ = sup
ξ∈R

∣∣u(ξ)
∣∣e−ρξ ,

where C(R) is the set of all continuous functions on R and ρ is a positive constant such that ρ < Λ1.

It follows that φ+ ∈ Cρ and φ− ∈ Cρ. Consider the following set

A = {
u: u ∈ Cρ, φ−(ξ) � u � φ+(ξ), ξ ∈ R

}
.

We shall show the following lemma.

Lemma 5.1. Assume (H1)–(H3) hold and f is nondecreasing on [0, K ]. Then T defined in (3.12) is monotone
and therefore T (A) ⊆ A. Furthermore, T [u] is nondecreasing if u ∈ A and u is nondecreasing.

Proof. In the same way as in Lemma 3.2, it can be verified that H(u(ξ)) and T [u](ξ) are bounded
continuous functions on R if u ∈ A. Note β � max(x,y)∈[0,K ]×[0, f (K )] |gx(x, y)|, g y(x, y) � 0, (x, y) ∈
[0, K ] × [0, f (K )] and that f is nondecreasing. For any u, v ∈ A with u(ξ) � v(ξ), ξ ∈ R, we have, for
ξ ∈ R,

H
(
u(ξ)

) − H
(

v(ξ)
) = β

(
u(ξ) − v(ξ)

) + gx(ζ1, ζ2)
(
u(ξ) − v(ξ)

)
+ g y(ζ3, ζ4)

∫
R

(
f
(
u(ξ − τ − cr)

) − f
(

v(ξ − τ − cr)
))

J (τ )dτ

� 0, (5.34)

where ζ1, ζ3 ∈ [0, K ], ζ2, ζ4 ∈ [0, f (K )]. Therefore T [u](ξ) � T [v](ξ) for ξ ∈ R.

If u ∈ A is nondecreasing, consider ξ ∈ R and ξ1 > 0 and

T [u](ξ + ξ1) − T [u](ξ) = 1

d(λ1 + λ2)

( ξ+ξ1∫
−∞

e−λ1(ξ+ξ1−s)H
(
u(s)

)
ds +

∞∫
ξ+ξ1

eλ2(ξ+ξ1−s)H
(
u(s)

)
ds

−
ξ∫

−∞
e−λ1(ξ−s)H

(
u(s)

)
ds −

∞∫
ξ

eλ2(ξ−s)H
(
u(s)

)
ds

)

= 1

d(λ1 + λ2)

( ξ∫
−∞

e−λ1(ξ−s)H
(
u(s + ξ1)

)
ds −

ξ∫
−∞

e−λ1(ξ−s)H
(
u(s)

)
ds

+
∞∫

ξ

eλ2(ξ−s)H
(
u(s + ξ1)

)
ds −

∞∫
ξ

eλ2(ξ−s)H
(
u(s)

)
ds

)
. (5.35)

It follows from (5.34) that T [u](ξ + ξ1) − T [u](ξ) � 0 for ξ ∈ R and ξ1 > 0. �
Now we shall show that T [u] is continuous and maps a bounded set in A into a compact set.

Lemma 5.2. Assume (H1)–(H3) hold. Then T : A → Cρ is continuous with the weighted norm ‖.‖ρ .
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Proof. Let L f > 0 be the Lipschitz constant of f on [0, K ] and

Lg = max
(x,y)∈[0,K ]×[0, f (K )]

{∣∣gx(x, y)
∣∣, ∣∣g y(x, y)

∣∣}.
For any u, v ∈ A, we have, for ξ ∈ R,

∣∣H
(
u(ξ)

) − H
(

v(ξ)
)∣∣e−ρξ � β

∣∣u(ξ) − v(ξ)
∣∣e−ρξ + ∣∣gx(ζ1, ζ2)

∣∣∣∣u(ξ) − v(ξ)
∣∣e−ρξ

+ ∣∣g y(ζ3, ζ4)
∣∣ ∫
R

∣∣ f
(
u(ξ − τ − cr)

) − f
(

v(ξ − τ − cr)
)∣∣e−ρξ J (τ )dτ

� β‖u − v‖ρ + Lg‖u − v‖ρ + Lg L f

∫
R

e−ρ(τ+cr) J (τ )dτ‖u − v‖ρ

� L‖u − v‖ρ, (5.36)

where ζ1, ζ3 ∈ [0, K ], ζ2, ζ4 ∈ [0, f (K )], L = β + Lg + Lg L f
∫

R
e−ρ(τ+cr) J (τ )dτ . Furthermore, we obtain

∣∣T [u](ξ) − T [v](ξ)
∣∣e−ρξ � 1

d(λ1 + λ2)

( ξ∫
−∞

e−λ1(ξ−s)
∣∣H

(
u(s)

) − H
(

v(s)
)∣∣ds

+
∞∫

ξ

eλ2(ξ−s)
∣∣H(u)(s) − H(v)(s)

∣∣ds

)
e−ρξ

� L‖u − v‖ρ

d(λ1 + λ2)

( ξ∫
−∞

e−λ1(ξ−s)eρs ds +
∞∫

ξ

eλ2(ξ−s)eρs ds

)
e−ρξ

= λ1 + λ2

(λ1 + ρ)(λ2 − ρ)

L‖u − v‖ρ

d(λ1 + λ2)
, (5.37)

and

∥∥T [u] − T [v]∥∥
ρ

� L

d(λ1 + ρ)(λ2 − ρ)
‖u − v‖ρ.

Thus, T [u] is continuous. �
Lemma 5.3. Assume (H1)–(H3) hold. Then the set T (A) is relatively compact in Cρ .

Proof. Let M1 = maxu∈A, ξ∈R H(u(ξ)) > 0. Recall that

1

d(λ1 + λ2)

[ t∫
−∞

e−λ1(t−s)ds +
∞∫

t

eλ2(t−s) ds

]
= 1

β
.

If u ∈ A, ξ ∈ R and δ > 0 (without loss of generality), we have
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T [u](ξ + δ) − T [u](ξ) = 1

d(λ1 + λ2)

( ξ+δ∫
−∞

e−λ1(ξ+δ−s)H
(
u(s)

)
ds +

∞∫
ξ+δ

eλ2(ξ+δ−s)H
(
u(s)

)
ds

−
ξ∫

−∞
e−λ1(ξ−s)H

(
u(s)

)
ds −

∞∫
ξ

eλ2(ξ−s) H
(
u(s)

)
ds

)

= 1

d(λ1 + λ2)

( ξ∫
−∞

e−λ1(ξ−s)(e−λ1δ H
(
u(s)

) − H
(
u(s)

))
ds

+
∞∫

ξ

eλ2(ξ−s)(eλ2δ H
(
u(s)

) − H
(
u(s)

))
ds

+
ξ+δ∫
ξ

e−λ1(ξ+δ−s)H
(
u(s)

)
ds −

ξ+δ∫
ξ

eλ2(ξ+δ−s)H
(
u(s)

)
ds

)
, (5.38)

and

∣∣T [u](ξ + δ) − T [u](ξ)
∣∣ � max

{∣∣e−λ1δ − 1
∣∣, ∣∣eλ2δ − 1

∣∣} M1

β
+ δ

M1

d(λ1 + λ2)
+ δeλ2δ M1

d(λ1 + λ2)
.

Thus we establish that

lim
δ→0

(
T [u](ξ + δ) − T [u](ξ)

) = 0, uniformly for all u ∈ A, ξ ∈ R. (5.39)

Take any sequence (un) ∈ A and let vn = T (un). From Lemma 5.1 and (5.39), (vn) is uniformly
bounded on R and uniformly equicontinuous. For Ik = [−k,k], k ∈ N, by Ascoli’s theorem and the
standard diagonal process, we can construct subsequences (unk ) of (un) such that there is a function
v ∈ C(−∞,∞) and (vnk = T [unk ]) uniformly converges to v on each Ik for k ∈ N. Now we need to
show that v ∈ A and ‖vnk − v‖ρ → 0 as nk → ∞. By Lemma 5.1, φ−(ξ) � v(ξ) � φ+(ξ) for all ξ ∈ R,
and therefore v ∈ A. Note that

lim
ξ→±∞

(
φ+(ξ) − φ−(ξ)

)
e−ρξ = 0.

For any ε > 0, we can find M0 such that if |ξ | > M0, then, for all k ∈ N,∣∣vnk (ξ) − v
∣∣e−ρξ �

(
φ+(ξ) − φ−(ξ)

)
e−ρξ < ε.

On the other hand, on Ik , (vnk ) uniformly converges to v . Thus there exists an N > 0 such that, for
nk > N , ∣∣vnk (ξ) − v

∣∣e−ρξ < ε, ξ ∈ [−M0, M0].

Consequently, if nk > N , the following inequality is true for all ξ ∈ R∣∣vnk (ξ) − v
∣∣e−ρξ < ε.

Thus ‖vnk − v‖ρ → 0 as nk → ∞. �
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Now we are in a position to prove Theorem 2.1 when f is monotone.
Define the following iteration

u1 = T [φ+], un+1 = T [un], n > 1. (5.40)

From Lemmas 4.3, 4.4, 5.1, un is nondecreasing on R and

φ−(ξ) � un+1(ξ) � un(ξ) � φ+(ξ), ξ ∈ R, n � 1.

By Lemma 5.3 and monotonicity of (un), there is u ∈ A such that limn→∞ ‖un − u‖ρ = 0. Lemma 5.2
implies that T [u] = u. Furthermore, u is nondecreasing. It is clear that limξ→−∞ u(ξ) = 0. As-
sume that limξ→∞ u(ξ) = K ′. K ′ > 0 because of u ∈ A. Applying l’Hospital’s rule to (3.12), we get
K ′ = 1

β
(βK ′ + g(K ′, f (K ′))). By (H3), K ′ = K . Finally, note that

eΛ1ξ − qeγ Λ1ξ � u(ξ) � eΛ1ξ , ξ ∈ R.

We immediately obtain

lim
ξ→−∞ u(ξ)e−Λ1ξ = 1.

This completes the proof of Theorem 2.1 when f is monotone.

6. Proof of Theorem 2.1

Theorem 2.1 is proved when f is monotone in the last section. Now we need to prove it in
the general case. In order to find traveling waves for (1.3), we will apply the Schauder’s fixed point
theorem. First there is an x0 > 0 such that f ′(0)x0 = f (K ). Since f (K ) � f ′(0)K , we must have x0 �
K . Define the function

f +(x) =
{

f ′(0)x, 0 � x � x0,

f (K ), x0 � x � K .

Then

f (x) � f +(x) � f ′(0)x, x ∈ [0, K ],

and

g
(

K , f +(K )
) = g

(
K , f (K )

) = 0,

and g(x, f +(x)) � g(x, f (x)) > 0 for x ∈ (0, K ).

According to (H2)–(H4), we can choose a positive σ0 < θ such that f (σ0) < min{θ1,

minv∈[θ,K ] f (v)}. Because of (H4) there exists 0 < σ < θ such that g(σ , f (σ0)) = 0. Note that
g(0, f (σ0)) > g(0,0) = 0 and we can assume that σ > 0 is the smallest number such that
g(σ , f (σ0)) = 0. Because g is nondecreasing with respect to the second variable, g(σ , f (σ )) >

g(σ , f (σ0)) = 0 implies that f (σ ) > f (σ0), and furthermore σ � σ0. Now define

f −(x) =
{

f (x), 0 � x � σ0,

f (σ ), σ � x � K .
0 0
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It follows that g(σ , f −(σ )) = g(σ , f (σ0)) = 0. Now it is clear that both f + and f − are nondecreasing
on [0, K ] and further, for 0 � x � K ,

f −(x) � f (x) � f +(x) � f ′(0)x.

In fact, if x ∈ [0, σ0], f −(x) = f (x). If x ∈ [σ0, θ], f −(x) = f (σ0) � f (x) because f is increasing
on [σ0, θ]. If x ∈ [θ, K ], f −(x) = f (σ0) � minv∈[θ,K ] f (v) � f (x). In addition g(x, f −(x)) > 0 for
x ∈ (0, σ ) since σ is the smallest number such that g(σ , f (σ0)) = 0, and for x ∈ (0, σ0), g(x, f −(x)) =
g(x, f (x)) > 0.

Now we examine two integral operators for f − and f +:

u(ξ) = T +[u](ξ)

= 1

d(λ1 + λ2)

[ ξ∫
−∞

e−λ1(ξ−s)H+(
u(s)

)
ds +

∞∫
ξ

eλ2(ξ−s)H+(
u(s)

)
ds

]
(6.41)

and

u(ξ) = T −[u](ξ)

= 1

d(λ1 + λ2)

[ ξ∫
−∞

e−λ1(ξ−s)H−(
u(s)

)
ds +

∞∫
ξ

eλ2(ξ−s)H−(
u(s)

)
ds

]
, (6.42)

where

H±(
u(s)

) = βu(s) + g

(
u(s),

∫
R

f ±(
u(s − τ − cr)

)
J (τ )dτ

)
.

As in Section 5, both T + and T − are monotone. In view of Section 5 and the fact that f −
is nondecreasing, there exists a nondecreasing fixed point u− of (6.42) such that T −[u−] = u− ,
limξ→∞ u−(ξ) = σ , and limξ→−∞ u−(ξ) = 0. Furthermore, limξ→−∞ u−(ξ)e−Λ1ξ = 1. According to
Lemma 4.3, φ+ is also an upper solution of T + because the proof of Lemma 4.3 is still valid if
f is replaced by f + , and the corresponding upper solution of T − is min{σ , eΛ1ξ }. It follows that
u−(ξ) � φ+(ξ), ξ ∈ R. Now let

B = {
u: u ∈ Cρ, u−(ξ) � u(ξ) � φ+(ξ), ξ ∈ (−∞,∞)

}
,

where Cρ is defined in Section 5. It is clear that B is a bounded nonempty closed convex subset
in Cρ . Furthermore, we have, for any u ∈ B,

u− = T −[u−] � T −[u] � T [u] � T +[u] � T +[φ+] � φ+.

Therefore, T : B → B. Note that the proof of Lemmas 5.2, 5.3 does not need the monotonicity of f . In
the same way as in Lemmas 5.2, 5.3, we can show that T : B → B is continuous and maps bounded
sets into compact sets. Therefore, the Schauder fixed point theorem shows that the operator T has a
fixed point u in B, which is a traveling wave solution of (1.3) for c > c∗ . Since u−(ξ) � u(ξ) � φ+(ξ),
ξ ∈ (−∞,∞), it is easy to see that limξ→−∞ u(ξ) = 0, limξ→−∞ u(ξ)e−Λ1ξ = 1, lim infx→∞ u(x) �
σ > 0 and 0 < u−(ξ) � u(ξ) � K , ξ ∈ (−∞,∞).
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