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We study the existence of multiple positive solutions of the equations
—u" = f(t, u), subject to linear boundary conditions. We show that there are at
least two positive solutions if f{¢, #) is superlinear at one end point (zero or infinity)
and sublinear at the other. Applications of these results are provided to yield
multiple positive solutions of some elliptic boundary value problems on an annulus.
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1. INTRODUCTION

In this paper we consider the following second order boundary value
problem (BVP);

—u"=f(t, u), O<t<1 (1)
{au(0)~ﬂu,’(0):0 2)
yu(l)y+6u'(1)=0,

where f is continuous and f(¢, #)>0for te [0, 1} and =0, , 8, y, 6=0,
and

p:=yB+ay+ad>0. (3)
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The BVP (1) and (2) arises in a variety of different areas of applied
mathematics and physics, see [1-3, 6, 12, 13] for some references along
this line. Much attention has been paid to the existence of nontrivial
solutions as can be seen in [4, 5, 7-11], for instance. There is also a vast
literature on multiple solutions of this problem but, mainly under condi-
tions which allow the application of variational methods combined with
critical point theory. Our purpose here is to prove that the superlinearity
of f at one end (zero or infinity) and sublinearity of f at the other end can
sometimes imply the existence of at least two positive solutions of (1) and
(2). To be precise, we introduce the following conditions on f(1, u)

(Hl) l%mu—»0+ mi?‘{e[ﬂ.l] (f(t’ u)/u)=w,
hmu—' +00 mlnte[o,l] (f(t’ u)/u) = 00,
(H2) l?mu—-0+ max, . ro,17] (f(2, u)/u)=0,
hmu—» + oG ma’xlé {0, 1] (f(t> u)/u) = 0,
(H3) Thereis a p>0 such that 0 <u<p and 0<r <1 implies

S, u)<np,

where

-1

(1 _ 6p
= (L Gls, ) ds) T 688+ 3yB + ay + 30 )

and G(1, s) is the Green's function to —u” =0 subject to the boundary
conditions (2).
(H4) There is a p > 0 such that ap < u < p implies

S, u) = Ap,

where 2! = [}4 G(3, 5) ds, and

9+ 48 a+4{3}

o =min {40; 1) 4(a+f)

The following well-known lemma is very crucial in our arguments, see
[4, 7] for a proof and further discussion of the fixed point index.

LEMMA 1. Let X be a Banach space, K< X a cone in X. For p > 0, define
K,={xeK||x|<p}. Assume that F:K,— K is a compact map such that
Fx#x for xe0K,={xe K| |x| =p}.

(i) If |x| <|Fx| for xe dK,, then

i(F, K, K)=0;
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(i) If |x| = |Fx| for xeéK,, then
i(F,K,, K)=1.

The paper is organized as follows. In Section 2, we establish the existence
of two positive solutions of (1) and (2) under the general conditions that
f(t, u) is superlinear at one end of a cone, and sublinear at the other. In
Section 3, we apply these results to prove the existence of multiple positive
radial solutions of some semilinear elliptic equations in an annulus subject
to certain boundary conditions.

2. MuLTIPLE POSITIVE SOLUTIONS

It is well known that the BVP (1) and (2} is equivalent to the integral
equation

u(t) = jl G(t, 5) f(s, uls)) ds,

0
where

(y+ 0~ yt)(B + as), 0<s<r<1

1
G(t’s)=_{(ﬁ+at)(-\,|+6-—‘ys), OSISSSI

P

and consequently, it is equivalent to the fixed point equation
u=Fu

in X=C[0,1], with F: X > X given by
1
Fu=J G(t, 5) f(s, u(s)) ds.
0

It is obvious that F is completely continuous. We define a cone in X by

K={ueX|u(t)20and min u(2)=0o |4} (5)
1/4<r<3/4

LEMMA 2. F(K)= K.

Proof. A direct calculation shows that

Q

(2, 5) 1
2 _
5.5) c for all 2

<t< and se[0,17,

Q
W
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where ¢ >0 is from (H4). Hence, for ue K we have

min  (Fu)(t)= min fla(t,s)f(s,u(s))ds

1/4 <1< 3/4 1/4: < 3/4 Jg

>a [ Gls, ) fls. uls) ds
=0 max r G(t,8) f(s, u(s)) ds
[V EE I

=0 |Ful,

i.e., Fue K. This completes the proof.

Now, we can prove

THEOREM 3. Assume that f(t, u) satisfies (H1) and (H3). Then, BVP (1)
and (2) has at least two positive solutions x, and x, such that

0< x| <p<ix,l

Proof. Choose M >0 such that

3/4
aMf G(L, s)ds > 1. (6)

1/4

By (H1), there is an r>0 such that r<p, and 0<u<r implies
f(t, u) = Mu. We claim that |F(u)| > |u} for ue éK,. In fact, for ue dK,,

1
(Fu)() =] G4 5)/(s, uls)) ds
3/4
;aMf G(L, s) |ul ds

1/4
> |ul.
Hence, Lemma 1 implies
i(F, K,, K)=0. (7)
For the same M > 0 satisfying (6), (H1) implies that there is R, >0 such

that f(z,u)>Mu for all u>R,. Choose R>max{p, R,/c}. Since, for
ue 0Ky, min, o, <34 u(t) >0 |lul = R,, we have for such u

409/184:3-17
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(F)H) = | G ) /(5. u(s)) ds

3/4
;oMf G, 5) |ul ds
1/4
> |ul,
i.e., |u| <|Fu| for ue dKy. Thus, Lemma 1 implies
i(F, K, K)=0. (8)
On the other hand, by (H3) for ue 0K,

|Flw)] = max j‘ G(t, $) f(s, uls)) ds
< fl G(s, $) f(s, u(s)) ds
0

1
<j G(s, s)n |ul ds
0

= lu]’

where 1 >0 is from (4). Hence, |F(u)| < |u| for ue 6K,. It is obvious that
Fu#u for ue 8K,. An application of Lemma 1 again shows that

i(F,K, K)=1 9)
Now, the additivity of the fixed point index and (7), (8), (9) together
implies
i(F, K\K,, K)= —1
and
i(F,K\K,, K)=1.

Consequently, F has a fixed point x, in K R\Ii'p, and a fixed point x, in
K,\K,. Both are solutions of BVP (1) and (2). It is clear that x,(z) >0 and
x5(2)>0 for 1€(0, 1). The proof is therefore complete.

Remarks. (1) This theorem includes as a particular case a result in
[7] which proves that the following BVP has two positive solutions:

{—u"zu“—i-u”, O<r<l1
x(0)=x'(1)=0,

where 0 <a<1<§.
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(2) One can easily replace (H1) by the following weaker condition
(H1)* lim, - (f(£ w)/u) =00 V1, lim,  ,,. (f(t, u)/u)=co V;

since an application of Egorov’s theorem implies in particular that for any
£>0, there is a closed 4 < [0, 1] with u(A4°) <& such that the above limits
are uniform on € 4. Here, A°= R\ A4, u denotes the Lebesgue on R. Thus,
some straightforward modification will carry through the same proof.

THEOREM 4. Assume that f(t, u) satisfies (H2) and (H4). Then the BVP
(1) and (2) has at least two positive solutions x, and x, such that

O<|x,l<p<ix,l
Proof. By (H2), for any £¢>0, there is an M > 0 such that
S, u) < M+ eu for u=20,:e[0,1]. (10)

Let K denote the same cone as given by (5). By (10), for ue X,
1
(Fa)) )< [ Gt 5)IM + euts)] ds
0

Consequently, by choosing ¢ >0 sufficiently small and R > p sufficiently
large, we have

| F(u)| < |u] for uedky.

Therefore, by Lemma 1,

i(F, Kg, K)=1. (11)
Similarly, for some small r>0, r<p,

i(F, K, K)=1. (12)

On the other hand, for ue K, we have
min  u(t)= o |u| =op.
1/a<i<3/4
Hence, by (H4), for ue ik,
()= [ Gtk (5, us)) s

=ip fw G(3,s)ds
- va 2

=p=lul.
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It is clear that Fu#u for ue dK,. Lemma 1 implies
i(F,K,, K)=0. (13)

As before, (11), (12), and (13) show that F has two positive fixed points,
and consequently, the BVP (1) and (2) has two positive solutions. This
completes the proof.

Remark 3. It is clear that in the case that f(z, u) = a(r) g(u) with a(r)
not identically zero in any interval, (H2) can be weakened to

(H2)* lim, L, (g(u)/u)=0, lim, ., , . (g(u)/u)=0.

3. MULTIPLE POSITIVE RADIAL SOLUTIONS

Since the search for radially symmetric solutions of certain semilinear
elliptic BVPs can be reduced to the one dimensional BVP (1) and (2),
we will apply the results obtained in Section 2 to study the existence of
multiple positive radial solutions of the following BVP in R" for N> 2:

—du=g(Ix])f(u), R <ix|<R, (14)
0
au(x)=f5 (x)=0,  Ix|=R,
(15)

cu
ulx) =6 22 (x)

0, lxlsz‘

For radial solutions, (14)-(15) is equivalent to

W) =" ) ), Ri<r<Ry(16)
w(Ry) ~ B 5 (R) =0
VU(Rz)‘fsg‘(Rz):O-
n
Letting s= — [ (1/tY 1) dt, v(s) = u(r(s)), m= —[R (1/1" ') dt, it is seen

that (16)-(17) is equivalent to

v"(8) + r*¥ = Yg(r(5)) f(v(s)) =0, m<s<Q (18)

{aw(m) + BRI "M (m)=0

y0(0) — SR Mv'(0)=0. (19)
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Now, let ¢ = (m — s)/m, z(1) = v(s), so that (18)-(19) is then equivalent to

—z"(t) = h(t) f(z(1)), O<t<l (20)
az(0)—f R;n z'(0)=0

N (21)
yz(1)+6R2 Z/(1)=0,
m

where A(t) = m’r*™  D[m(1 — )] g[r(m(1 —1))].
Let G* denote the Green’s function of —z"(1)=0, 0<r< 1, subject to
boundary condition (21). Thus from (4), we may define

1 -1
,;*=(f0 G*(s,s)ds)

B 6(myBR, =~ + m*ay + mo R}~ ")
T 60B(R,Ry) TV + 3myBRIN + mPuy + 3ma SR

Applying Theorem 3 to (20) and (21), we immediately have

THEOREM 5. The BVP (14) and (15) has at least two positive radial
solutions, provided that
(1) lim, o+ (f(u)/u)= oo, lim,_, . (f(#)/u)= o, and
(2) there is a p>0 such that for all re [R,, R,] and 0<u<p,

m?r*™=Ug(r) f(u) <n*p.

As a special case of (14) and (15), consider

aumslabfin,  Ri<is <k, 22)

u(x)=0 on |x|=R, and |x|=R,.

Since in this special situation n*=6, we have as a consequence of
Theorem 35,

COROLLARY 6. The BVP (22) has at least two positive radial solutions,
provided that

(1) lim, Lo+ (f(u)/u)=co, lim, _, . f(u)/u)= o0, and
(2) there is a p>O0 such that for all re [R,, R,] and 0<u<p

RY — RM\2
i B

s <6 (B
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