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Abstract. This paper is concerned with the traveling wave solutions of a

reaction-diffusion equation with state-dependent delay. When the birth func-
tion is monotone, the existence and nonexistence of monotone traveling wave

solutions are established. When the birth function is not monotone, the mini-

mal wave speed of nontrivial traveling wave solutions is obtained. The results
are proved by the construction of upper and lower solutions and application of

the fixed point theorem.

1. Introduction. Differential equations with state-dependent delay are useful to
describe population dynamics in which the amount of food available per biomass
for a fixed food supply is a function of the total consumer biomass [1]. Intensive
research efforts have been devoted to understanding the dynamics of differential
equations with state-dependent delay. Andrewartha and Birch [2, pp. 370] studied
a differential equation with state-dependent in which the duration of larval devel-
opment of flies is a nonlinear increasing function of larval density. There is a wealth
of literature on the research and we refer to Arino et al. [3], Cooke and Huang [4],
Hartung et al. [6], Hu et al. [7], Magal and Arino [12], Mallet-Paret and Nuss-
baum [13], Walther [17] and the references cited therein. Despite that the dynamics
of functional differential equations has been widely studied, the spatial-temporal
patterns of differential equation with state-dependent delay are hardly understood.

In this paper, we consider the existence and nonexistence of traveling wave solu-
tions of the following reaction-diffusion equation with state-dependent delay

ut(x, t) = uxx(x, t)− du(x, t) + b(u(x, t− τ(u(x, t)))), (1)
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where x ∈ R, t > 0. In population dynamics, d > 0 is the death rate and b : [0,∞)→
[0,∞) is the birth function satisfying

(B): b(0) = 0, b(K) = K for some positive constant K > 0, and b(u) > du, u ∈
(0,K) while 0 < b(u) < du, u > K,

which will be imposed throughout this paper. In this model, time delay is not a
constant and τ : [0,∞)→ [0,∞) satisfies the following assumptions:

(A1): τ(u) is C1 for u ∈ [0,∞);
(A2): 0 ≤ τ ′(u) < 1, u ∈ [0,∞);
(A3): 0 ≤ m = τ(0) ≤ limu→∞ τ(u) = M <∞.
To continue our discussion, we first present the following definition.

Definition 1.1. A traveling wave solution of (1) is a special entire solution defined
for all x, t ∈ R and taking the following form

u(x, t) = φ(ξ), ξ = x+ ct ∈ R,

where c > 0 is the wave speed and φ ∈ C2(R,R) is the wave profile. In particular,
if φ(ξ) is monotone increasing, then it is a traveling wavefront.

By the above definition, φ and c must satisfy the following functional differential
equation of second order

φ′′(ξ)− cφ′(ξ)− dφ(ξ) + b(φ(ξ − cτ(φ(ξ)))) = 0, ξ ∈ R. (2)

In particular, to model precise transition processes in evolutionary systems by trav-
eling wave solutions, we also consider the following asymptotic boundary conditions

lim
ξ→−∞

φ(ξ) = 0, lim
ξ→+∞

φ(ξ) = K (3)

or a weaker version

lim
ξ→−∞

φ(ξ) = 0, lim inf
ξ→+∞

φ(ξ) > 0. (4)

When τ ′(u) = 0, the traveling wave solutions of (1) have been widely studied
since Schaaf [14]. For monotone b(u) with τ ′(u) = 0, comparison principle is ad-
missible, the existence and nonexistence of monotone traveling wave solutions can
be studied by monotone iteration, fixed point theorem and monotone semiflows,
see Liang and Zhao [8], Ma [10], Wang et al. [19], Wu and Zou [20]. If b(u) is
locally monotone and τ ′(u) = 0 holds, then the traveling wave solutions of (1) can
be studied by constructing auxiliary monotone equations, see Fang and Zhao [5],
Ma [11], Wang [18].

However, when τ(u) is not a constant, because τ(u) is nondecreasing, the com-
parison principle in (1) does not hold even if b(u) is monotone increasing. Therefore,
the study of traveling wave solutions of (1) needs some new techniques. In this pa-
per, similar to that in Wu and Zou [20], we first introduce an integral operator
to study the existence of traveling wave solutions. Based on some estimations, we
confirm the comparison principle on a proper subset of the space of continuous
functions if b(u) is monotone. Then the existence of (2)-(3) is proved by combining
Schauder’s fixed point theorem with upper and lower solutions if the wave speed is
larger than a threshold c∗ defined later. When the wave speed is c∗, we establish
the existence of (2)-(3) by passing to a limit. If the wave speed is less than c∗, the
nonexistence of (2)-(3) is confirmed. Therefore, c∗ is the minimal wave speed of
(2)-(3).
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If b(u) is not monotone, similar to Ma [11], we introduce two auxiliary monotone
equations to confirm the existence of (2) with (4) for c > c∗. If c = c∗, the existence
of nontrivial solutions of (2) is also proved by passing to a limit function. When
c < c∗, we obtain an auxiliary equation with fixed time delay by (4). Applying
the theory of asymptotic spreading, we establish the nonexistence of traveling wave
solutions.

2. Monotone birth function. In this section, we investigate the existence of
traveling wavefronts of (1), namely, existence of monotone solutions of (2)-(3), if
b : [0,∞)→ [0,∞) satisfies the following assumptions:

(B1): b(u) is C1 for u ∈ [0,K];
(B2): b′(0) > d and b(u) < b′(0)u, u ∈ [0,K];
(B3): 0 ≤ b′(u) ≤ b′(0), u ∈ [0,K];
(B4): 0 ≤ b′(0)u− b(u) < Lu2 for u ∈ [0,K] and some L > 0.

It is easy to see that if b(u) = pue−u, then (B1)-(B4) hold when 1 < p/d ≤ e.
In particular, (B1)-(B4) will be imposed throughout this section without further
illustration. Furthermore, we also denote

T = sup
u∈[0,K]

τ ′(u).

2.1. Some estimations. Let β > d hold and define H : C[0,K] → C by

H(φ)(ξ) = βφ(ξ)− dφ(ξ) + b(φ(ξ − cτ(φ(ξ)))). (5)

Further define an operator F : C[0,K] → C by

F (φ)(ξ) =
1

γ2(c)− γ1(c)

[∫ ξ

−∞
eγ1(c)(ξ−s) +

∫ ∞
ξ

eγ2(c)(ξ−s)

]
H(φ)(s)ds, (6)

where

γ1(c) =
c−

√
c2 + 4β

2
, γ2(c) =

c+
√
c2 + 4β

2
.

It is clear that a fixed point of F is a solution of (2), and a solution of (2) is a
fixed point of F. Therefore, to study the existence of solutions of (2), it suffices to
investigate the existence of fixed points of F.

Lemma 2.1. If φ(ξ) ∈ C[0,K], then 0 ≤ H(φ)(ξ) ≤ βK.

Lemma 2.2. Assume that c > 0 is fixed and

4β ≥ (1 + b′(0)KT )2c2 + 4d.

If φ(ξ) ∈ C[0,K], then |c(F (φ))′(ξ)| < βK
1+b′(0)KT .

Proof. By the definition of F, we have

c

∣∣∣∣ ddξF (φ)(ξ)

∣∣∣∣
=c

∣∣∣∣∣ 1

γ2(c)− γ1(c)

[
γ1(c)

∫ ξ

−∞
eγ1(c)(ξ−s) + γ2(c)

∫ ∞
ξ

eγ2(c)(ξ−s)

]
H(φ)(s)ds

∣∣∣∣∣
<cmax

{∣∣∣∣ γ2(c)

γ2(c)− γ1(c)

∫ ∞
ξ

eγ2(c)(ξ−s)H(φ)(s)ds

∣∣∣∣ ,
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γ2(c)− γ1(c)

∫ ξ

−∞
eγ1(c)(ξ−s)H(φ)(s)ds

∣∣∣∣∣
}
≤ cβK

γ2(c)− γ1(c)
=

βcK√
c2 + 4β

<
βK

1 + b′(0)KT
.

The proof is complete.

Lemma 2.3. Assume that c > 0 is fixed. If

β ≥ d(1 + b′(0)KT ) +
(1 + b′(0)KT )2c2

4
,

then

βφ(ξ)− dφ(ξ) + b(φ(ξ)− cτ(φ(ξ)))

is monotone nondecreasing in φ(ξ) ∈ C[0,K] provided that

c|φ(ξ1)− φ(ξ2)| ≤ βK

1 + b′(0)KT
|ξ1 − ξ2|, ξ1, ξ2 ∈ R.

Proof. Let φ1(ξ), φ2(ξ) satisfy φ1(ξ) ≥ φ2(ξ) and

c|φ1(ξ1)− φ1(ξ2)| ≤ βK

1 + b′(0)KT
|ξ1 − ξ2|, ξ1, ξ2 ∈ R,

c|φ2(ξ1)− φ2(ξ2)| ≤ βK

1 + b′(0)KT
|ξ1 − ξ2|, ξ1, ξ2 ∈ R.

By (B3), we have

b(φ1(ξ − cτ(φ1(ξ)))) ≥ b(φ2(ξ − cτ(φ1(ξ))))

and

b(φ1(ξ − cτ(φ1(ξ))))− b(φ2(ξ − cτ(φ2(ξ))))

=b(φ1(ξ − cτ(φ1(ξ))))− b(φ2(ξ − cτ(φ1(ξ))))

+ b(φ2(ξ − cτ(φ1(ξ))))− b(φ2(ξ − cτ(φ2(ξ))))

≥b(φ2(ξ − cτ(φ1(ξ))))− b(φ2(ξ − cτ(φ2(ξ))))

≥− b′(0) |φ2(ξ − cτ(φ1(ξ)))− φ2(ξ − cτ(φ2(ξ)))|

≥ − b′(0)Kβ

1 + b′(0)KT
|τ(φ1(ξ))− τ(φ2(ξ))|

≥ − b′(0)KTβ

1 + b′(0)KT
(φ1(ξ)− φ2(ξ)) .

Then the result follows from the definition of β. The proof is complete.

Lemma 2.4. Assume that c > 0 is fixed. If

β ≥ d(1 + b′(0)KT ) +
(1 + b′(0)KT )2c2

4
,

then

βφ(ξ)− dφ(ξ) + b(φ(ξ)− cτ(φ(ξ)))

is monotone nondecreasing in ξ provided that φ(ξ) ∈ C[0,K] is monotone nonde-
creasing in ξ ∈ R and

c|φ(ξ1)− φ(ξ2)| ≤ βK

1 + b′(0)KT
|ξ1 − ξ2|, ξ1, ξ2 ∈ R.
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Proof. If φ(ξ) ∈ C[0,K] is monotone nondecreasing in ξ ∈ R, then

φ(ξ1)− φ(ξ2) ≥ 0

for any ξ1 ≥ ξ2. From the monotonicity of b, we further have

b(φ(ξ1 − cτ(φ(ξ1)))) ≥ b(φ(ξ2 − cτ(φ(ξ1))))

and

b(φ(ξ1 − cτ(φ(ξ1))))− b(φ(ξ2 − cτ(φ(ξ2))))

=b(φ(ξ1 − cτ(φ(ξ1))))− b(φ(ξ2 − cτ(φ(ξ1))))

+ b(φ(ξ2 − cτ(φ(ξ1))))− b(φ(ξ2 − cτ(φ(ξ2))))

≥b(φ(ξ2 − cτ(φ(ξ1))))− b(φ(ξ2 − cτ(φ(ξ2))))

≥− b′(0) |φ(ξ2 − cτ(φ(ξ1)))− φ(ξ2 − cτ(φ(ξ2)))|

≥ − b′(0)Kβ

1 + b′(0)KT
|τ(φ(ξ1))− τ(φ(ξ2))|

≥ − b′(0)KTβ

1 + b′(0)KT
(φ(ξ1)− φ(ξ2)) .

Then the result is clear by the definition of β. The proof is complete.

2.2. Upper and lower solutions. To investigate the existence of (2)-(3), we will
use the upper and lower solutions defined as follows.

Definition 2.5. A continuous function φ(ξ) ∈ C[0,K](R,R) is an upper solution
of (2) if there exist constants Ti, i = 1, · · · , l, such that φ′′(ξ), φ′(ξ) exist and are
bounded for all ξ ∈ R\{Ti : i = 1, · · · , l} and satisfy

φ
′′
(ξ)− cφ′(ξ)− dφ(ξ) + b(φ(ξ − cτ(φ(ξ)))) ≤ 0, ξ ∈ R\{Ti : i = 1, · · · , l}. (7)

A lower solution can be similarly defined by inversing the inequality.

To construct upper and lower solutions, we define some constants. For λ ≥ 0, c ≥
0, we first define

Λ(λ, c) = λ2 − cλ− d+ b′(0)e−λm.

Lemma 2.6. There exists c∗ > 0 such that Λ(λ, c) > 0 if c ∈ [0, c∗), λ ≥ 0 while
Λ(λ, c) = 0 has two positive distinct real roots λ1(c) < λ2(c) if c > c∗. Moreover,
Λ(λ, c) also satisfies

Λ(λ, c)

{
< 0, λ ∈ (λ1(c), λ2(c)),

> 0, λ ∈ [0, λ1(c)) ∪ (λ2(c),∞).

Lemma 2.7. There exist L1, L2 > 0 such that

cλ1(c) < L1, λ1(c) < L2, c > c∗.

Proof. Obviously, we have

Λ(2(b′(0)− d)/c, c) < 0

if c > 0 is large. Then we complete the proof.

We now consider the existence of traveling wave solutions if c > c∗ is a constant
and define continuous functions as follows

φ(ξ) = min{eλ1(c)ξ,K}, φ(ξ) = min{eλ1(c)ξ − qeηλ1(c)ξ, 0}, (8)
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where

1 < η < min{2, λ2(c)

λ1(c)
}, q =

3L2b
′(0) + L

−Λ(ηλ1(c), c)
+ 1 +K > 1 +K.

Lemma 2.8. For any c > c∗, there exists β1 > 0 such that

c|φ(ξ1)− φ(ξ2)| ≤ βK

1 + b′(0)KT
|ξ1 − ξ2|,

c|φ(ξ1)− φ(ξ2)| ≤ βK

1 + b′(0)KT
|ξ1 − ξ2|

for any β ≥ β1, c > c∗, ξ1, ξ2 ∈ R.

Proof. Let L1 be defined by Lemma 2.7. If φ(ξ) = eλ1(c) < K, then

cφ
′
(ξ) = cλ1(c)eλ1(c)ξ < L1K.

When φ(ξ) = K < eλ1(c), then cφ
′
(ξ) = 0 and

c|φ(ξ1)− φ(ξ2)| ≤ 3L1K|ξ1 − ξ2|, ξ1, ξ2 ∈ R.

If φ(ξ) = eλ1(c) − qeηλ1(c) > 0, then∣∣cφ′(ξ)∣∣ =c
∣∣∣λ1(c)eλ1(c)ξ − qηλ1(c)eηλ1(c)ξ

∣∣∣ ≤ c ∣∣∣λ1(c)eλ1(c)ξ
∣∣∣+ c

∣∣∣qηλ1(c)eηλ1(c)ξ
∣∣∣

<3L1K,

which implies that

c|φ(ξ1)− φ(ξ2)| ≤ 3L1K|ξ1 − ξ2|, ξ1, ξ2 ∈ R.
Let

3L1K =
β1K

1 + b′(0)KT
.

Then the proof is complete.

Remark 1. From the above proofs, we can fix β > d such that Lemmas 2.1-2.8
hold for each fixed c > c∗.

Lemma 2.9. If φ(ξ) and φ(ξ) are defined by (8), then φ(ξ) is an upper solution of
(2) while φ(ξ) is a lower solution of (2).

Proof. If φ(ξ) = eλ1(c)ξ < K, then

φ
′′
(ξ)− cφ′(ξ)− dφ(ξ) + b(φ(ξ − cτ(φ(ξ))))

≤φ′′(ξ)− cφ′(ξ)− dφ(ξ) + b′(0)φ(ξ − cτ(φ(ξ)))

≤φ′′(ξ)− cφ′(ξ)− dφ(ξ) + b′(0)φ(ξ − cm)

=eλ1(c)ξ∆(λ1(c), c)

=0.

When φ(ξ) = K < eλ1(c)ξ, then φ(ξ − cτ(φ(ξ))) ≤ K and

φ
′′
(ξ)− cφ′(ξ)− dφ(ξ) + b(φ(ξ − cτ(φ(ξ)))) ≤ −dK + b(K) = 0.

If φ(ξ) = 0 > eλ1(c)ξ − qeηλ1(c)ξ, then

φ′′(ξ)− cφ′(ξ)− dφ(ξ) + b(φ(ξ − cτ(φ(ξ))))

=φ′′(ξ)− cφ′(ξ)− dφ(ξ) + b(φ(ξ − cm)) ≥ 0.
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If φ(ξ) = eλ1(c)ξ − qeηλ1(c)ξ > 0, then∣∣φ′(ξ)∣∣ =
∣∣∣λ1(c)eλ1(c)ξ − qηλ1(c)eηλ1(c)ξ

∣∣∣ < λ1(c)eλ1(c)ξ + ηλ1(c)qeηλ1(c)ξ

<3λ1(c)eλ1(c)ξ

and

φ′′(ξ)− cφ′(ξ)− dφ(ξ) + b(φ(ξ − cτ(φ(ξ))))

≥φ′′(ξ)− cφ′(ξ)− dφ(ξ) + b′(0)φ(ξ − cτ(φ(ξ)))− Lφ2(ξ − cτ(φ(ξ)))

=φ′′(ξ)− cφ′(ξ)− dφ(ξ) + b′(0)φ(ξ − cm)

+ b′(0)
[
φ(ξ − cτ(φ(ξ)))− φ(ξ − cm)

]
− Lφ2(ξ − cτ(φ(ξ)))

≥−∆(ηλ1(c), c)qeηλ1(c)ξ − 3λ1(c)b′(0)e2λ1(c)ξ − Le2λ1(c)ξ

≥−∆(ηλ1(c), c)qeηλ1(c)ξ − (3L2b
′(0) + L)e2λ1(c)ξ

>0

by the definition of q. The proof is complete.

2.3. Existence of monotone traveling wave solutions: c > c∗. In this part,
we assume that c > c∗ is fixed and prove the existence of fixed points of F by
Schauder’s fixed point theorem. Moreover, β > 0 is a fixed constant satisfying
Remark 1. Let µ ∈ (0,−γ1(c)) be a constant and

Bµ (R,R) =

{
φ ∈ C (R,R) : sup

ξ∈R
|φ(t)| e−µ|ξ| <∞

}
and

|φ|µ = sup
ξ∈R
|φ(ξ)| e−µ|ξ| for φ ∈ Bµ (R,R) .

Then it is easy to show that
(
Bµ (R,R) , |·|µ

)
is a Banach space.

Define

Γ
(
φ, φ

)
=

φ(ξ) ∈ Bµ (R,R) :

(i) φ(ξ) ≤ φ(ξ) ≤ φ(ξ);
(ii) φ(ξ) is nondecreasing;

(iii) c|φ(ξ1)− φ(ξ2)| ≤ βK
1+b′(0)KT |ξ1 − ξ2|, ξ1, ξ2 ∈ R

 .

It follows from the above results that Γ is nonempty and convex. Moreover, we
can verify that Γ is closed and bounded with respect to the norm | · |µ.

Lemma 2.10. F admits the following properties.

(1): If φ(ξ) ∈ Γ, then F (φ)(ξ) is monotone increasing.
(2): If φ1(ξ), φ2(ξ) ∈ Γ with φ1(ξ) ≤ φ2(ξ), then F (φ1)(ξ) ≤ F (φ2)(ξ).

(3): If φ(ξ) ∈ Γ, then c|(F (φ)(ξ))′| < βK
1+b′(0)KT .

Lemma 2.10 is a consequence of Lemmas 2.1-2.3, and we omit the detailed proof
here.

Lemma 2.11. F : Γ→ Γ.
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Proof. From Lemma 2.10, it suffices to verify that

φ(ξ) ≤ F (φ)(ξ) ≤ F (φ)(ξ) ≤ φ(ξ), ξ ∈ R.
By the definition of upper solution, we see that

F
(
φ
)

(ξ)

=
1

γ2(c)− γ1(c)

[∫ ξ

−∞
eγ1(c)(ξ−s) +

∫ ∞
ξ

eγ2(c)(ξ−s)

]
H
(
φ
)

(s)ds

≤ 1

γ2(c)− γ1(c)

[∫ ξ

−∞
eγ1(c)(ξ−s) +

∫ ∞
ξ

eγ2(c)(ξ−s)

](
βφ(s) + cφ

′
(s)− φ′′(s)

)
ds

=φ(ξ)−
min

{
λ1(c)Ke

γ2(c)
(
ξ− lnK

λ1(c)

)
, λ1(c)Ke

γ1(c)
(
ξ− lnK

λ1(c)

)}
γ2(c)− γ1(c)

≤φ(ξ), ξ 6= lnK

λ1(c)
.

Then the continuity implies that

φ(ξ) ≥ F (φ)(ξ), ξ ∈ R.
In a similar way, we can prove that

F (φ)(ξ) ≥ φ(ξ), ξ ∈ R.
The proof is complete.

Lemma 2.12. F : Γ→ Γ is complete continuous in the sense of | · |µ.

Proof. If φ1, φ2 ∈ Γ, then

|b(φ1(ξ − cτ(φ1(ξ))))− b(φ2(ξ − cτ(φ2(ξ))))|
≤ |b(φ1(ξ − cτ(φ1(ξ))))− b(φ2(ξ − cτ(φ1(ξ))))|

+ |b(φ2(ξ − cτ(φ1(ξ))))− b(φ2(ξ − cτ(φ2(ξ))))|
≤b′(0) |φ2(ξ − cτ(φ1(ξ)))− φ1(ξ − cτ(φ1(ξ)))|+ b′(0)βKcT |φ2(ξ)− φ1(ξ)|

and so

|F (φ1)(ξ)− F (φ2)(ξ)|

≤ 1

γ2(c)− γ1(c)

[∫ ξ

−∞
eγ1(c)(ξ−s)ds+

∫ ∞
ξ

eγ2(c)(ξ−s)

]
|H(φ1)(s)−H(φ2)(s)| ds

≤ 1

γ2(c)− γ1(c)

[∫ ξ

−∞
eγ1(c)(ξ−s)ds+

∫ ∞
ξ

eγ2(c)(ξ−s)

]
[(b′(0)βKcT + β − d) |φ2(s)− φ1(s)|+
b′(0) |φ2(s− cτ(φ1(s)))− φ1(s− cτ(φ1(s)))|] ds.

Applying these estimations, we have

|F (φ1)(ξ)− F (φ2)(ξ)| e−µ|ξ|

≤ 1

γ2(c)− γ1(c)

[∫ ξ

−∞
e(γ1(c)+µ)(ξ−s) +

∫ ∞
ξ

e(γ2(c)−µ)(ξ−s)

]
(b′(0)βKcT + β − d) |φ2(s)− φ1(s)| e−µ|s|ds
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+
eµcMb′(0)

γ2(c)− γ1(c)

[∫ ξ

−∞
e(γ1(c)+µ)(ξ−s)ds+

∫ ∞
ξ

e(γ2(c)−µ)(ξ−s)

]
|φ2(s− cτ(φ1(s)))− φ1(s− cτ(φ1(s)))| e−µ|s−cτ(φ1(s))|ds

≤b
′(0)βKcT + β − d+ eµcMb′(0)

γ2(c)− γ1(c)

[
1

γ2(c)− µ
− 1

γ1(c) + µ

]
|φ2 − φ1|µ ,

which implies the continuity in the sense of | · |µ.
Due to Lemma 2.1, it is easy to prove the compactness and we omit the details.

The proof is complete.

We now state the main conclusion of this part.

Theorem 2.13. For every c > c∗, (2) with (3) has a monotone solution.

Proof. Applying Schauder’s fixed point theorem, it is not hard to show the existence
of fixed point of F in Γ. Denote the fixed point by φ(ξ), then the monotonicity
implies the existence of limξ→−∞ φ(ξ), limξ→+∞ φ(ξ). Moreover, limξ→−∞ φ(ξ) = 0
is obtained by the asymptotic behavior of upper and lower solutions. At the same
time, the definition of φ(ξ) leads to

0 < lim
ξ→+∞

φ(ξ) ≤ K.

Then it is easy to verify that limξ→+∞ φ(ξ) = K. The proof is complete.

2.4. Existence of monotone traveling wavefronts: c = c∗. In this part, we
shall establish the existence of monotone solutions of (2)-(3) if c = c∗. We first
present the main results as follows.

Theorem 2.14. If c = c∗, then (2) with (3) has a monotone solution.

Proof. Let {cn}n∈N be a decreasing sequence satisfying

cn → c∗, n→∞.

Note that {cn}n∈N is bounded, we can select a β > 0 such that Lemmas 2.2-2.4
hold for all cn, n ∈ N. In particular, we have

γ1(cn)→ γ1(c∗), γ2(cn)→ γ2(c∗), n→∞.

Then Theorem 2.13 implies that for each cn, F with c = cn has a fixed point φn(ξ),
where φn(ξ) is monotone increasing. Because a traveling wavefront is invariant in
the sense of phase shift, we assume that

φn(0) = K/2, n ∈ N. (9)

From Lemma 2.2, φn(ξ) is equicontinuous and uniformly bounded for all n ∈
N, ξ ∈ R. By Ascoli-Arzela Lemma and a standard nested subsequence argument, it
follows that there exists a subsequence of {cn}n∈N, still denoted by {cn}n∈N, such
that the corresponding {φn(ξ)}n∈N converges uniformly on every bounded interval
of ξ ∈ R, and hence pointwise for ξ ∈ R to a function φ∗(ξ). Moreover, it is evident
that

min{eγ1(cn)(ξ−s), eγ1(cn)(ξ−s)} → min{eγ1(c
∗)(ξ−s), eγ1(c

∗)(ξ−s)}, n→∞

and the convergence is uniform in ξ, s ∈ R.
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Let n→∞ in F, then the dominated convergence theorem implies that

F (φ∗)(ξ) =
1

γ2(c∗)− γ1(c∗)

[∫ ξ

−∞
eγ1(c

∗)(ξ−s) +

∫ ∞
ξ

eγ2(c
∗)(ξ−s)

]
H(φ∗)(s)ds

by the uniform continuity of b(u), τ(u). Therefore, φ∗(ξ) is a fixed point of F with
c = c∗, and a bounded solution of (2) with c = c∗. In particular, Lemma 2.2 tells
us that φ∗(ξ) is uniformly continuous.

By (9), we see that φ∗(0) = K/2. Moreover, the monotonicity and boundedness
of φn(ξ) indicate that φ∗(ξ) is monotone increasing and bounded for ξ ∈ R, which
further implies that limξ→±∞ φ∗(ξ) exist. Denote

lim
ξ→±∞

φ∗(ξ) = φ±.

Then the uniform continuity and the dominated convergence theorem in F lead to

φ± =
βφ± − dφ± + b(φ±)

β
,

and so dφ± = b(φ±). Again by (9), we have

0 ≤ φ− ≤ K/2 ≤ φ+ ≤ K,
which indicates that

φ− = 0, φ+ = K

by (B). The proof is complete.

2.5. Nonexistence of monotone traveling wavefronts: c < c∗. In this section,
we investigate the nonexistence of traveling wavefronts for c < c∗. We first consider
the following initial value problem{

ut(x, t) = uxx(x, t)−D1u(x, t) +D2u(x, t−m)−D3u
2(x, t),

u(x, s) = ψ(x, s),
(10)

in which x ∈ R, t > 0, s ∈ [−m, 0], D1, D2, D3 are positive constants satisfying
D2 > D1, ψ(x, s) is uniformly continuous in x ∈ R, s ∈ [−m, 0]. By Smith and Zhao
[15], Thieme and Zhao [16], we have the following three lemmas.

Lemma 2.15. If ψ(x, s) satisfies

0 ≤ ψ(x, s) ≤ D2 −D1

D3
, x ∈ R, s ∈ [−m, 0],

then (10) has a unique mild solution u(x, t) defined for all x ∈ R, t > 0. Moreover,
u(x, t) is continuous in x ∈ R, t > 0, and satisfies

0 ≤ u(x, t) ≤ D2 −D1

D3
, x ∈ R, t > 0.

Lemma 2.16. Assume that

0 ≤ w(x, t) ≤ D2 −D1

D3
, x ∈ R, t ≥ −m,

and satisfies{
wt(x, t) ≥ (≤)wxx(x, t)−D1w(x, t) +D2w(x, t−m)−D3w

2(x, t),

w(x, s) ≥ (≤)ψ(x, s)
(11)

for x ∈ R, t > 0, s ∈ [−m, 0]. Then w(x, t) ≥ (≤)u(x, t), x ∈ R, t > 0.
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Lemma 2.17. Assume that c > 0 such that

λ2 − cλ−D1 +D2e
−λcm > 0, λ ≥ 0.

If ψ(x, s) satisfies

0 ≤ ψ(x, s) ≤ D2 −D1

D3
, x ∈ R, s ∈ [−m, 0], ψ(0, 0) > 0,

then

lim inf
t→∞

inf
|x|<ct

u(x, t) = lim sup
t→∞

sup
|x|<ct

u(x, t) =
D2 −D1

D3
.

Theorem 2.18. If c < c∗, then (2) with (3) does not have a monotone solution.

Proof. Were the statement false, then (2) with (3) has a monotone solution φ(ξ)
for some c1 < c∗. Obviously, φ(ξ) satisfies

lim
ξ→−∞

φ(ξ) = lim
ξ→−∞

φ′(ξ) = 0. (12)

In particular, we can select ε > 0 such that

b′(0) > d+ 2ε

and

λ2 − cλ− (d+ ε) + b′(0)e−λcm > 0

for all λ > 0, 3c ≤ 2c∗ + c1. We first prove that there exists N > 0 such that

b(φ(ξ − c1τ(φ(ξ)))) ≥ −εφ(ξ) + b′(0)φ(ξ − c1m)−Nφ2(ξ), ξ ∈ R. (13)

In fact, (B1)-(B4) and the monotonicity of φ(ξ) imply that

b(φ(ξ − c1τ(φ(ξ))))

≥b′(0)φ(ξ − c1τ(φ(ξ)))− Lφ2(ξ − c1τ(φ(ξ)))

≥b′(0)φ(ξ − c1τ(φ(ξ)))− Lφ2(ξ)

=b′(0)φ(ξ − c1m)− Lφ2(ξ) + b′(0) [φ(ξ − c1τ(φ(ξ)))− φ(ξ − c1τ(0))] .

Due to (12), there exists ξ1 ∈ R such that

b′(0) [φ(ξ − c1τ(φ(ξ)))− φ(ξ − c1τ(0))] ≥ −εφ(ξ)

for all ξ ≤ ξ1 + c1M. Therefore, we have

b(φ(ξ − c1τ(φ(ξ))) ≥ −εφ(ξ) + b′(0)φ(ξ − c1m)− Lφ2(ξ)

for all ξ ≤ ξ1 + c1M. If ξ ≥ ξ1 + c1M, then

b′(0) [φ(ξ − c1τ(φ(ξ)))− φ(ξ − c1τ(0))] ≥ −b′(0)φ(ξ − c1τ(0))

≥− b′(0)φ(ξ1) =
−b′(0)

φ(ξ1)
φ2(ξ1) ≥ −b

′(0)

φ(ξ1)
φ2(ξ),

which indicates (13).
From (13), u(x, t) = φ(x+ c1t) satisfies{

ut(x, t) ≥ uxx(x, t)− (d+ ε)u(x, t) + b′(0)u(x, t−m)−Nu2(x, t),

u(x, s) = φ(x+ c1s),
(14)

for x ∈ R, t > 0, s ∈ [−m, 0]. By Lemmas 2.15-2.17, we see that

lim inf
t→∞

u(−(c1 + c∗)t/2, t) ≥ b′(0)− (d+ ε)

N
> 0,
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which implies a contradiction because of

ξ = −(c1 + c∗)t/2 + c1t→ −∞, t→∞.

The proof is complete.

3. Nonmonotone birth function. In this section, we investigate the existence
and nonexistence of positive traveling wave solutions of (1), namely, existence and
nonexistence of positive solutions of (2) and (4), if b : [0,∞)→ [0,∞) satisfies the
following assumptions:

(C1): b(u) is C1 for u ∈ [0,∞);
(C2): b′(0) > d and b(u) < b′(0)u, u ∈ [0,∞);
(C3): 0 ≤ b′(0)u− b(u) < Lu2, |b′(u)| ≤ b′(0) for u ∈ [0,K] and some L > 0.

Clearly, if b(u) = pue−u, then (C1)-(C3) hold when p > d. In particular, (C1)-(C3)
will be imposed throughout this section without further illustration. For conve-
nience, we define

K = max
u∈[0,K]

b(u), T = sup
u∈[0,K]

τ ′(u).

We first state the nonexistence of traveling wave solutions.

Theorem 3.1. If c < c∗, then (2) does not have a positive solution φ(ξ) satisfying
(4) and 0 < φ(ξ) ≤ K.

Proof. Were the statement false, then for some c1 < c∗, (2) has a positive solution
φ(ξ) satisfying (4). Then φ(ξ) is a fixed point of F and it is evident that

lim
ξ→−∞

φ′(ξ) = 0.

Similar to the proof of Theorem 2.18, we can select ε > 0 such that

b′(0) > d+ 2ε

and

λ2 − cλ− (d+ ε) + b′(0)e−λcm > 0

for all λ > 0, 3c ≤ 2c∗ + c1.
Then there exists N > 0 such that

b(φ(ξ − c1τ(φ(ξ)))) ≥ −εφ(ξ) + b′(0)φ(ξ − c1m)−Nφ2(ξ), ξ ∈ R,

although b(u) is not monotone. In fact, because φ′(ξ) → 0, ξ → −∞, then there
exists ξ2 such that

b(φ(ξ − c1τ(φ(ξ)))) ≥ b′(0)φ(ξ − c1m)− ε

2
φ(ξ), ξ < ξ2 + c1M.

If ξ ≥ ξ2 + c1M, then infξ≥ξ2+c1M φ(ξ) > 0 such that there exists N satisfying

Nφ2(ξ) ≥ N
(

inf
t≥ξ0+c1M

φ(t)

)2

≥ K ≥ b(φ(ξ − c1τ(φ(ξ)))), ξ ≥ ξ0 + c1M.

Similar to the proof of Theorem 2.18, we can verify the result.

Remark 2. Theorem 3.1 still holds if b(u), u ∈ [0,K] is monotone.
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For u ∈ [0,K], we define

b(u) = max
v∈[0,u]

b(v), b(u) = min
v∈[u,K]

b(v).

It is easy to show both b(u) and b(u) are monotone and continuous and there exists
k > 0 such that

0 < k ≤ K ≤ K
and

b(k) = dk, b(K) = dK.
Consider the following two equations

Vt(x, t) = Vxx(x, t)− dV (x, t) + b(V (x, t− τ(V (x, t)))), (15)

and

vt(x, t) = vxx(x, t)− dv(x, t) + b(v(x, t− τ(v(x, t)))), (16)

in which all the parameters are the same as those in (1). Then the existence and
nonexistence of monotone traveling wavefronts of (15) and (16) can be answered by
the conclusions in Section 2.

Theorem 3.2. If c > c∗, then (2) admits a positive solution satisfying (4).

Proof. For any fixed c > c∗, we define

φ(ξ) = min{eλ1(c)ξ,K}, φ(ξ) = ϕ(ξ), (17)

where λ1(c) is the same as that in Section 2, ϕ(ξ) is a monotone traveling wavefront
of (16) and satisfies

lim
ξ→−∞

ϕ(ξ)e−λ1(c)ξ = 1.

By the discussion in Section 2, we see that

φ(ξ) ≥ φ(ξ), ξ ∈ R.

Define

Γ∗
(
φ, φ

)
=

{
φ(ξ) ∈ Bµ (R,R) :

(i) φ(ξ) ≤ φ(ξ) ≤ φ(ξ);

(ii) c|φ(ξ1)− φ(ξ2)| ≤ βK
1+b′(0)KT |ξ1 − ξ2|, ξ1, ξ2 ∈ R

}
.

Similar to the discussion in Section 2, we can select β, µ such that

(P1): Γ∗ is nonempty, convex, bounded and closed;
(P2): F : Γ∗ → Γ∗;
(P3): F : Γ∗ → Γ∗ is complete continuous in the sense of decay norm | · |µ,

in which the definition of F is the same as those in Section 2. Then there exists
φ ∈ Γ∗ such that φ is a fixed point of F and satisfies

k ≤ lim inf
ξ→∞

φ(ξ) ≤ lim sup
ξ→∞

φ(ξ) ≤ K,

which implies (4). This completes the proof.

Theorem 3.3. If c = c∗, then (2) admits a nontrivial positive solution satisfying

k ≤ lim inf
ξ→+∞

φ(ξ) ≤ lim sup
ξ→+∞

φ(ξ) ≤ K. (18)
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Proof. Let δ ∈ (0, k/2) be a positive constant and {cn}n∈N be a decreasing sequence
satisfying

cn → c∗, n→∞.
Then Theorem 3.2 implies that for each cn, F with c = cn has a fixed point φn(ξ)
such that

φn(0) = δ, φn(ξ) ≥ δ, ξ ≥ 0, n ∈ N, (19)

then we can obtain the existence of φ∗(ξ) such that φ∗(ξ) is a positive solution of
(2) with c = c∗ by a discussion similar to that in Section 2.

Denote

lim inf
ξ→+∞

φ∗(ξ) = φ−(≥ δ > 0), lim sup
ξ→+∞

φ∗(ξ) = φ+(≥ δ > 0).

By the dominated convergence theorem in F, we see that

φ− ≥ βφ− − dφ− + b(φ−)

β

and

φ+ ≤ βφ+ − dφ+ + b(φ+)

β
.

Then (18) is true since

dφ− ≥ b(φ−), dφ+ ≤ b(φ+).

Because of (19) and φ∗(0) < 3φ−

4 , it is evident that φ∗(ξ) is not a constant. The
proof is complete.

Remark 3. Similar to those in [5, 11, 18], we can obtain some sufficient conditions
such that limξ→∞ φ(ξ) exists even if b is not monotone.

Unfortunately, we cannot prove the existence of limξ→−∞ φ(ξ) in Theorem 3.3.
However, under some additional assumptions, we can formulate the limit behavior
as follows.

Theorem 3.4. Assume that T ≥ 0 is small enough. If φ(ξ) is defined by Theorem
3.3, then limξ→−∞ φ(ξ) = 0.

Proof. Similar to Lemma 2.2, if we take

4β = (1 + b′(0)KT )2c∗2 + 4d,

then

|c∗φ′(ξ)| < βK

1 + b′(0)K
=: L3.

Therefore, we have

|b(φ(ξ − c∗τ(φ(ξ))))− b(φ(ξ − cm))| ≤ b′(0)L3T φ(ξ)

and so

−dφ(ξ) + b(φ(ξ − c∗τ(φ(ξ)))) ≥ −(d+ b′(0)L3T )φ(ξ) + b(φ(ξ − cm)).

If T > 0 such that

d+ b′(0)L3T < b′(0),

then there exists k ∈ (0, k] such that

(d+ b′(0)L3T )k = b(k).



TRAVELING WAVE SOLUTIONS OF A DELAYED EQUATION 333

Take 4δ = k in the proof of Theorem 3.3. If lim supξ→−∞ φ(ξ) > 0, then there
exist a strictly decreasing sequence {ξj} and a constant ε > 0 such that

ξj < 0, ξj → −∞, j →∞

and

2φ(ξ) > lim sup
ξ→−∞

φ(ξ), ξ ∈ [ξj − ε, ξj + ε], j ∈ N.

Note that u(x, t) = φ(ξ) is an upper solution of

ut(x, t) ≥ uxx(x, t)− (d+ b′(0)L3T )φ(ξ) + b(φ(ξ − cm)),

then the standard comparison principle and asymptotic spreading [16] imply that

4φ(ξj) > 3k,

and a contradiction occurs. The proof is complete.

Remark 4. The proof of Theorem 3.4 is similar to Lin and Ruan [9, Section 5.5].
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