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Let BR be the ball of radius R in RN with N ≥ 2. We consider the nonconstant 
radial positive solutions of elliptic systems of the form

− Δu + u = f(u, v) in BR,

− Δv + v = g(u, v) in BR,

∂νu = ∂νv = 0 on ∂BR,

where f and g are nondecreasing in each component. With few assumptions on the 
nonlinearities, we apply bifurcation theory to show the existence of at least one 
nonnegative, nonconstant and nondecreasing solution.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Very recently, Bonheure, Serra and Tilli [3] considered the Neumann problem

−Δu + u = a(|x|)f(u, v) in BR,

−Δv + v = b(|x|)g(u, v) in BR,

∂νu = ∂νv = 0 on ∂BR,

(1.1)

where BR is the ball of radius R in RN with N ≥ 2, a, b, f and g satisfy the assumptions:

(A) a, b ∈ L1(0, R) are nonnegative, nondecreasing and not identically zero;
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(H1) f, g ∈ C(R+ × R
+) are nonnegative and nondecreasing in each variable;

(H2)

lim
s+t→0+

f(s, t) + g(s, t)
s + t

= 0, lim
s+t→∞

f(s, t) + g(s, t)
s + t

= ∞.

Applying the cone of nonnegative and nondecreasing functions and the fixed point index theory [1,12], they 
proved the following

Theorem A ([3, Theorem 1.1]). Under assumptions (A), (H1) and (H2), problem (1.1) admits at least one 
solution (u, v) with u and v both nonnegative and nondecreasing.

If both a and b are constant, one cannot expect that the solution is nonconstant without further assump-
tions. Indeed, arguing as in [2, Proposition 4.1], one can provide examples of systems of the form (1.1) with 
a = b = 1 whose unique positive solutions are constants. In [3], Bonheure, Serra and Tilli also considered 
the existence of nonconstant solutions of the system

−Δu + u = f(u, v) in BR,

−Δv + v = g(u, v) in BR,

∂νu = ∂νv = 0 on ∂BR.

(1.2)

They proved the following

Theorem B ([3, Theorem 1.2]). Assume that f and g satisfy (H1) and (H2) and are differentiable. Assume 
the only constant nontrivial solution of (1.2) is (α, β). Let P := (α, β). Let λr

j be the j-th radial eigenvalues 
of −Δ + I with Neumann boundary condition ∂νu = 0 on ∂BR. Let the matrix

MP :=
(
fu(α, β) fv(α, β)
gu(α, β) gv(α, β)

)
(1.3)

(where fu = ∂f
∂u , fv = ∂f

∂v , gu = ∂g
∂u , gv = ∂g

∂v ) have two real eigenvalues λP , λP with λP ≤ λP . If

λP /∈ {λr
1, λ

r
2} and λP > λr

2, (1.4)

then problem (1.2) admits at least one nonnegative, nonconstant and nondecreasing solution.

Notice that they overcome the lack of compactness by considering the cone of nonnegative, nondecreasing 
radial functions of H1(BR), which was firstly introduced in [20]. Their approach is based on Dancer’s abstract 
results on the local fixed point index for a map defined between wedges (see Dancer [7,8]). However, the 
condition (H2) seems unduly restrictive.

The purpose of the present paper is to show the existence of nonnegative, nonconstant and nondecreasing 
solutions of (1.2) when the nonlinearity is asymptotically linear growth at infinity and no growth restriction 
at the origin. Our approach is based upon a global results for the solution set of

x = A(μ, x),

where A : [0, ∞) × W → W is completely continuous, and W is a wedge in a real Banach space E :=
C1[0, R] × C1[0, R] such that W −W is dense in E, see Dancer [7].
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We shall make the following assumptions:

(A0) f and g are differentiable, and the only constant nontrivial solution of (1.2) is (α, β), and

fu(α, β) ≥ 0, fv(α, β) ≥ 0, gu(α, β) ≥ 0, gv(α, β) ≥ 0.

Moreover, there exist ξ, ζ : R2 → R such that

f(u, v) − α = fu(α, β)(u− α) + fv(α, β)(v − β) + ξ(u− α, v − β),

g(u, v) − β = gu(α, β)(u− α) + gv(α, β)(v − β) + ζ(u− α, v − β),

where

ξ(t, s) = o(
√

t2 + s2), ζ(t, s) = o(
√

t2 + s2), as (t, s) → (0, 0);

(A1) f, g ∈ C(R+ × R
+) are nonnegative and strictly increasing in each variable, where R+ = [0, ∞);

(A2) f, g ∈ C(R+ × R
+) are locally Lipschitz in R+ × R

+;
(A3) λP · λr

2 �= λr
1 · λP , λP > λr

2;
(A4) there exists a matrix

M∞ :=
(
h1 h2
k1 k2

)
,

such that

f(t, s) = h1t + h2s + ξ̂(t, s),

g(t, s) = k1t + k2s + ζ̂(t, s),

ξ̂(t, s) = o(
√

s2 + t2), ζ̂(t, s) = o(
√

s2 + t2), as
√

t2 + s2 → ∞ in R
+ × R

+,

and

h1, k2 ∈ [0,∞), h2, k1 ∈ (0,∞);

(A5) there exists δ∗ > 0, such that one of the following conditions hold:
(i) yξ(y, z) < 0 and zζ(y, z) < 0 for 0 < |y| + |z| < δ∗;
(ii) yξ(y, z) > 0 and zζ(y, z) > 0 for 0 < |y| + |z| < δ∗.

Theorem 1.1. Assume that (A0)–(A5) hold. Then problem (1.2) admits at least one nonnegative, nonconstant 
and nondecreasing solution (u, v).

Remark 1.1. It can also be of interest to compare our results to those concerning a single equation. Miciano 
and Shivaji [17] showed the existence and multiplicity of positive solutions for a class of semipositone 
Neumann problems via quadrature method. In [2], Bonheure, Noris and Weth used a variational approach 
to obtain the first existence result for nonconstant solutions of

−Δu + u = h(u) in BR,

∂ u = 0 on ∂B ,
(1.5)
ν R
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where u0 = h(u0) is the unique positive fixed point, h′(u0) > λr
2, h′(0) = 0, lim infs→∞

h(s)
s > 1. We may 

use the global bifurcation theory due to Dancer [7] to establish the existence of at least one nonnegative, 
nonconstant and nondecreasing solution of (1.5) when the nonlinearity h is asymptotically linear growth at 
infinity and no growth restriction at the origin.

For other results on the global bifurcation structure of positive solutions of nonlinear elliptic systems, 
see Cheng and Zhang [4], Tian and Zhang [21], Zou [22], Ma, Gao and Lu [16] and the references therein.

The rest of the paper is organized as follows. In Section 2, we state some results on the spectrum structure 
of the linear Neumann problem and give some preliminary results. In Section 3, we introduce some functional 
setting and state some global results on the solution set of abstract operator equations. Finally in Section 4
we prove our main results on the existence of nonconstant radial positive solutions by applying the abstract 
global result due to Dancer [7].

2. Some preliminary results

Let us consider the linear eigenvalue problem

−Δu(x) = μa(|x|)u(x), in BR,

∂νu = 0, on ∂BR,
(2.1)

where a ∈ C[0, R] satisfies

a(r) > 0, r ∈ [0, R]. (2.2)

Lemma 2.1. Assume that (2.2) is fulfilled. Then the radial eigenvalues of (2.1) are as follows:

0 = μr
0 < μr

1 < μr
2 < · · · → ∞. (2.3)

Moreover, for each k ∈ N
∗ := {0, 1, · · · }, the radial eigenvalue μr

k is simple, and the radial eigenfunction ψr
k, 

being regarded as a function of r, possesses exactly k simple zeros in [0, R], and ψr
k is radially monotone if 

and only if k ∈ {0, 1}.

It is easy to see that Lemma 2.1 is an immediate consequence of the following results on singular linear 
eigenvalue problems, see [15, Theorem 2.2] for detail.

Lemma 2.2 ([15, Theorem 2.2]). Assume that (2.2) is fulfilled. Then the eigenvalues of the problem

− u′′(r) − N − 1
r

u′(r) = μa(r)u(r), r ∈ (0, R),

u′(0) = 0 = u′(R)
(2.4)

are as follows:

0 = μr
0 < μr

1 < μr
2 < · · · → ∞.

Moreover, for each k ∈ N
∗, μr

k is simple, and the eigenfunction ψr
k possesses exactly k simple zeros in [0, R], 

and ψr
k is monotone if and only if k ∈ {0, 1}.
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Lemma 2.3. Let (ηn, (yn, zn)) be a sequence of solutions of the problem

− (rN−1y′n)′ + rN−1yn = ηnr
N−1P (yn, zn), r ∈ (0, R),

− (rN−1z′n)′ + rN−1zn = ηnr
N−1Q(yn, zn), r ∈ (0, R),

y′n(0) = 0 = y′n(R), z′n(0) = 0 = z′n(R),

(2.5)

where |ηn| ≤ η̂ (η̂ is a positive constant), there exist nonnegative constants pi and qi for i = 1, 2 such that 
P : R × R → R and Q : R × R → R satisfy

P (s, t) ≤ p1|s| + p2|t|, Q(s, t) ≤ q1|s| + q2|t|.

Then ‖(y′n, z′n)‖∞ → ∞ as n → ∞ implies ‖(yn, zn)‖∞ → ∞ as n → ∞.

Proof. Assume on the contrary that ‖(yn, zn)‖∞ �→ ∞ as n → ∞. Then, after taking a subsequence and 
relabeling, if necessary, it follows that

‖(yn, zn)‖∞ ≤ M0

for some M0 > 0. From (2.5), we get

y′n = −ηn

r∫
0

(s
r
)N−1P (yn, zn)ds +

r∫
0

(s
r
)N−1ynds

and

z′n = −ηn

r∫
0

(s
r
)N−1Q(yn, zn)ds +

r∫
0

(s
r
)N−1znds,

which imply that

‖y′n‖∞ ≤ (η̂(p1 + p2)M0 + M0)R,

‖z′n‖∞ ≤ (η̂(q1 + q2)M0 + M0)R.

However, this is a contradiction. �
Lemma 2.4. Let (A0) hold. Then for every λ ∈ (0, ∞), the matrix λMP has two real eigenvalues γP

1 (λ) and 
γP
2 (λ) with γP

1 (λ) ≤ γP
2 (λ).

Proof. Denote

a := fu(α, β), b := fv(α, β), c := gu(α, β), d := gv(α, β).

Since the characteristic equation

(λa− γ)(λd− γ) − λ2cb = 0,

i.e.

γ2 − λ(a + d)γ + λ2(ad− cb) = 0
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has roots

γP
1 (λ) =

λ(a + d) − λ
√

(a− d)2 + 4cb
2 , γP

2 (λ) =
λ(a + d) + λ

√
(a− d)2 + 4cb

2 .

Then γP
1 (λ) ≤ γP

2 (λ). �
Remark 2.1. Obviously,

γP
1 (1) = λP , γP

2 (1) = λP . �
Lemma 2.5. Let (A0) hold. Assume that

γP
2 (1) > λr

2.

Then there exists a unique λ∗,2 ∈ (0, 1), such that the larger eigenvalue of λ∗,2MP is λr
2, i.e.

γP
2 (λ∗,2) = λr

2.

Moreover,

λ∗,2 = λr
2

γP
2 (1)

.

Proof. It is easy to see that γP
2 (λ) is strictly increasing continuous function on λ ∈ (0, ∞). Combining 

this with the fact γP
2 (0) = 0 and using the assumption γP

2 (1) > λr
2, it deduces that there exists a unique 

λ∗,2 ∈ (0, 1), such that γP
2 (λ∗,2) = λr

2. It is easy to check that the larger eigenvalue of the matrix λr
2

γP
2 (1)MP

is λr
2, and λ∗,2 = λr

2
γP
2 (1) . �

3. Functional setting and preliminary results

3.1. Crandall–Rabinowitz theorem

Let X and Y be two real Banach space, V be an open neighborhood of 0 in X. Let J = (a, b) ⊂ R

be an open interval, and let F : J × V → Y be a twice continuously Fréchet differentiable mapping. Let 
Fx, Fλ, Fλx, etc., denote the various derivative of F with respect to λ ∈ J and x ∈ V . The null space 
and range of a linear operator A are denoted by N(A) and R(A). Let dim and codim denote, respectively, 
dimension and codimension.

Lemma 3.1 ([5, Crandall–Rabinowitz theorem]). Suppose that λ0 ∈ J and also that

(B1) F (λ, 0) = 0 for all λ ∈ J ;
(B2) dimN(Fx(λ0, 0)) = codimR(Fx(λ0, 0)) = 1;
(B3) Fxλ(λ0, 0)x0 /∈ R(Fx(λ0, 0)), where x0 ∈ X spans N(Fx(λ0, 0)).

Let Z be any complement of span{x0} in X. Then there exist a neighborhood U of (λ0, 0) in R × X, an 
open interval Ĵ containing 0 and continuously differentiable functions λ : Ĵ → R and ψ : Ĵ → Z such that

λ(0) = λ0, ψ(0) = 0,
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and, if x(s) = sx0 + sψ(s), then

F (λ(s), x(s)) = 0.

Moreover, F−1(0) near (λ0, 0) consists precisely of the curves x = 0 and (λ(s), x(s)), s ∈ Ĵ , i.e.,

F−1(0) ∩ U = {
(
λ(s), y(s)

)
: s ∈ Ĵ} ∪

{
(λ, 0) : (λ, 0) ∈ U

}
.

3.2. Preliminaries in wedge

Let W be a wedge in X, namely a closed convex subset of X such that αW ⊂ W for every α ≥ 0. Recall 
that a wedge is said to be a cone if W ∩ −W = {0}.

To apply the abstract results it is necessary to assume that

W −W is dense in X. (3.1)

Definition 3.1. Let W be a wedge satisfying (3.1), and let y ∈ W . We define

Wy := {x ∈ X | ∃γ > 0 such that y + γx ∈ W}

and

Sy := {x ∈ W y | − x ∈ W y}.

Note (for all details we refer to [7,8]) that the set Wy is convex, contains W and ±y, and αWy ⊂ Wy for 
every α ≥ 0. Thus W y is a wedge containing W and ±y.

Concerning Sy, it can be easily proved that it is a closed subspace of X containing y.
Still following [7,8], we introduce the following notion.

Definition 3.2. We say a compact operator L : X → X mapping W y into itself has property α if

there exist t ∈ (0, 1) and ω ∈ W y \ Sy such that ω − tLω ∈ Sy.

We can now turn to the statement of the main result.
Let Φ : W → X be a (nonlinear) map satisfying

(C1) Φ is completely continuous,
(C2) Φ(W ) ⊂ W ,
(C3) Φ(y) = y,
(C4) Φ is differentiable at y in “W” (see [7]),
(C5) Φ′(y) =: L is compact from X to X.

Under these assumptions, it can be proved that L maps W y into W y.
Denoting by

iW (Φ, y)

the local fixed point index of y in W , see for example [11], the results by Dancer that we need, precisely 
Theorem 1 in [7] and Proposition 1 in [8] can be collected in a single statement as follows.
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Lemma 3.2 ([7,8]). Let X be a Banach space and let W ⊂ X be a wedge satisfying (3.1). Let Φ : W → X

satisfy (C1)–(C5). Then the following statements hold:

(i) If I − L is invertible and L has property α, then iW (Φ, y) = 0;
(ii) If I − L is not invertible but Ker(I − L) ∩W y = {0}, then iW (Φ, y) = 0.

Lemma 3.3 ([7, Theorem 1]). Let X be a Banach space and let W ⊂ X be a wedge satisfying (3.1). Let 
Φ : W → X satisfy (C1)–(C5). Let I − L be invertible. Then

iW (Φ, y) = iSy
(L, 0) = iX(L, 0)

if L does not have property α on W y.

Lemma 3.4 ([7, Proposition 1]). Assume that A : [0, ∞) × W → W is completely continuous, that μ > 0, 
and that y is an isolated solution in W of x = A(μ, x) with iW (A(μ, ·), y) �= 0. Suppose ε, δ > 0 are such 
that x �= A(λ, x) if either

(1) x ∈ W , 0 < ‖x − y‖ < ε and λ = μ, or
(2) x ∈ W , ‖x − y‖ = ε and |λ − μ| ≤ δ.

Let T denote the component of

{(λ, x) ∈ [0,∞) ×W : x = A(λ, x)}\{(λ, x) : ‖x− y‖ ≤ ε, μ− δ < λ < μ}

containing (μ, y). Then

(i) T is unbounded, or
(ii) inf{λ : (λ, x) ∈ T} = 0, or
(iii) T ∩ {(λ, z) : λ = μ − δ, ‖z − y‖ < ε} �= ∅.

3.3. Index Jump Principle in wedge

Let W ⊂ X be a Wedge. We consider the parameter-dependent equation

x−H(μ, x) = 0, μ ∈ R, x ∈ W (3.2)

and require the following

(D1) The operator H : U(μ0, 0) → W is compact with H(μ, 0) ≡ 0;
(D2) For μ1 < μ2 we have iW (H(μ1, ·), 0) �= iW (H(μ2, ·), 0).

Here we naturally require the indices to be defined and in (D1) we let

U(μ0, 0) := [μ1, μ2] × U(0),

where μ1 < μ0 < μ2, U(0) is a neighborhood of the origin in W .
The index jump condition (D2) can also be expressed in the form

degW (I −H(μ1, ·), U(0), 0) �= degW (I −H(μ2, ·), U(0), 0).
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Lemma 3.5 (Index Jump Principle).

(a) If (D1) is satisfied and if (μ0, 0) is not a bifurcation point of the equation (3.2), then iW (H(μ, ·), 0) is 
defined and constant on a neighborhood of μ = μ0.

(b) If (D1) and (D2) are satisfied, then the equation (3.2) has a bifurcation point (μ, 0) with μ1 < μ < μ2.

Proof. (a) If (μ0, 0) is not a bifurcation point, then there exists a neighborhood V of (μ0, 0) in which (μ0, 0)
is the only solution of (3.2) in W ∩ V . Homotopy invariance yields the constancy of iW (H(μ, ·), 0).

(b) Suppose that such a bifurcation point does not exist. Then iW (H(μ, ·), 0) as a function of μ is locally 
constant by (a) and integer valued, and thus constant on [μ1, μ2]. But it contradicts (D2). �
3.4. Leray–Schauder degree of the linear Neumann system

In this subsection, we attempt to compute the Leray–Schauder degree of the linear system

(−Δ + I)
(
y

z

)
= λMP

(
y

z

)
in BR, ∂νy = ∂νz = 0 on ∂BR, (3.3)

where λ > 0.
Let X := C1[0, R]. Then it is a Banach space under the norm

‖u‖1 = max{‖u‖∞, ‖u′‖∞}.

Let E := C1[0, R] × C1[0, R]. Then it is a Banach space under the norm

‖(u, v)‖2 = ‖u‖2
1 + ‖v‖2

1.

Let

λr
j := 1 + μr

j−1, j ∈ N,

where μr
j−1 is given in Lemma 2.1. By the similar argument to establish [9, Proposition 1.1] (in which the 

Leray–Schauder degree of the corresponding Dirichlet problem was considered), with obvious changes, we 
may get the following

Lemma 3.6. Let V be a bounded open subset in E with 0 ∈ V . Assume that σ(λMP ) ∩ σ(−Δ + I) = ∅. 
Here and after, σ(−Δ + I) denotes the spectrum of the operator −Δ + I subject to the Neumann condition. 
Denote by Bλ the Jordan canonical form of λMP . Then

degLS(I − (−Δ + I)−1λMP , V, 0) = degLS(I − (−Δ + I)−1Bλ, V, 0).

Moreover,

(i) If

Bλ =
(
γ1 0
0 γ2

)
.

Then
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degLS(I − (−Δ + I)−1Bλ, V, 0) = (−1)m(γ1)+m(γ2),

where m(γi) is the sum of the algebraic multiplicity of the eigenvalues λr
j ∈ σ(−Δ +I) such that λr

j < γi, 
and m(γi) = 0 if all eigenvalues λr

j of −Δ + I are such that λr
j > γi.

(ii) If

Bλ =
(
γ 0
1 γ

)
, or

(
γ −η

η γ

)
for η �= 0.

Then

degLS(I − (−Δ + I)−1Bλ, V, 0) = 1. �
4. Proof of the main results

4.1. Equivalent operator equation in cones

Since (A4) implies that f and g are asymptotically linear growth at infinity, we only need to work in the 
Banach space E rather than H1

r (BR) ×H1
r (BR).

Let us define the wedge W = K×K where K is the cone of nonnegative radially nondecreasing functions 
defined in

K = {u ∈ X | 0 ≤ u(r) ≤ u(s), ∀ 0 ≤ r < s ≤ R}

with X = C1[0, R]. Of course, in this case W is not just a wedge, but a true cone.
First of all, it is easy to see that W satisfies E = W −W ; this is a consequence of the fact that K −K

is dense in X.
Now consider the (nonlinear) map Φ : W → E defined according to

Φ(ϕ, ψ) = (u, v) ⇐⇒
{−Δu + u = f(ϕ, ψ), in BR,

−Δv + v = g(ϕ, ψ), in BR,

∂νu = ∂νv = 0, on ∂BR.

(4.1)

Lemma 4.1 ([3, Lemma 3.2]). The map Φ is well defined and, in fact, Φ : W → W . Moreover, Φ is 
continuous and, if U ⊂ W is a bounded set, then Φ(U) has compact closure.

4.2. Equivalent operator equation in wedges

Let us consider the problem
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δu + u = f(u, v), in BR,

−Δv + v = g(u, v), in BR,

u > 0, v > 0, in BR,

∂νu = ∂νv = 0, on ∂BR.

(4.2)

Let

y := u− α, z := v − β. (4.3)
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Then (4.2) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δy + y = f(y + α, z + β) − α, in BR,

−Δz + z = g(y + α, z + β) − β, in BR,

y > −α, z > −β, in BR,

∂νy = ∂νz = 0, on ∂BR.

(4.4)

Define

h(s, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(s + α, t + β) − α, s ≥ −α and t ≥ −β,

f(0, t + β) − α, s < −α and t ≥ −β,

f(s + α, 0) − α, s ≥ −α and t < −β,

f(0, 0) − α, s < −α and t < −β,

(4.5)

and

k(s, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g(s + α, t + β) − β, s ≥ −α and t ≥ −β,

g(0, t + β) − β, s < −α and t ≥ −β,

g(s + α, 0) − β, s ≥ −α and t < −β,

g(0, 0) − β, s < −α and t < −β.

(4.6)

Then, it follows from (A0) that

(
h(y, z)
k(y, z)

)
=

(
fu(α, β) fv(α, β)
gu(α, β) gv(α, β)

)(
y

z

)
+ o(

√
y2 + z2), as (y, z) → (0, 0).

Moreover, (4.4) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δy + y = h(y, z), in BR,

−Δz + z = k(y, z), in BR,

y > −α, z > −β, in BR,

∂νy = ∂νz = 0, on ∂BR.

(4.7)

To study the nonconstant radial positive solutions of (4.2), let us consider the auxiliary problem

⎧⎪⎪⎨
⎪⎪⎩

−Δy + y = λh(y, z), in BR,

−Δz + z = λk(y, z), in BR,

∂νy = ∂νz = 0, on ∂BR,

(4.8)

where λ > 0 is a parameter.
As prescribed by Definition 3.1 we observe that

W0 = {(y, z) ∈ E | y, z are both bounded and nondecreasing}
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and

S0 = {(y, z) ∈ E | y, z are both constants}.

Notice that W0 is not closed in E, and that

W 0 = {(y, z) ∈ E | y, z are both nondecreasing}.

Define a nonlinear map Ψ : R+ ×W0 → E,

Ψ(λ, (ϕ, ψ)) = (y, z) ⇐⇒
{−Δy + y = λh(ϕ, ψ) in BR,

−Δz + z = λk(ϕ, ψ) in BR,

∂νy = ∂νz = 0, on ∂BR.

As an immediate consequence of Lemma 4.1, we have

Lemma 4.2. The map Ψ is well defined and, in fact, Ψ : R+ ×W0 → W0. Moreover, Ψ is continuous and, 
if U ⊂ R

+ ×W0 is a bounded set, then Ψ(U) has compact closure.

4.3. Local bifurcation at (λ∗,2, (0, 0)) in E

Recall that λ∗,2 = λr
2

γP
2 (1) .

In what follows, we use the terminology of Rabinowitz [19]. Let S+
k denote the set of functions in X

which have exactly k−1 interior nodal (i.e. non-degenerate) zeros in (0, R) and are positive near r = 0, and 
set S−

k = −S+
k , and Sk = S−

k ∪ S+
k .

Lemma 4.3. Assume that (A1) holds. Let (λ, (y, z)) ∈ [0, 1] × (Sν
k × Sν

k ) be a solution of (4.8). Then

y(r) > −α, z(r) > −β, r ∈ [0, R].

Proof. Suppose on the contrary that there exist x0, x1 ∈ [0, R] such that one of the following cases occur:

(1) y(r) > −α, r ∈ [0, R]; z(x0) = min
r∈[0,R]

z(r) = −β;

(2) z(r) > −β, r ∈ [0, R]; y(x1) = min
r∈[0,R]

y(r) = −α;

(3) y(x1) = min
r∈[0,R]

y(r) = −α; z(x0) = min
r∈[0,R]

z(r) = −β.

If Case (1) occurs, then there exists r0 ∈ [0, R] such that either

z(r0) = 0, z(r) < 0 for r ∈ [x0, r0), z′(r) > 0 for r ∈ (x0, r0]; (4.9)

or

z(r0) = 0, z(r) < 0 for r ∈ (r0, x0], z′(r) < 0 for r ∈ [r0, x0). (4.10)

We only deal with the case (4.9), the case (4.10) can be treated by the similar way.
Since h and k are monotone increasing in both y and z, we have, for λ ∈ [0, 1], that

−Δ(−β) + (−β) ≤ λk(−α,−β).
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Combining this with

−Δz + z = λk(y, z)

implies

−Δ(z + β) + (z + β) ≥ λ(k(y, z) − k(−α,−β)) ≥ 0.

Denote

w := z + β,

then

w′′ + N − 1
r

w′ − w ≤ 0.

It follows from [10, Theorem 3.5] or [18, Theorem 3 in Chapter 1] that, w can not achieve a non-positive 
minimum in the interval (x0, r0) unless it is constant. From (4.9), it follows that

inf
[x0,r0]

w(r) = min{w(x0), w(r0)} = w(x0) = 0.

This together with w′(x0) = 0 imply that

w(r) ≡ 0, r ∈ [x0, r0].

However, this contradicts the fact that w′(r) > 0, r ∈ (x0, r0).
Using the same method with obvious changes, we may get the desired contradiction in Case (2) and 

Case (3).
Therefore, we always have that y(r) > −α, z(r) > −β, r ∈ [0, R]. �
To show that (4.8) with λ = 1 has a S−

2 × S−
2 -solution, let us consider the auxiliary problem

⎧⎪⎨
⎪⎩

(
−Δy + y

−Δz + z

)
= λ

(
fu(α, β) fv(α, β)
gu(α, β) gv(α, β)

)(
y

z

)
+ λ

(
ξ(y, z)
ζ(y, z)

)
,

∂νy = ∂νz = 0, on ∂BR

(4.11)

as a bifurcation problem from the trivial solution (y, z) ≡ (0, 0).
Notice that for a given radial function h ∈ X, there exists a unique radial function v := Th ∈ X which 

solves the Neumann problem
{

−Δv + v = h, in BR,

∂νv = 0, on ∂BR.

Moreover, the operator T : X → X is compact, and it follows from (A0) that

‖Tζ(y, z)‖X
‖(y, z)‖E

≤ ‖T‖X→X

‖(y, z)‖E
(‖Dζ(y, z)‖∞ + ‖ζ(y, z)‖∞)

≤ ‖T‖X→X

(
|∂ζ
∂y

| |∇y|
‖(y, z)‖E

+ |∂ζ
∂z

| |∇z|
‖(y, z)‖E

+ ‖ζ(y, z)‖∞
‖(y, z)‖E

)

→ 0, as ‖(y, z)‖E → 0.
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Here we have used the facts that |∇y|
‖(y,z)‖E

and |∇z|
‖(y,z)‖E

are bounded and

∂ζ

∂y
→ 0, ∂ζ

∂z
→ 0, as ‖(y, z)‖E → 0.

Similarly, ‖Tξ(y,z)‖X

‖(y,z)‖E

→ 0 as ‖(y, z)‖E → 0.
Let us define

F (λ, (y, z)) :=
(

Δy − y

Δz − z

)
+ λ

(
fu(α, β) fv(α, β)
gu(α, β) gv(α, β)

)(
y

z

)
+ λ

(
ξ(y, z)
ζ(y, z)

)
,

and

F(y,z)(λ, (y, z))
(
ψ1
ψ2

)
:=

(
Δψ1 − ψ1
Δψ2 − ψ2

)
+ λ

(
fu(α, β) fv(α, β)
gu(α, β) gv(α, β)

)(
ψ1
ψ2

)

+ λ

(
ξy(y, z) ξz(y, z)
ζy(y, z) ζz(y, z)

)(
ψ1
ψ2

)
,

then

F(y,z)(λ, (0, 0))
(
ψ1
ψ2

)
=

(
Δψ1 − ψ1
Δψ2 − ψ2

)
+ λ

(
fu(α, β) fv(α, β)
gu(α, β) gv(α, β)

)(
ψ1
ψ2

)
,

and so

N
(
F(y,z)

( λr
2

γP
2 (1)

, (0, 0)
))

=
(
x1ϕ

r
2

x2ϕ
r
2

)
,

where ϕr
2 is the nondecreasing eigenfunction corresponding to λr

2 and

MP

(
x1
x2

)
= γP

2 (1)
(
x1
x2

)
.

By the well-known Perron–Frobenius Theorem, x1 ≥ 0, x2 ≥ 0 and x2
1 + x2

2 �= 0. It is not difficult to prove 
that

R
(
F(y,z)

( λr
2

γP
2 (1)

, (0, 0)
))

⊆
{

(u, v) ∈ [C(BR)]2 :
∫
BR

(ux1 + vx2)ϕr
2 = 0

}
.

Define

F(y,z),λ(λ, (y, z))
(
ψ1
ψ2

)
:=

(
fu(α, β) fv(α, β)
gu(α, β) gv(α, β)

)(
ψ1
ψ2

)
+

(
ξy(y, z) ξz(y, z)
ζy(y, z) ζz(y, z)

)(
ψ1
ψ2

)
,

then

F(y,z),λ(λ, (0, 0))
(
ψ1
ψ2

)
=

(
fu(α, β) fv(α, β)
gu(α, β) gv(α, β)

)(
ψ1
ψ2

)
.
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It follows from the fact

−Δϕr
2 + ϕr

2 = λr
2ϕ

r
2 in BR, ∂νϕ

r
2 = 0 on ∂BR

that ∫
BR

|∇ϕr
2|2 = (λr

2 − 1)
∫
BR

(ϕr
2)2.

Since λr
2 − 1 > 0, it follows that

∫
BR

(ϕr
2)2 > 0.

This implies

F(y,z),λ(λ, (0, 0))
(
x1ϕ

r
2

x2ϕ
r
2

)
/∈ R

(
F(y,z)

( λr
2

γP
2 (1)

, (0, 0)
))

.

So we may apply the Crandall–Rabinowitz Theorem [5] (or see Lemma 3.1) on bifurcation from a simple 
eigenvalue. Thus bifurcation occurs at Q :=

(
λ∗,2, (0, 0)

)
, and there exists a ball Bρ(Q) with the center Q

and the radius ρ in R × E:

Bρ(Q) := {(λ, (y, z)) ∈ R× E : |λ− λ∗,2| + ‖(y, z)‖E < ρ},

an interval J = (−ε, ε), continuously differentiable functions

ψj : R →
{
u ∈ X :

∫
BR

(ux1 + ux2)ϕr
2 = 0

}
, j = 1, 2,

and μ : R → R, such that ψj(0) = 0, μ(0) = 0,

F−1((0, 0)
)
∩Bρ(Q) =

{(
λ(s), (y(s), z(s))

)
: |s| < ε

}
∪
{
(λ, (0, 0)) : (λ, (0, 0)) ∈ Bρ(Q)

}
, (4.12)

and

(y(s), z(s)) = s(x1ϕ
r
2 + ψ1(s), x2ϕ

r
2 + ψ2(s)), λ(s) = λ∗,2 + μ(s), for − ε < s < ε.

Denote

Γε := {(λ∗,2 + μ(s), s(x1ϕ
r
2 + ψ1(s), x2ϕ

r
2 + ψ2(s))) : 0 ≤ s < ε}. (4.13)

Lemma 4.4.

(1) Assume (A5)(i) holds. Then there exists a constant s0 > 0, such that

μ(s) > 0, for 0 < s ≤ s0.

(2) Assume (A5)(ii) holds. Then there exists a constant s0 > 0, such that

μ(s) < 0, for 0 < s ≤ s0.
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Proof. For 0 ≤ s < ε, let

λ(s) = λ∗,2 + μ(s), (y(s), z(s)) = s(x1ϕ
r
2 + ψ1(s), x2ϕ

r
2 + ψ2(s)),

where μ : R → R and

ψj : R → X, j = 1, 2

are smooth functions satisfying ∫
BR

(x1ψ1 + x2ψ2)ϕr
2 = 0.

Since

(−Δ + I)
(
y

z

)
= λ

(
h(y, z)
k(y, z)

)
,

then (
−sΔ(x1ϕ

r
2 + ψ1(s)) + s(x1ϕ

r
2 + ψ1(s))

−sΔ(x2ϕ
r
2 + ψ2(s)) + s(x2ϕ

r
2 + ψ2(s))

)

= (λ∗,2 + μ(s))
(
fu(α, β) fv(α, β)
gu(α, β) gv(α, β)

)(
s(x1ϕ

r
2 + ψ1(s))

s(x2ϕ
r
2 + ψ2(s))

)
+ (λ∗,2 + μ(s))

(
ξ(y, z)
ζ(y, z)

)
,

and also (
−Δ(x1ϕ

r
2 + ψ1(s)) + x1ϕ

r
2 + ψ1(s)

−Δ(x2ϕ
r
2 + ψ2(s)) + x2ϕ

r
2 + ψ2(s)

)

= (λ∗,2 + μ(s))
(
fu(α, β) fv(α, β)
gu(α, β) gv(α, β)

)(
x1ϕ

r
2 + ψ1(s)

x2ϕ
r
2 + ψ2(s)

)
+ (λ∗,2 + μ(s))

s

(
ξ(y, z)
ζ(y, z)

)
.

Multiplying both sides by ϕr
2 and integrating over BR, it deduces

λr
2

(
x1
x2

) ∫
BR

(ϕr
2)2

= (λ∗,2 + μ(s))
(
fu(α, β) fv(α, β)
gu(α, β) gv(α, β)

)(
x1
x2

) ∫
BR

(ϕr
2)2 + (λ∗,2 + μ(s))

s

( ∫
BR

ϕr
2ξ(y, z)∫

BR
ϕr

2ζ(y, z)

)
.

From Lemma 2.5, we have that(
0
0

)
= μ(s)γP

2 (1)
(
x1
x2

) ∫
BR

(ϕr
2)2 + (λ∗,2 + μ(s))

s

( ∫
BR

ϕr
2ξ(y, z)∫

BR
ϕr

2ζ(y, z)

)
.

Multiplying both sides by the eigenvector (x1, x2), and we get that

0 = μ(s)γP
2 (1)(x2

1 + x2
2)

∫
(ϕr

2)2 + (λ∗,2 + μ(s))
s

(
x1

∫
ϕr

2ξ(y, z) + x2

∫
ϕr

2ζ(y, z)
)

BR BR BR
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and

μ(s) = −
λ∗,2

(
x1

∫
BR

ϕr
2
ξ(y,z)

s + x2
∫
BR

ϕr
2
ζ(y,z)

s

)
γP
2 (1)(x2

1 + x2
2)

∫
BR

(ϕr
2)2 + x1

∫
BR

ϕr
2
ξ(y,z)

s + x2
∫
BR

ϕr
2
ζ(y,z)

s

.

Combining this with the fact

lim
s→0

ξ(y(s), z(s))
s

= 0, lim
s→0

ζ(y(s), z(s))
s

= 0

and using Condition (A5)(i), it deduces

μ(s) > 0 if s > 0 is small enough; (4.14)

using Condition (A5)(ii), it deduces

μ(s) < 0 if s > 0 is small enough. � (4.15)

4.4. Unbounded connected component containing (λ∗,2, (0, 0)) in the wedge W0

Lemma 4.5.

(1) Assume (A3) and (A5)(i) hold. Then there exists a positive constant δ, such that

iW0(Ψ(λ, (·, ·)), (0, 0)) �= 0, λ ∈ (λ∗,2 − δ, λ∗,2), (4.16)

iW0(Ψ(λ, (·, ·)), (0, 0)) = 0, λ ∈ (λ∗,2, λ∗,2 + δ). (4.17)

(2) Assume (A3) and (A5)(ii) hold. Then there exists a positive constant δ, such that

iW0(Ψ(λ, (·, ·)), (0, 0)) = 0, λ ∈ (λ∗,2, λ∗,2 + δ),

iW0(Ψ(λ, (·, ·)), (0, 0)) �= 0, λ ∈ (λ∗,2 − δ, λ∗,2).

Proof. We only prove (1) is valid. The proof of (2) can be treated by the similar way.
By Crandall–Rabinowitz local bifurcation theorem and (4.14), there exists a constant δ0 > 0 and a ball 

Bd = {(y, z) ∈ E | ||(y, z)||E < d}, such that

Γε ∩
(
[λ∗,2 − δ0, λ∗,2 + δ0] × Bd

)
= Γε ∩

(
[λ∗,2, λ∗,2 + δ0] × Bd

)
and

Γε ∩
(
[λ∗,2, λ∗,2 + δ0] × Bd

)
= {(λ∗,2 + μ(s), (y(s), z(s)) : s ∈ [0, s1]}

for some s1 ∈ (0, ∞). Moreover, μ(s) > 0 for s ∈ (0, s1].
Since γP

2 (λ∗,2) = λr
2 and γP

2 (λ) is increasing, it follows that there exists a constant δ1 ∈ (0, δ0), such that

λr
1 < γP

2 (λ) < λr
2, λ ∈ (λ∗,2 − δ1, λ∗,2).

Since 0 < λ∗,2 < 1 and γP
1 (λ∗,2) �= λr

1, it follows that there exists a constant δ2 ∈ (0, δ0), such that

λr
1 �= γP

1 (λ), λ ∈ (λ∗,2 − δ2, λ∗,2 + δ2).
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Take δ := min{δ1, δ2}. Then it follows from the fact γP
1 (λ) ≤ γP

2 (λ) that

σ(λMP ) ∩ σ(−Δ + I) = ∅, λ ∈ (λ∗,2 − δ, λ∗,2).

Now, from Lemma 3.6, we may deduce that

deg(I − (−Δ + I)−1λMP ,B
, 0) �= 0, λ ∈ (λ∗,2 − δ, λ∗,2),

where � is a small positive constant.
For each fixed λ ∈ (0, ∞), let us define a linear map Lλ : W0 → E by

Lλ(y, z) = (y, z),

where (y, z) is the unique solution of (3.3). Then

Lλ := (−Δ + I)−1λMP : W0 → W0.

Since I − Lλ is invertible for λ ∈ (λ∗,2 − δ, λ∗,2), by applying the similar argument to get [3, Lemma 4.6], 
we may deduce that Lλ has no property α. Hence it deduces from Lemma 3.3 that

iW0(Ψ(λ, (·, ·)), (0, 0)) = iE(Lλ, (0, 0)) = (−1)m(γP
1 (λ))+m(γP

2 (λ)) �= 0, λ ∈ (λ∗,2 − δ, λ∗,2).

Therefore, (4.16) is valid.
Equation (4.17) is an immediate consequence of [3, Lemma 4.6] and Lemma 3.2(i). �
As an immediate consequence of the Lemma 4.5 and Index Jump Principle (Lemma 3.5), we get the 

following

Lemma 4.6.

(a) Assume that (A5)(i) holds. Then there exists s̃ > 0, such that

{
(
λ∗,2 + μ(s), s(x1ϕ

r
2 + ψ1(s), x2ϕ

r
2 + ψ2(s))

)
: 0 < s < s̃} ⊂ (λ∗,2, λ∗,2 + δ) ×W0.

(b) Assume that (A5)(ii) holds. Then there exists s̃ > 0, such that

{
(
λ∗,2 + μ(s), s(x1ϕ

r
2 + ψ1(s), x2ϕ

r
2 + ψ2(s))

)
: 0 < s < s̃} ⊂ (λ∗,2 − δ, λ∗,2) ×W0. �

In the rest of this paper, we only deal with the case that (A5)(i) holds. The other case can be treated by 
the same way.

Combining Lemma 4.4 and Lemma 4.6 and using Sard Theorem, it follows that for arbitrary n ∈ N, there 
exists sn > 0 such that |μ(sn) − 0| < 1

n , and 
(
y(sn), z(sn)

)
is an isolated solution of (y, z) = Ψ(λ(sn), (y, z))

in W0, and μ′(sn) �= 0. Furthermore, it follows from the homotopy invariance of index in wedge that for 
some ŝ ∈ (0, ̃s), we may assume that

iW0

(
Ψ(λ(ŝ), (·, ·)), (y(ŝ), z(ŝ))

)
�= 0,

and

μ′(ŝ) > 0.

The case μ′(ŝ) < 0 can be treated by the similar method with obvious changes.
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Now, we take two small positive constants ε̂ and δ̂, such that

(P0) (y, z) �= Ψ(λ, (y, z)) for (y, z) ∈ W0, 0 < ‖(y, z) − (y(ŝ), z(ŝ))‖ < ε̂ and λ = λ(ŝ);
(P1) (y, z) �= Ψ(λ, (y, z)) for (y, z) ∈ W0, ‖(y, z) − (y(ŝ), z(ŝ))‖ = ε̂ and |λ − λ(ŝ)| ≤ δ̂;
(P2) μ(s) �= 0 and μ′(s) �= 0 for s ∈

{
s : ‖(y(s), z(s)) − (y(ŝ), z(ŝ))‖ ≤ 2ε̂, |λ − λ(ŝ)| ≤ 2δ̂

}
;

(P3) {(λ, (y, z)) ∈ R
+ ×W0 : ‖(y, z) − (y(ŝ), z(ŝ))‖ ≤ 2ε̂, |λ − λ(ŝ)| ≤ 2δ̂} ⊂ Bρ(Q).

Now, we are in the position to apply Lemma 3.4. Let T denote the component of

{(λ, (y, z)) ∈ R
+ ×W0 : (y, z) = Ψ(λ, (y, z))} \

{
(λ, (y, z)) : ‖(y, z) − (y(ŝ), z(ŝ))‖ ≤ ε̂,

λ(ŝ) − δ̂ < λ < λ(ŝ)

}

containing (λ(ŝ), (y(ŝ), z(ŝ))). Then

(i) T is unbounded, or
(ii) inf{λ : (λ, (y, z)) ∈ T} = 0, or
(iii) T ∩ {(λ, (y, z)) : λ = λ(ŝ) − δ̂, ‖(y, z) − (y(ŝ), z(ŝ))‖ < ε̂} �= ∅.

Notice that (ii) can not occur since (0, (0, 0)) is not a bifurcation point.
Suppose on the contrary that (iii) occurs. Then there exists

(
η1, (w1, z1)

)
∈ T ∩

{
(λ, (y, z)) : λ = λ(ŝ) − δ̂, ‖(y, z) − (y(ŝ), z(ŝ))‖ < ε̂

}
.

If

(
η1, (y1, z1)

)
∈ Γε,

then T will contain a loop O with (λ(ŝ), (y(ŝ), z(ŝ))) ∈ O, which contradicts (4.12). If

(
η1, (y1, z1)

)
/∈ Γε,

then we get a desired contradiction from (4.12) again.
So, we may assume that (iii) does not occur for ε̂ and δ̂.
Thus, T must be unbounded.

Lemma 4.7. T ⊂
(
R

+ × (W0 \ (S+
1 × S+

1 ))
)
.

Proof. Assume on the contrary that there exists (λ̃, (ỹ, ̃z)) ∈ T ∩
(
R

+ × (S+
1 × S+

1 )
)
. Then there exists 

(η̂, (ŷ, ̂z)) ∈ T \
{( λr

2
γP
2 (1) , (0, 0)

)}
such that one of the following cases must occur

(i) ŷ(0) = 0, ẑ(0) > 0;
(ii) ŷ(0) > 0, ẑ(0) = 0;
(iii) ŷ(0) = 0, ẑ(0) = 0.

If (i) holds, then it follows from

−ŷ′′(r) − N − 1
ŷ′(r) + ŷ(r) = η̂h(ŷ(r), ẑ(r)) (4.18)
r
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and the definition of h that

ŷ′′(0) < 0,

and subsequently ŷ is concave down near r = 0. However, this contradicts the fact that ŷ is nondecreasing 
in [0, R].

If (ii) holds, then we have from

−ẑ′′(r) − N − 1
r

ẑ′(r) + ẑ(r) = η̂k(ŷ(r), ẑ(r)) (4.19)

and the definition of k that

ẑ′′(0) < 0,

and subsequently ẑ is concave down near r = 0. However, this contradicts the fact that ẑ is nondecreasing 
in [0, R].

If (iii) holds, then

ŷ(0) = ŷ′(0) = ẑ(0) = ẑ′(0) = 0.

This together with (4.18) and (4.19) imply that

ŷ(r) = ẑ(r) = 0, r ∈ [0, R],

and accordingly,

η̂ = λr
2

γP
2 (1)

.

However, this contradicts the fact (η̂, (ŷ, ̂z)) ∈ T \
{( λr

2
γP
2 (1) , (0, 0)

)}
. �

4.5. Proof of the main results

In view of Lemma 4.3, it is clear that any solution of (4.8) of the form (1, (y, z)) with (y, z) ∈ S−
2 × S−

2
yields a solution (y, z) of (4.4). We shall show T crosses the hyperplane {1} × E, i.e.

T ∩ ({1} × E) �= ∅. (4.20)

Let n0 ∈ N be such that

1
n0

< λ∗,2.

For n ≥ n0, let (ηn, (yn, zn)) ∈ T satisfy

ηn + ‖(yn, zn)‖E → ∞.

It is easy to check that

ηn > 0, n ≥ n0. (4.21)
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From (A3), it follows that λ∗,2 < 1, i.e.

λr
2

γP
2 (1)

< 1. (4.22)

Assume on the contrary that T ∩ ({1} × E) = ∅. Then

T ⊂ (0, 1) × E,

and accordingly,

0 < ηn < 1.

Thus

‖(yn, zn)‖E → ∞, n → ∞, (4.23)

which together with Lemma 2.3 and (A4) imply that

‖(yn, zn)‖∞ → ∞, n → ∞. (4.24)

This means that T is unbounded in C[0, R] × C[0, R].
We may assume that ηn → η̄ ∈ [0, 1] as n → ∞. Let

ŷn := yn
‖(yn, zn)‖∞

, ẑn := zn
‖(yn, zn)‖∞

.

Then ‖(ŷn, ̂zn)‖∞ = 1. From (A4) and (4.8), we can get that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ŷ′′n − N − 1
r

ŷ′n + ŷn = ηn

[
h1ŷn + h2ẑn + ξ̂(yn, zn)

‖(yn, zn)‖∞

]
, r ∈ (0, R),

− ẑ′′n − N − 1
r

ẑ′n + ẑn = ηn

[
k1ŷn + k2ẑn + ζ̂(yn, zn)

‖(yn, zn)‖∞

]
, r ∈ (0, R),

ŷ′n(0) = ŷ′n(R) = 0,

ẑ′n(0) = ẑ′n(R) = 0.

(4.25)

After taking subsequence if necessary, we may assume that

(ηn, (ŷn, ẑn)) → (η̄, (y∗, z∗)), in R
+ × E. (4.26)

Here

‖(y∗, z∗)‖∞ = 1. (4.27)

Let τ(1, n) and t(1, n) denote the zeros of yn and zn, respectively. Then, after taking a subsequence if 
necessary,

lim
n→∞

τ(1, n) =: τ(1,∞), lim
n→∞

t(1, n) =: t(1,∞). (4.28)

Denote

J1 := (0, τ(1,∞)), J2 := (τ(1,∞), R), I1 := (0, t(1,∞)), I2 := (t(1,∞), R).
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Claim. We claim that

J1 = ∅ = I1 (4.29)

and

lim
n→∞

yn(r) = lim
n→∞

zn(r) = +∞ uniformly in [ε′, R], (4.30)

where ε′ > 0 is small constant.
In fact, suppose on the contrary that

J1 �= ∅, I1 �= ∅.

Then we have from Lemma 4.3 that

−α < yn(r) < 0, r ∈ (0, τ(1, n)).

Then, for any r ∈ (0, τ(1, n)), it follows from (4.24) and

−ŷ′′n − N − 1
r

ŷ′n + ŷn = ηn
h(yn, zn)

‖(yn, zn)‖∞
, r ∈ (0, τ(1, n)),

that {
−y∗

′′ − N−1
r y∗

′ + y∗ = 0, r ∈ J1,

y∗(τ) = 0 = y∗
′(τ),

for some τ ∈ J1. This implies that

y∗(r) = 0, r ∈ J1,

and so y∗(r) = 0, r ∈ (0, R). Similarly, it is easy to prove that z∗(r) = 0, r ∈ (0, R). However, this 
contradicts (4.27).

Therefore, the Claim is true.

In the following, we shall use some idea from the proof of [13, Lemma 3.2] and the proof of main results 
of [6,14] to show (4.20) is valid.

Let (yn)− and (zn)− be the negative part of yn and zn, respectively. Then it follows from Lemma 4.3
that 0 ≤ (yn)− < α and 0 ≤ (zn)− < β since ηn ∈ (0, 1), and consequently,

(ŷn)− → 0, (ẑn)− → 0, as n → ∞.

Combining this with the Claim and using (4.25), it concludes that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− y∗′′ − N − 1
r

y∗′ + y∗ = η̄
(
h1(y∗)+ + h2(z∗)+

)
, a.e. r ∈ (0, R),

− z∗′′ − N − 1
r

z∗′ + z∗ = η̄
(
k1(y∗)+ + k2(z∗)+

)
, a.e. r ∈ (0, R),

y∗′(0) = y∗′(R) = 0,
∗′ ∗′

(4.31)
z (0) = z (R) = 0,
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where (y∗)+ and (z∗)+ are the positive part of y∗ and z∗, respectively. It is easy to show that

y∗(r) ≥ 0, z∗(r) ≥ 0, r ∈ [0, R].

Now, we only need to show that

y∗(r) > 0, z∗(r) > 0, r ∈ [0, R]. (4.32)

Suppose on the contrary that one of the sets

{r ∈ [0, R] : y∗(r) = 0}, {r ∈ [0, R] : z∗(r) = 0}

is nonempty. Then one of the following cases must occur

(i) y∗(0) = 0, z∗(0) > 0;
(ii) y∗(0) > 0, z∗(0) = 0;
(iii) y∗(0) = 0, z∗(0) = 0.

If (i) holds, then it follows from

−y∗′′(r) − N − 1
r

y∗′(r) + y∗(r) = η̄
(
h1(y∗)+ + h2(z∗)+

)
(4.33)

and h2 > 0 that

y∗′′(0) < 0,

and subsequently y∗ is concave down near r = 0. However, this contradicts the fact that y∗ is nondecreasing 
in [0, R].

If (ii) holds, then we have from

−z∗′′(r) − N − 1
r

z∗′(r) + z∗(r) = η̄
(
k1(y∗)+ + k2(z∗)+

)
(4.34)

and k1 > 0 that

z∗′′(0) < 0,

and subsequently z∗ is concave down near r = 0. However, this contradicts the fact that z∗ is nondecreasing 
in [0, R].

If (iii) holds, then

y∗(0) = y∗′(0) = z∗(0) = z∗′(0) = 0. (4.35)

This together with (4.33) and (4.34) imply that

y∗(r) = z∗(r) = 0, r ∈ [0, R],

and accordingly,

η̄ = λr
2

γP
2 (1)

.

However, this contradicts the fact ||(y∗, z∗)||∞ = 1.
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Therefore, (4.32) is valid.
However, (4.32) contradicts Lemma 4.7. Thus, (4.20) is valid. This completes the proof of Theo-
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