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Abstract

Several insulin therapies are widely in clinical use with the basic strategy that mimics insulin secretion in
a normal glucose–insulin endocrine metabolic regulatory system. In this paper, we model the insulin ther-
apies using a delay differential equation model. We study the dynamics of the model both qualitatively and
quantitatively. The analytical results show the existence and uniqueness of a stable periodic solution that
corresponds to ultradian insulin secretion oscillations. Numerically we simulate the insulin administration
based on our model. The numerical simulation results are in agreement with findings of clinical studies.
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1. Introduction

Diabetes mellitus is a disease in which a patient’s plasma glucose concentration level mostly re-
mains above normal range [7,27]. In normal subjects, elevated glucose concentration caused by,
for example, meal ingestion, stimulates the secretion of insulin from b-cells in pancreas. Insulin
augments the glucose utilization by the cells that converts the glucose into energy [1,23,25]. If
one does not have any b-cell in his or her pancreas or one’s b-cells do not release insulin or enough
insulin to trigger and augment glucose uptake, he or she is likely to develop diabetes mellitus.

Diabetes mellitus is typically classified as type 1 diabetes, type 2 diabetes, and gestational dia-
betes. Type 1 diabetes is mainly due to the fact that the pancreas does not have any b-cells and
thus no insulin can be produced. Type 2 diabetes is mainly due to the disfunction of the glu-
cose–insulin regulatory system [7]. Extensive research work has been carried out in studying
how the glucose–insulin endocrine metabolic system works [3,4,8,19,23,25,32,36,37], how to detect
the onset of diabetes and prediabetes [5,10,24,29], what causes the dysfunction of the metabolic
system ([7,37] and references therein), and how to provide better treatments to diabetic patients
([11,28,35] and references therein).

Typical methods employed by the therapies include: (1) multiple daily insulin injection and
(2) subcutaneous insulin infusion, for example, through an insulin pump. The basic idea of
insulin therapy is to mimic the reaction of b-cells stimulated by elevated glucose concentration.
According to the studies of the glucose–insulin metabolic regulatory system for normal people,
self-sustained oscillatory insulin secretion occurs upon exogenous glucose infusion
[23,25,31,32,36].

For a healthy person, glucose is absorbed exogenously in daily life. The typical exogenous infu-
sion of glucose includes meal ingestion, oral glucose intake, constant enteral glucose absorption,
and etc. Elevated glucose concentration can trigger the b-cells in pancreas to secrete insulin.
Numerous in-vitro and in-vivo experiments have demonstrated that insulin is released from b-cells
in two oscillatory modes: pulsatile oscillation [30] and ultradian oscillation [31]. While the rapid
oscillation is believed to be caused by internal pacemakers, the ultradian oscillation is possibly
triggered by the fluctuating glucose concentration levels, although the real cause remains un-
known [23,25,30–32,36]. Insulin secreted from pancreas with pulsatile oscillation prevents the glu-
cose concentration level from becoming high accumulatively. In insulin therapies, such insulin, or
infused insulin for that purpose, is referred as basal insulin [28], while the insulin infused to mimic
the insulin secretion from pancreas in an ultradian oscillation manner is referred as bolus insulin
injection ([11,28] and references therein). Thus the task of insulin therapies is to mimic the insulin
secretion at these two time scales. Fig. 1.1 shows an effective insulin replacement pattern.

Insulin therapies are mostly introduced based on clinical experiences, although mathematical
models have been proposed for some specific situations [11]. In this paper, we propose a delay dif-
ferential equation (DDE) model to simulate the pancreatic insulin secretion with exogenous insu-
lin infusion upon the stimulation of elevated glucose concentration for type 1 diabetic patients.
We study the model analytically and numerically. The existence and stability of the periodic solu-
tions are established. We also investigate how the system behaves under periodic exogenous glu-
cose infusion and insulin infusion. Further, we study the feasibility and possibility of an
exogenous insulin infusion method that may restore the normal glucose–insulin metabolic system
in type 1 diabetic patients.
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2. Modeling insulin therapies

Type 1 diabetes occurs when the b-cells are exhausted and thus no insulin can be produced from
pancreas. In this case, the glucose in plasma can not be utilized timely and efficiently. Hypergly-
cemia can cause serious damage to all the organ systems of the body. For this reason, type 1 dia-
betic patients must take insulin in order to help the cells to utilize glucose and keep the glucose
concentration in its normal state.

Doran et al. [11] proposed a mathematical model for critically ill patients in intensive care units
and suggested a simple automated insulin infusion for controlling the rise and duration of blood
glucose excursion. The mathematical model is given as:

Ĝ0 ¼ �pGĜ� SIIðĜþ GBÞ þ PðtÞ;
Î 0 ¼ �nðÎ þ IBÞ þ uðtÞ=V I;

(
ð2:1Þ

where, Ĝ (mmol/L) is the concentration of the plasma glucose above basal level, GB (mmol/L).
Î (mU/L) is the concentration of the plasma insulin above basal level, IB (mU/L). u(t) (mU/
min) is the exogenous insulin infusion rate. P(t) (mmol/L/min) is the exogenous glucose input,
VI (L) is the volume of distribution, and n (min�1) is the rate constant associated with the inter-
stitial transfer of insulin to be utilized. pG (min�1) and SI (L/mU/min) are patient-specific param-
eters, where pG is the fractional clearance rate of plasma glucose at basal insulin, and SI measures
insulin sensitivity as defined in [6].

As the authors of [11] stated, additional model dynamics linking the two compartments in (2.1)
may be needed. Actually, the missing part can be filled with a delay parameter that reflects the
delayed insulin-dependent glucose utilization by cells, as this delay is a critical factor to ensure
the self-sustained ultradian oscillations of insulin secretion [25]. Observing another delayed effect,
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Fig. 1.1. An effective insulin replacement pattern (adapted from [28]).
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namely the hepatic glucose production, in the glucose–insulin regulatory system of normal people,
based on the model proposed by Li and Kuang [23] and Li et al. [25] for normal glucose–insulin
regulatory system, we propose the following generic model to simulate the dynamics of the insulin
therapies for type 1 diabetic patients:

G0 ¼ GinðtÞ � f2ðGðtÞÞ � f3ðGðtÞÞf4ðIðt� s3ÞÞ þ f5ðIðt� s2ÞÞ; ð2:2aÞ

I 0 ¼ I inðtÞ � diIðtÞ; ð2:2bÞ

with initial condition I(0) > 0, G(0) > 0, and I(t) � I(0) for t 2 [�max{s2, s3},0], s2,s3 > 0. The
solution for Eqs. (2.2a) and (2.2b) with the described initial conditions exists and is unique
(Kuang [21]).

The two major factors in the regulatory system model are glucose and insulin, denoting G(t)
and I(t) as glucose and insulin concentration at time t P 0, respectively. Iin(t) represents the exog-
enous insulin infusion rate. The term Gin(t) is glucose intake rate. The other source of glucose pro-
duction is the liver. When the plasma glucose concentration level drops, a-cells, also located in the
Langerhan’s islets in the pancreas, start to release another hormone, glucagon. Glucagon exerts
control over pivotal metabolic pathways in the liver and leads the liver to dispense glucose. We
denote by f5(I) the glucose production controlled by insulin concentration I. s2 > 0 stands for
the hepatic glucose production delay.

Glucose utilization also consists of two parts, namely, insulin-independent utilization and insu-
lin-dependent utilization. The insulin-independent glucose consumers are mainly the brain and
nerve cells. We denote this type of utilization by f2(G). The insulin-dependent glucose uptake is
due to muscle, fat and other tissues. Insulin receptors activate the signaling cascade for GLUT4
translocation. GLUT4 transporters lead glucose molecules into cells, e.g., adipose and muscle.
The cells then consume the glucose and convert it to energy. We denote f3(G)f4(I) as the insu-
lin-dependent glucose uptake. s3 > 0 stands for the time delay for insulin-dependent glucose uti-
lization by cells.

Engelborghs et al. [12] discussed a related model with the term af1(G), 0 6 a 6 1 to represent the
degree of insulin delivered by the pancreas of a normal subject into the circulation to maintain
blood glucose at its physiological level. a = 0 means that the pancreas completely does not pro-
duce insulin. By incorporating appropriate terms, our insulin therapy model (2.2) could be ad-
justed to predicate the glucose level for the patients whose pancreas does not produce enough
insulin to properly control blood sugar levels. Type 1 diabetes can occur at any age, but it usually
starts in people younger than 30. Symptoms of Type 1 diabetes are usually severe and occur rap-
idly. Within 5–10 years, the insulin-producing b-cells of the pancreas are completely destroyed
and the body can no longer produce insulin2 [26]. Patients who rely on insulin therapies may
be at an advanced stage of type 1 diabetes and their pancreas no longer produces insulin. Thus
it is reasonable to assume that the pancreas on longer produces insulin for a patient undergoing
intensive insulin therapy.

Experiments have shown that insulin degradation is proportional to insulin concentration [37].
Thus, as in [23,25,37], we assume the clearance rate is a constant and denote it by di > 0.

2 http://www.nlm.nih.gov/medlineplus/ency/article/000305.htm.
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Throughout the paper, we assume the following conditions:
(H1) Gin(t), Iin(t) 2 C([0,1), (0,1)) are positive x-periodic functions.
(H2) f2(x), f3(x), f4(x) 2 C1[0,1) are positive for x > 0. f2(0) = f3(0) = 0.
(H3) f 02ðxÞ; f 03ðxÞ; f 04ðxÞ are positive on [0,1).
(H4) f5(x) 2 C1[0,1) is positive on [0,1), f 05ðxÞ is negative on [0,1).
(H5) There exist positive numbers b2, a3, b3 such that, for 0 6 x 61, 0 6 f2(x) 6 b2x and

a3x 6 f3(x) 6 b3x.
Assumptions (H1)–(H5) are quite natural. Note that if f2 takes the form defined in (4.1) in Sec-

tion 4, then 0 6 f2ðGÞ 6 Ub
C2V g

G. Thus conditions (H1)–(H5) cover the model functions in (4.1)–
(4.4) used in [23,25,32], for numerical simulations. The shapes of the functions are important in-
stead of their forms [20]. For the shapes of the functions, refer to Fig. 4.2 in Section 4 or [20,23,25]
or [32]. Gottesman et al. [15] found that the insulin-independent glucose uptake f2 follows Michae-
lis–Menten kinetics. In addition, Gottesman et al. [15] found that, in postabsorptive human sub-
jects, 75–85% of glucose uptake is non-insulin-mediated.

Sturis et al. [33] reported that oscillatory insulin delivery with an ultradian periodicity is more
efficient in reducing blood glucose levels than constant insulin administration. In their experi-
ments administration of exogenous insulin followed a sinusoidal wave shape with a period of
120 min. In our model (2.2), Iin(t) represents the exogenous insulin infusion rate profile and Gin(t)
is glucose intake rate function. Therefore we assume that Iin(t) and Gin(t) are positive periodic
functions with period x. Under natural assumptions, we establish the existence of a periodic solu-
tion of model (2.2) based on a fixed point theorem and its global stability by applying Liapunov
function method.

3. Mathematical analysis

In this section, the positivity and boundedness of solutions of (2.2) will be examined. We will
also state results for the existence of a positive solution of (2.2) and its global stability. Detailed
proofs will be carried out in Appendices.

It is easy to check that the solution of (2.2b) is

IðtÞ ¼ e�d itI0 þ e�d it

Z t

0

I inðsÞed is ds:

In order to find an x-periodic solution, I(t + x) = I(t) for all t, consider the following

Iðtþ xÞ ¼ e�d it e�d ix I0 þ
Z t

0

I inðsÞed is dsþ
Z tþx

t
I inðsÞed is ds

� �

and we have

Iðtþ xÞ ¼ e�d ixIðtÞ þ e�d it e�d ix

Z tþx

t
I inðsÞed is ds:

By letting I(t + x) = I(t), we can easily find that

I�ðtÞ ¼ e�d it�d ix

1� e�d ix

Z tþx

t
I inðsÞed is ds ð3:1Þ

H. Wang et al. / Mathematical Biosciences 210 (2007) 17–33 21



Author's personal copy

is a positive x-periodic solution of (2.2b).

Lemma 3.1. All solutions of model (2.2) exist for t > 0, and they are positive and bounded from
above.

Proof. It is clear that the insulin solution I(t) is positive and bounded and exists for all t > 0. Now
let G(t) be a solution of (2.2a). Assume G(t0) = 0 for some t > 0. Let t0 = inf{t: G(t) 6 0}. Then
G(t0) = 0 and G 0(t0) 6 0. However,

G0ðt0Þ ¼ Ginðt0Þ þ f5ðIðt0 � s2ÞÞ > 0;

which is a contradiction. Therefore, G(t) > 0 for t > 0.
Now we show the boundedness of G(t). From (2.2), we have

G0ðtÞ 6 max
t2½0;x�

GinðtÞ � a3GðtÞf4ðmIÞ þ f5ð0Þ;

where mI > 0 is the lower bound of I(t) on [0,1]. Therefore,

GðtÞ 6 Gð0Þe�ða3f4ðmIÞÞt þ
max
t2½0;x�

GinðtÞ þ f5ð0Þ

a3f4ðmIÞ
; for t > 0:

The boundedness also implies that G(t) exists for all t > 0. h

Let (I(t),G(t)) be a solution of (2.2). We define

G ¼ lim sup
t!1

GðtÞ; G ¼ lim inf
t!1

GðtÞ

and

I ¼ lim sup
t!1

IðtÞ; I ¼ lim inf
t!1

IðtÞ:

Lemma 3.1 implies that G; G; I; I are all finite. The well known fluctuation lemma is stated below
without proof. Its proof can be found in, e.g., Hirsch et al. [16].

Lemma 3.2. Let f:R! R be a differentiable function. If l = lim inft!1f(t) 6 lim supt!1f(t) = L,
then there are sequences {tk}"1, {sk}"1 such that for all k, f 0(tk) = f 0(sk) = 0, limk!1f(tk) = l and
limk!1f(sk) = L.

Lemma 3.3. Model (2.2) is uniformly persistent, i.e. solutions of model (2.2) are eventually uniformly
bounded from above and below.

Proof. It is clear that 0 < I 6 I <1. We only need to show that G > 0. If G < G, then there exist
a sequence ft0kg " 1 such that

G0ðt0kÞ ¼ 0; lim
k!1

Gðt0kÞ ¼ G:

Thus (2.2a) gives, for all k,

0 ¼ G0ðt0kÞ ¼ Ginðt0kÞ � f2ðGðt0kÞÞ � f3ðGðt0kÞÞf4ðIðt0k � s3ÞÞ þ f5ðIðt0k � s2ÞÞ;
and since f4 is increasing and f5 is decreasing, we have

0 P Ginðt0kÞ � f2ðGðt0kÞÞ � f3ðGðt0kÞÞf4ðMIÞ þ f5ðmIÞ;

22 H. Wang et al. / Mathematical Biosciences 210 (2007) 17–33



Author's personal copy

where MI = maxt2[0,1)I(t) > 0 and mI = mint2[0,1)I(t) > 0. Letting k!1, we have

0 P min
t2½0;x�

GinðtÞ � f2ðGÞ � f3ðGÞf4ðMIÞ þ f5ðmIÞ:

If G = 0, we have

0 P min
t2½0;x�

GinðtÞ þ f5ðmIÞ > 0;

which is a contradiction. If G ¼ G, then limt!1G(t) exists. If limt!1G(t) = 0, the glucose equation

G0ðtÞ ¼ GinðtÞ � f2ðGðtÞÞ � f3ðGðtÞÞf4ðIðt� s3ÞÞ þ f5ðIðt� s2ÞÞ;
implies that G 0(t) > � > 0 for sufficiently large t > 0. Thus G(t)!1 as t!1, which is also a con-
tradiction. This completes the proof of the lemma. h

Since (2.2b) has a periodic solution I* defined in (3.1), we only need to show that there is a po-
sitive periodic solution for (2.2a) when I(t) = I*(t). We now state results for the existence of a peri-
odic solution of (2.2) and its global stability.

Theorem 3.4. Model (2.2) has a positive periodic solution (G*, I*), where I* is defined in (3.1).

Theorem 3.5. The periodic solution (G*(t), I*(t)) in Theorem 3.4 is globally asymptotically stable and
unique, i.e., any solution (G(t), I(t)) with initial conditions G(0) > 0 and I(0) > 0 satisfies
|G(t) � G*(t)|! 0, |I(t) � I*(t)|! 0 as t!1.

The proof of Theorem 3.4 is based on the Krasnoselskii fixed point theorem (Lemma A.1), and
see Appendix A for details. The proof of Theorem 3.5 is based on a standard construction of a
Lyapunov functional and will be carried out in Appendix B.

4. Applications in clinical insulin therapies

The management of type 1 diabetes mellitus has changed dramatically over the past 30 years. In
particular, new insulin strategies have improved the ability to maintain near-normal glycemia.
Factors such as onset, peak and duration of action can influence the ability of a particular insulin
regimen in controlling glucose levels. The key to effective insulin therapy is an understanding of
insulin pharmacokinetics that, when implemented, can results in improved diabetes control.

In this section we demonstrate how model (2.2) can be used in clinical insulin therapy strategies
by selecting appropriate insulin infusion function Iin according to different types of insulin prod-
ucts. Currently, various insulin are available for subcutaneous injection, for example, rapid-acting
insulin (Lispro and Aspart), short-acting insulin (Buffered regular insulin), intermediate-acting
insulin (Lente, NHP), and long-acting insulin (Glargine and Ultralente). Fig. 4.1 (adapted from
[28]) and Table 4.1 (adapted from [9]) list the onset, peak and duration of some types of insulin
products. With different types of insulin products, therapies and algorithms can be developed for
treatments of different diabetes.

We will use the same functions in [4,23,25,32,36] for numerical analysis. These functions, fi,
i = 2,3,4,5, take the following forms with experimentally determined parameters given in Table
4.2 [4,23,25,32].

H. Wang et al. / Mathematical Biosciences 210 (2007) 17–33 23
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f2ðGÞ ¼ U bð1� expð�G=ðC2V gÞÞÞ; ð4:1Þ

f3ðGÞ ¼ G=ðC3V gÞ; ð4:2Þ

f4ðIÞ ¼ U 0 þ ðU m � U 0Þ=ð1þ expð�b lnðI=C4ð1=V i þ 1=ð0:2tiÞÞÞÞÞ; ð4:3Þ

f5ðIÞ ¼ Rg=ð1þ expðâðI=V p � C5ÞÞÞ: ð4:4Þ
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Fig. 4.1. Onset of action, peak, and duration of action of exogenous insulin preparations (Lispro, Regular and
Glargine) (adapted from [28]).

Table 4.1
Pharmacokinetics of available insulin products [9]

Insulin Onset Peak Duration

Lispro 5–15 min 30–90 min 3–5 h
Aspart 10–20 min 1–3 h 3–5 h
Regular insulin 30–60 min 1–5 h 6–10 h
Buffered regular insulin 30–60 min 1–3 h 8 h
Lente 1–3 h 6–14 h 16–24 h
NPH 1–2 h 6–14 h 16–24+ h
Glargine 1.1 h None 24 h
Ultralente 4–6 h 8–20 h >24 h

Table 4.2
Parameters of the functions in (4.1, 4.2, 4.2, 4.4)

Parameters Units Values Parameters Units Values

Vg l 10 U0 mg min�1 40
Ub mg min�1 72 Um mg min�1 940
C2 mg l�1 144 b 1.77
C3 mg l�1 1000 C4 mU l�1 80
Vp l 3 Rg mg min�1 180
Vi l 11 â l mU�1 0.29
ti min 100 C5 mU l�1 26
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The units of G and I in the functions (4.1)–(4.4) are in mg and mU, respectively. They are con-
verted to mg/dl and lU/ml when plotting the figures.

As an application of model (2.2) we discuss the effects of regular insulin and insulin lispro for
type 1 diabetes. Regular (rapid onset of action, short duration of action) insulin and insulin lispro
are the commonly-used insulins. As shown in Table 4.1 and Fig. 4.1, regular insulin has an onset
of action (begins to reduce blood sugar) about 30 min after injection, reaches a peak effect at 1–
5 h, and has lasting effects for 6–10 h. Insulin lispro, an ultra rapid-acting insulin, is a chemically-
modified, natural insulin. Comparing to regular insulin, insulin lispro has a more rapid onset of
action, an earlier peak effect, and a shorter duration of action. It could reaches peak activity in
5 min after injection. The piecewise functions in (4.6) and (4.7) and Fig. 4.4 (left) and Fig. 4.5 (left)
mimic the infusion rates of lispro and regular insulin, respectively(refer to Table 4.1 and Fig. 4.1).

f2(x)

f3(x)

f4(x)

f5(x)

Fig. 4.2. Shapes of functions f2 (upper left), f3 (upper right), f4 (lower left) and f5 (lower right). These figures are
adapted from [25].
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We further assume that a subject takes a meal every 4 h (x = 240 min). The maximum glucose
intake is 5 mg/min that is attained at 15 min. The whole duration of the glucose intake is 45 min.
The function (4.5) and (4.3) represent the glucose intake functions.

GinðtÞ ¼
0:05þ 5

15
t; 0 6 t < 15 ðminÞ;

0:05þ 5 45�t
45�15

; 15 6 t < 45 ðminÞ;
0:05; 45 6 t 6 240 ðminÞ:

8><
>: ð4:5Þ

I inlispro
ðtÞ ¼

0:25; 0 6 t 6 5 ðminÞ;
0:25þ 1 � ð1þ t�30

30�5
Þ; 5 6 t < 30 ðminÞ;

0:25þ 1 � ð1� t�30
120�30

Þ; 30 6 t < 120 ðminÞ;
0:25; 120 6 t 6 240 min:

8>>><
>>>:

ð4:6Þ

I inregular
ðtÞ ¼

0:25; 0 6 t 6 30 ðminÞ;
0:25þ 1 � ð1þ t�120

90
Þ; 30 6 t < 120 ðminÞ;

0:25þ 1 � ð1� 0:5 t�120
120
Þ; 120 6 t < 240 ðminÞ;

0:25þ 0:5 � ð1� t�240
240
Þ; 240 6 t 6 480 ðminÞ:

8>>><
>>>:

ð4:7Þ

For simplicity, it is assumed that the glucose intake Gin(t) and insulin infusion Iin(t) are periodic
piecewise linear functions defined by the two expressions over a period of x. They can be extended
to any periodic continuous function on [0,1).

Fig. 4.4 (left) and Fig. 4.5 (left) are the rates of injections of insulin lispro and regular insu-
lin, respectively. Fig. 4.4 (right) and Fig. 4.5 (right) show the glucose and insulin profiles after
the subcutaneous injections of insulin lispro and regular insulin, respectively. They demon-
strate the glucose and insulin concentration profiles under the exogenous infusion of glucose
and insulin. It is demonstrated that the profiles are close to those of a normal subject shown
in Fig. 1.1.
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Fig. 4.5. (Left) Graph of regular insulin infusion function I inregular
in (4.7). (Right) Profile of model (2.2) for s2 = 15 min,

s3 = 5 min, di = 0.0107 (min�1) and x = 480 min, glucose intake function Gin in Fig. 4.3 and insulin infusion function
Iin in (4.7).
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It appears that the ranges of the glucose profiles with insulin lispro are smaller than those for
regular insulin. This is in agreement with the findings by Recasens et al. [34], which investigated
the effects of intensive insulin therapy using lispro in comparison with intensive insulin therapy
using regular insulin for type 1 diabetes. Forty-five newly diagnosed type 1 diabetic subjects par-
ticipated in the 12-month follow-up study. They found that glucose profiles for insulin lispro are
lower than those for regular insulin although insulin lispro is as effective as regular insulin in opti-
mizing metabolic control. It is also reported in [34] that the number of mild hypoglycemic epi-
sodes (glucose level below 60 mg/dl ) tended to be lower with lispro, but not significantly. That
could explain the reason that the bottom of the glucose oscillations in Fig. 4.5 is close to
60 mg/dl.

5. Dicussion

Model (2.2) utilizes the functions f2–f5 in ((4.1)–(4.4)) and the parameter values in Table 4.2
from [32,36], which are based on experimental data. These experimental data was taken from nor-
mal subjects. Type 1 diabetes is usually due to autoimmune destruction of the pancreatic beta cells
which produce insulin [26]. With proper insulin treatments, patients can maintain plasma glucose
within a normal range although hypoglycemia and hyperglycemia could happen. Therefore, these
functions and parameters can be used in the insulin therapy model (2.2) for type 1 diabetic
patients.

As discussed in Section 2, by incorporating a f1(G),0 6 a 6 1 into model (2.2), model
(2.2) could be adapted to model insulin therapies for the patients whose pancreas does
not produce enough insulin to properly control plasma glucose concentration levels. Math-
ematically, periodicity and persistence of the model with af1(G) can be obtained in a similar
way. Local stability may be proved via a properly constructed Lyapunov function with
delays.

Insulin is absorbed and enters plasma after subcutaneous injection and then regulates glu-
cose level. Patient factors, including individual variations in insulin absorption, levels of exer-
cise, local massage, and, especially, local subcutaneous blood flow can influence the
effectiveness of an insulin regimen [13]. The time it takes to absorb one half of an injected
dose of insulin may vary by 25–50 percent among individual patients [17]. For example,
NPH insulin may have a duration of action of 18 h in one patient but only 9 or 10 h in an-
other patient [17]. It is also reported in Fernqvist et al. [14] that short intense physical exercise
can accelerate the absorption of subcutaneously injected insulin. Hildebrandt [18] investigated
the influence of skinfold thickness on the absorption rate of subcutaneously injected insulin.
Model (2.2) can be adjusted to reflect the patient factors by incorporating a time delay in
Iin. We may further investigate these factors in future work.

It is interesting to note that the delays do affect the amplitude of the glucose concentration.
From Fig. 4.4, it appears that the peaks of the stable glucose concentration are over 130 mg/dl
when s2 = 15 min and s3 = 5 min. Now we set s2 = 50 min and s3 = 5 min. Fig. 5.1 shows that
the peaks of glucose concentration are below 130 mg/dl. Recall that f5(I(t � s2)) represents the
glucose production of the liver and s2 stands for delayed effects. This indicates that the amplitude
of the stable glucose concentration depends on the delays.
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Appendix A

Proof of Theorem 3.4. In this section, we will give a proof of Theorem 3.4. A related result can
be found in [38]. Before we state the Krasnoselskii fixed point theorem let us recall some
concepts and conclusions on an operator in a cone in [22]. Let X be a Banach space and K be a
closed, non-empty subset of X. K is said to be a cone if (i) au + bv 2 K for all u, v 2 K and all
a,b > 0 and (ii) u, � u 2 K imply u = 0. Assume X is a bounded open subset in X with the
boundary oX, and let T : K \ X! K be completely continuous such that Tx 5 x for
x 2 oX \ K.

Lemma A.1.
Krasnoselskii’s Fixed Point Theorem [22]. Let X be a Banach space and let K 2 X be a cone in X.

Assume that X1, X2 are open subsets of X with 0 2 X1;X1 � X2 and let

T : K \ ðX2 n X1Þ ! K

be a completely continuous operator such that either (i) kTxk 6 kxk, x 2 K \ oX1 and
kTxkP kxk, x 2 K \ oX2 or (ii) kTxkP kxk, x 2 K \ oX1 and kTxk 6 kxk, x 2 K \ oX2 is true.
Then T has a fixed point in K \ ðX2 n X1Þ.
In order to apply Lemma A.1 to prove Theorem 3.4, consider the Banach space

X ¼ fuðtÞ : uðtÞ 2 CðR;RÞ; uðtþ xÞ ¼ uðtÞg

with kuk = supt2[0,x]ju(t)j, u 2 X. Define a cone K in X by

K ¼ fu 2 X : uðtÞP A
B
kuk t 2 ½0;x�g:
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Fig. 5.1. Profile of model (2.2) for insulin lispro from 08:00am to 12:00pm when s2 = 50 min, s3 = 5 min,
di = 0.0076 min�1.
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where A, B are defined by the following expressions: A ¼ 1

e
b2xþb3

R x

0
f4ðI�ðh�s3ÞÞ dh

�1

> 0 and

B ¼ e
b2xþb3

R x

0
f4ðI
�ðh�s3ÞÞ dh

e
a3

R x

0
f4ðI�ðh�s3ÞÞ dh

�1

> 0: Let r1 ¼ A
R x

0 ½GinðsÞ þ f5ðI�ðs� s2ÞÞ�ds and r2 ¼ B
R x

0 ½GinðsÞ þ f5ðI�

ðs� s2ÞÞ�ds. We then define two open sets Xr1
and Xr2

as Xr1
¼ fu 2 X : kuk < r1g and

Xr2
¼ fu 2 X : kuk < r2g. Note that oXri ¼ fu 2 X : kuk ¼ rig; i ¼ 1; 2 and K \ ðX2 n X1Þ

¼ fX : u 2 K; r1 6 kuk 6 r2g. Now if u 2 K \ ðX2 n X1Þ, then mint2½0;x�uðtÞP A
B kukP A

B r1 > 0.
Define the map T : K \ ðX2 n X1Þ ! X by

TuðtÞ ¼
Z tþx

t
U uðt; sÞ½GinðsÞ þ f5ðI�ðs� s2ÞÞ�ds; ð6:1Þ

where

U uðt; sÞ ¼
e

R s

t

f2ðuðhÞÞ
uðhÞ þ

f3ðuðhÞÞ
uðhÞ f4ðI�ðh�s3ÞÞ

h i
dh

e

R x

0

f2ðuðhÞÞ
uðhÞ þ

f3ðuðhÞÞ
uðhÞ f4ðI�ðh�s3ÞÞ

h i
dh
� 1

:

Note that

a3f4ðI�ðh� s3ÞÞ 6
f2ðuðhÞÞ

uðhÞ þ
f3ðuðhÞÞ

uðhÞ f4ðI�ðh� s3ÞÞ 6 b2 þ b3f4ðI�ðh� s3ÞÞ

Thus A 6 Uu(t,s) 6 B, t 6 s 6 t + x. We now able to show the following properties of the oper-
ator T.

Lemma A.2. T : K \ ðX2 n X1Þ ! K is compact and continuous.

Proof. In view of the definition of K, for u 2 K, we have

ðTuÞðtþ xÞ ¼
Z tþ2x

tþx
U uðtþ x; sÞ½GinðsÞ þ f5ðI�ðs� s2ÞÞ�ds

¼
Z tþx

t
U uðtþ x; hþ xÞ½Ginðhþ xÞ þ f5ðI�ðhþ x� s2ÞÞ�dh

¼
Z tþx

t
U uðt; sÞ½GinðsÞ þ f5ðI�ðs� s2ÞÞ�ds ¼ ðTuÞðtÞ

It is easy to see that
R tþx

t ½GinðsÞ þ f5ðI�ðs� s2Þ�ds is a constant because of the periodicity of
[Gin(t) + f5(I*(t � s2)]. One can show that, for u 2 K \ ðX2 n X1Þ,

TuðtÞP A
Z tþx

t
½GinðsÞ þ f5ðI�ðs� s2ÞÞ�ds

¼ A
B

B
Z x

0

½GinðsÞ þ f5ðI�ðs� s2ÞÞ�ds P
A
B
kTuk:

Thus T ðK \ ðX2 n X1ÞÞ � K and it is easy to show that T is compact and continuous. h

Now if we can find a fixed point problem of T in K \ ðX2 n X1Þ; then it will be a positive periodic
solution of (2.2a) when I(t) = I*(t).
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Lemma A.3.
If u is a fixed point problem of T in K \ ðX2 n X1Þ; then u is a positive periodic solution of (2.2a)

when I(t) = I*(t).

Proof. If u 2 K \ ðX2 n X1Þ and Tu = u, then

u0ðtÞ ¼ d

dt

Z tþx

t
U uðt; sÞ½GinðsÞ þ f5ðI�ðs� s2ÞÞ�ds

� �
¼ U uðt; tþ xÞ Ginðtþ xÞ þ f5ðI�ðtþ x� s2ÞÞð Þ
� U uðt; tÞ GinðtÞ þ f5ðI�ðt� s2�Þð Þ

� f2ðuðtÞÞ
uðtÞ þ

f3ðuðtÞÞ
uðtÞ f4ðI�ðt� s3ÞÞ

� �
TuðtÞ

¼ � f2ðuðtÞÞ
uðtÞ þ

f3ðuðtÞÞ
uðtÞ f4ðI�ðt� s3ÞÞ

� �
uðtÞ þ ½GinðtÞ þ f5ðI�ðt� s2ÞÞ�

¼ GinðtÞ þ f5ðI�ðt� s2ÞÞ � f2ðuðtÞÞ � f3ðuðtÞÞf4ðI�ðt� s3Þ:

Thus u is a positive x-periodic solution of (2.2a). h

We are now in a position to prove Theorem 3.4. Indeed, for u 2 oXr1
, we have

TuðtÞP A
Z tþx

t
½GinðsÞ þ f5ðI�ðs� s2ÞÞ�ds

¼ A
Z x

0

½GinðsÞ þ f5ðI�ðs� s2ÞÞ�ds ¼ r1:

Thus, for u 2 oXr1
, kTukP kuk. On the other hand, for u 2 oXr2

, we have

TuðtÞ 6 B
Z tþx

t
½GinðsÞ þ f5ðI�ðs� s2ÞÞ�ds

¼ B
Z x

0

½GinðsÞ þ f5ðI�ðs� s2ÞÞ�ds ¼ r2:

Thus, u 2 oXr2
, kTuk 6 kuk. It follows from Lemma A.1 that T has a fixed point in Xr2

n �Xr1
, and

hence (2.2) has a positive x-periodic solution. This completes the proof. h

Appendix B

Proof of Theorem 3.5. In this section we provide a proof of Theorem 3.5. First we state a lemma
from [2] without proof, which will be employed to establish the stability.

Lemma B.1.
Let h be a real number and f be a non-negative function defined on [h,1) such that f is integrable

on [h,1) and is uniformly continuous on [h,1). Then limt!1f(t) = 0.
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Proof. of Theorem 3.5. In Theorem 3.4, we prove there is a positive periodic solution (G*(t),I*(t))
of (2.2). We will show that it is globally asymptotically stable. Assume (G(t),I(t)) is a solution of
(2.2). First define a Lyapunov function V IðtÞ ¼ 1

2
½IðtÞ � I�ðtÞ�2: Thus

_V I ¼ ½IðtÞ � I�ðtÞ�½_IðtÞ � _I�ðtÞ� ¼ ½IðtÞ � I�ðtÞ�½�diIðtÞ þ diI�ðtÞ� ¼ �di½IðtÞ � I�ðtÞ�2: Then we have
_V I ¼ �2diV I for t > 0, and then V IðtÞ ¼ V Ið0Þe�2dit. Therefore, limt!1[I(t) � I*(t)] = 0.
Now we investigate the stability of G*(t). Consider

V ðtÞ ¼ mV IðtÞ þ
1

2
½GðtÞ � G�ðtÞ�2

where m > 0 is to be chosen later. The derivative of V(t) along the solution of (2.2) takes the form of

_V ðtÞ ¼ � 2mdiV Ið0Þe�2dit

þ ðGðtÞ � G�ðtÞÞðGinðtÞ � f2ðGðtÞÞ � f3ðGðtÞÞf4ðIðt� s3ÞÞ þ f5ðIðt� s2ÞÞ
� GinðtÞ þ f2ðG�ðtÞÞ þ f3ðG�ðtÞÞf4ðI�ðt� s3ÞÞ � f5ðI�ðt� s2ÞÞÞ
¼ � 2mdiV Ið0Þe�2dit � ðGðtÞ � G�ðtÞÞ2f 02ðn2Þ
� ðGðtÞ � G�ðtÞÞðIðt� s3Þ � I�ðt� s3ÞÞf3ðGðtÞÞf 04ðn4Þ
� ðGðtÞ � G�ðtÞÞ2f 03ðn3Þf4ðI�ðt� s3ÞÞ
� ðGðtÞ � G�ðtÞÞðI�ðt� s2Þ � Iðt� s2ÞÞf 05ðn5Þ

where n2, n3 are between G(t) and G*(t). n4 is between I(t � s3) and I*(t � s3). n5 is between
I(t � s2) and I*(t � s2). Note that f 05ðn5Þ is negative because of (H4). We will make use of the
inequality 2ab 6 �a2 + b2/�,� > 0.

_V ðtÞ 6� 2mdiV Ið0Þe�2dit � ðGðtÞ � G�ðtÞÞ2f 02ðn2Þ

þ 1

2
�ðGðtÞ � G�ðtÞÞ2f3ðGðtÞÞf 04ðn4Þ þ

1

2�
ðIðt� s3Þ � I�ðt� s3ÞÞ2f3ðGðtÞÞf 04ðn4Þ

� ðGðtÞ � G�ðtÞÞ2f 03ðn3Þf4ðI�ðt� s3ÞÞ

þ 1

2
�ðGðtÞ � G�ðtÞÞ2jf 05ðn5Þj þ

1

2�
ðI�ðt� s2Þ � Iðt� s2ÞÞ2jf 05ðn5Þj

ð�2mdi þ
1

�
e2dis3f3ðGðtÞÞf 04ðn4Þ þ

1

�
jf 05ðn5Þje2dis2ÞV Ið0Þe�2dit

� ðGðtÞ � G�ðtÞÞ2ðf 02ðn2Þ þ f 03ðn3Þf4ðI�ðt� s3ÞÞ �
�

2
f3ðGðtÞÞf 04ðn4Þ �

�

2
jf 05ðn5ÞjÞ

Note that, by Lemma 3.3, n2, n3, n4 and n5 are bounded from below and above. Now if we choose
� > 0 small enough that

f 02ðn2Þ þ f 03ðn3Þf4ðI�ðt� s3ÞÞ � �1
2
f3ðGðtÞÞf 04ðn4Þ � �1

2
jf 05ðn5Þj > a > 0

where, a > 0 is a constant. For this � > 0 we further choose m > 0 large enough that

�2mdi þ
1

�
e2dis3f3ðGðtÞÞf 04ðn4Þ þ

1

�
jf 05ðn5Þje2dis2 < �a < 0:

Hence,

_V ðtÞ 6 �aV Ið0Þe�2dit � aðGðtÞ � G�ðtÞÞ2 ð4:2Þ
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Thus V(t) is decreasing. Integrating on both sides of (4.2) from 0 to t and rearranging the terms
produce

V ðtÞ þ aV Ið0Þ
Z t

0

e�2dis dsþ a
Z t

0

ðGðsÞ � G�ðsÞÞ2 ds 6 V ð0Þ:

Hence, (G(t) � G*(t))2 2 L1[0,1). It is also easy to see that (G(t) � G*(t))2 and the derivative of
(G(t) � G*(t))2 are bounded on [0,1). Then it follows that (G(t) � G*(t))2 is uniformly continuous
on [0,1). By Lemma B.1 we have

lim
t!1
ðGðtÞ � G�ðtÞÞ2 ¼ 0:

Therefore, the periodic solution is globally asymptotically stable, which also implies the unique-
ness of the periodic solution of (2.2). This completes the proof. h
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