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Positive radial solutions for quasilinear systems in
an annulus

Haiyan Wang
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Abstract

We show that either superlinearity or sublinearity assumptions can guarantee the existence of
positive radial solutions for quasilinear systems involving the p-Laplacian.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we consider the existence of positive radial solutions for the boundary
value problem for the quasilinear system⎧⎪⎨

⎪⎩
div(|∇u1|p−2∇u1) + f 1(u1, . . . , un) = 0,

. . .

div(|∇un|p−2∇un) + f n(u1, . . . , un) = 0,

ui = 0 on |x| = R1 and |x| = R2, i = 1, . . . , n,

(1)

in the domain 0 < R1 < |x| < R2 < ∞, x ∈ RN, N �2, where p > 1.
When p=2 and n=1, (1) has been studied in [1,2,7,8] and others. In particular, when f is

nonnegative and continuous, [1,7] have established the existence of positive radial solutions
of the problem under the assumption that f is superlinear, i.e., f0 = limu→0 f (u)/u= 0 and
f∞ = limu→∞ f (u)/u = ∞. On the other hand, the author [9] established the existence
of positive radial solutions of the problem under the assumption that f is sublinear, i.e.,
f0 = limu→0 f (u)/u = ∞ and f∞ = limu→∞ f (u)/u = 0. In a recent paper [10], the
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author proved that appropriate combinations of superlinearity and sublinearity of f at zero
and infinity can guarantee the existence, multiplicity and nonexistence of positive radial
solutions of the problem when n = 1.

In this short paper, we show that (1) has at least one positive solution if (1) is superlinear or
sublinear. For this purpose, we introduce notation f0 and f∞, to characterize superlinearity
and sublinearity for (1). They are natural extensions of f0 and f∞ defined above for the
scalar equation.

Our arguments are based on the fixed point index. Many authors have used the fixed point
index for the existence of positive solutions of differential equations, see e.g. [3–5,9–11].
Variational methods have been frequently used for Hamiltonian systems and gradient sys-
tems. However, there is apparently no possibility of using variational methods for the
n-dimensional quasilinear elliptic system (1), and one has to use topological methods.

We now turn to general assumptions for this paper. Let �(t) = |t |p−2t, p > 1, R =
(−∞, ∞), R+ = [0, ∞) and

Rn+ = R+ × · · · × R+︸ ︷︷ ︸
n

.

Also, for u = (u1, . . . , un) ∈ Rn+, let ‖u‖ =∑n
i=1 |ui |.

(H1) f i : Rn+ → R+ is continuous, i = 1, . . . , n.

In order to state our results, let u = (u1, . . . , un) ∈ Rn+ and f(u) = (f 1(u), . . . , f n(u)),
then we introduce the notation f i

0 = lim‖u‖→0 f i(u)/�(‖u‖), f i∞ = lim‖u‖→∞ f i

(u)/�(‖u‖), i = 1, . . . , n, f0 =∑n
i=1 f i

0 , f∞ =∑n
i=1 f i∞.

Our main results are:

Theorem 1.1. Assume (H1) holds.

(a) If f0 = 0 and f∞ = ∞, then (1) has a positive radial solution.
(b) If f0 = ∞ and f∞ = 0, then (1) has a positive radial solution.

2. Preliminaries

A radial solution of (1) can be considered as a solution of the system⎧⎪⎨
⎪⎩

(rN−1�(u′
1(r)))

′ + rN−1f 1(u1, . . . , un) = 0,

. . .

(rN−1�(u′
n(r)))

′ + rN−1f n(u1, . . . , un) = 0,

ui(R1) = ui(R2) = 0, i = 1, . . . , n.

(2)

We shall treat classical solutions of (2), namely vector-valued functions u = (u1(r), . . . ,

un(r)) ∈ C1([R1, R2], Rn) with �(u′
i ) ∈ C1(R1, R2), i = 1, . . . , n, which satisfies (2) for

r ∈ (R1, R2). A solution u(r)= (u1(r), . . . , un(r)) is positive if ui(r)�0, i =1, . . . , n, for
all r ∈ (R1, R2) and there is at least one nontrivial component of u. In fact, we shall show
that such a nontrivial component of u is positive on (R1, R2).
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Applying the change of variables, r = (R2 − R1)t + R1, we can transform (2) into the
form ⎧⎪⎨

⎪⎩
(q(t)�(�u′

1))
′ + h1(t)f

1(u) = 0,

. . .

(q(t)�(�u′
n))

′ + hn(t)f
n(u) = 0,

u(0) = u(1) = 0,

(3)

0 < t < 1, where u(t) = (u1(t), . . . , un(t)),

q(t) = ((R2 − R1)t + R1)
N−1, � = 1

R2 − R1

and hi(t) = (R2 − R1)((R2 − R1)t + R1)
N−1, i = 1, . . . , n. It is clear that q(t) ∈ C[0, 1]

with q > 0 and is nondecreasing for t ∈ [0, 1].
For (3) we shall prove Theorem 2.1, which immediately implies that Theorem 1.1 is true.

Theorem 2.1. Assume (H1) holds.

(a) If f0 = 0 and f∞ = ∞, then (3) has a positive solution.
(b) If f0 = ∞ and f∞ = 0, then (3) has a positive solution.

The following well-known result of the fixed point index is crucial in our arguments.

Lemma 2.2 (Guo and Lakshmikanthan [5], Krasnoselskii [6]). Let E be a Banach space
and K a cone in E. For r > 0, define Kr = {u ∈ K : ‖x‖ < r}. Assume that T : K̄r → K is
completely continuous such that T x �= x for x ∈ �Kr = {u ∈ K : ‖x‖ = r}.
(i) If ‖T x‖�‖x‖ for x ∈ �Kr , then i(T , Kr, K) = 0.

(ii) If ‖T x‖�‖x‖ for x ∈ �Kr , then i(T , Kr, K) = 1.

In order to apply Lemma 2.2 to (3), let X be the Banach space

C[0, 1] × · · · × C[0, 1]︸ ︷︷ ︸
n

and, for u=(u1, . . . , un) ∈ X, ‖u‖=∑n
i=1 supt∈[0,1] |ui(t)|. For u ∈ X or Rn+, ‖u‖ denotes

the norm of u in X or Rn+, respectively. Define K be a cone in X by

K =
{

u = (u1, . . . , un) ∈ X : ui(t)�0, t ∈ [0, 1], i = 1, . . . , n,

and min
1/4� t �3/4

n∑
i=1

ui(t)�
1

4
‖u‖

}
.

Also, define, for r a positive number, �r by �r = {u ∈ K : ‖u‖ < r}. Note that ��r = {u ∈
K : ‖u‖ = r}.
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Let T : K → X be a map with components (T 1, . . . , T n). We define T i , i = 1, . . . , n,
by

T iu(t) =

⎧⎪⎨
⎪⎩
∫ t

0
1

�
�−1

(
1

q(s)

∫ �i

s
hi(�)f i(u(�)) d�

)
ds, 0� t ��i ,∫ 1

t

1

�
�−1

(
1

q(s)

∫ s

�i
hi(�)f i(u(�)) d�

)
ds, �i � t �1,

(4)

where �i ∈ (0, 1) is a solution of the equation �iu(t) = 0, 0� t �1, where the map
�i : K → C[0, 1] is defined by

�iu(t) =
∫ t

0

1

�
�−1

(
1

q(s)

∫ t

s

hi(�)f
i(u(�)) d�

)
ds

−
∫ 1

t

1

�
�−1

(
1

q(s)

∫ s

t

hi(�)f
i(u(�)) d�

)
ds.

By virtue of Lemma 2.3, the operator T is well defined.

Lemma 2.3 (Wang [10,11]). Assume (H1) holds. Then, for any u ∈ K and i = 1, . . . , n,
�iu(t)=0 has at least one solution in (0, 1). In addition, if �1

i < �2
i ∈ (0, 1), i=1, . . . , n, are

two solutions of �iu(t) = 0, then hi(t)f
i(u(t)) ≡ 0 for t ∈ [�1

i , �
2
i ] and any �i ∈ [�1

i , �
2
i ]

is also a solution of �iu(t) = 0. Furthermore, T iu(t), i = 1, . . . , n, is independent of the
choice of �i ∈ [�1

i , �
2
i ].

The following lemma is a standard result due to the concavity of u(t) on [0, 1] (see e.g.
[5,10,11] for proofs).

Lemma 2.4. Let u ∈ C1[0, 1] with u(t)�0 for t ∈ [0, 1]. Assume q(t) ∈ C[0, 1]
with q > 0 and is nondecreasing for t ∈ [0, 1]. If q(t)�(�u′) is nonincreasing on [0, 1],
then u(t)� min{t, 1 − t}supt∈[0,1]|u(t)|, t ∈ [0, 1]. In particular, min1/4� t �3/4 u(t)�
1
4 supt∈[0,1] |u(t)|.

We remark that, according to Lemma 2.4, any nontrivial component of nonnegative
solutions of (3) is positive on (0, 1).

Now it is easy to see that T(K) ⊂ K and T : K → K is compact and continuous (see
[11]), and that (3) is equivalent to the fixed point equation Tu = u in K .

Note that for t > 0, �(t) = tp−1, p > 1 and �−1(t) = t1/(p−1).

Lemma 2.5. For all �, x ∈ (0, ∞), �−1(��(x)) = �−1(�)x.

For i = 1, . . . , n, and t ∈ [ 1
4 , 3

4 ], let

�i (t) = 1

8

[∫ t

1/4

1

�
�−1

(
1

q(s)

∫ t

s

hi(�) d�

)
ds+

∫ 3/4

t

1

�
�−1

(
1

q(s)

∫ s

t

hi(�) d�

)
ds

]
.

It follows that

� = min{�i (t) : 1
4 � t � 3

4 , i = 1, . . . , n} > 0.
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Lemma 2.6. Assume (H1) holds. Let u=(u1(t), . . . , un(t)) ∈ K and 	 > 0. If there exists a
component f i of f such that f i(u(t))��(	

∑n
i=1 ui(t)) for t ∈ [ 1

4 , 3
4 ], then ‖Tu‖��	‖u‖.

Proof. Note, from the definition of Tu, that T iu(�i ) is the maximum value of T iu on [0,1].
If �i ∈ [ 1

4 , 3
4 ], we consider

2‖Tu‖�2 sup
t∈[0,1]

|T iu(t)|

�
∫ �i

1/4

1

�
�−1

(
1

q(s)

∫ �i

s

hi(�)f
i(u(�)) d�

)
ds

+
∫ 3/4

�i

1

�
�−1

(
1

q(s)

∫ s

�i

hi(�)f
i(u(�)) d�

)
ds

�
∫ �i

1/4

1

�
�−1

(
1

q(s)

∫ �i

s

hi(�)�

(
	

n∑
i=1

ui(�)

)
d�

)
ds

+
∫ 3/4

�i

1

�
�−1

(
1

q(s)

∫ s

�i

hi(�)�

(
	

n∑
i=1

ui(�)

)
d�

)
ds

�
∫ �i

1/4

1

�
�−1

(
1

q(s)

∫ �i

s

hi(�)�

(
	

1

4
‖u‖

)
d�

)
ds

+
∫ 3/4

�i

1

�
�−1

(
1

q(s)

∫ s

�i

hi(�)�

(
	

1

4
‖u‖

)
d�

)
ds.

Now, because of Lemma 2.5, we have

‖Tu‖�
	‖u‖ 1

4

2

[∫ �i

1/4

1

�
�−1

(
1

q(s)

∫ �i

s

hi(�) d�

)
ds

+
∫ 3/4

�i

1

�
�−1

(
1

q(s)

∫ s

�i

hi(�) d�

)
ds

]
��	‖u‖.

For �i > 3
4 , it is easy to see

‖Tu‖�
∫ 3/4

1/4

1

�
�−1

(
1

q(s)

∫ 3/4

s

hi(�)f
i(u(�)) d�

)
ds.

On the other hand, we have

‖Tu‖�
∫ 3/4

1/4

1

�
�−1

(
1

q(s)

∫ s

1/4
hi(�)f

i(u(�)) d�

)
ds.

if �i < 1
4 . Therefore, similar arguments show that ‖Tu‖��	‖u‖ if �i > 3

4 or �i < 1
4 . �

For each i = 1, . . . , n, define a new function f̂ i (t) : R+ → R+ by f̂ i (t) = max{f i(u) :
u ∈ Rn+ and ‖u‖� t}. Note that f̂ i

0 = limt→0 f̂ i (t)/�(t) and f̂ i∞ = limt→∞ f̂ i (t)/�(t).
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Lemma 2.7 (Wang [11]). Assume (H1) holds. Then f̂ i
0 =f i

0 and f̂ i∞ =f i∞, i =1, . . . , n.

Lemma 2.8. Assume (H1) holds and let r > 0. If there exists an 
 > 0 such that f̂ i (r)��(
)
breakvarphi(r), i = 1, . . . , n, then ‖Tu‖�
Ĉ‖u‖ for u ∈ ��r , where the constant

Ĉ = 1

�

n∑
i=1

�−1
(

1

q(0)

∫ 1

0
hi(�) d�

)
.

Proof. From the definition of T, for u ∈ ��r , we have

‖Tu‖ =
n∑

i=1

sup
t∈[0,1]

|T iu(t)|

� 1

�

n∑
i=1

�−1
[

1

q(0)

∫ 1

0
hi(�)f

i(u(�)) d�

]

� 1

�

n∑
i=1

�−1
[

1

q(0)

∫ 1

0
hi(�) d�f̂ i (r)

]

� 1

�

n∑
i=1

�−1
[

1

q(0)

∫ 1

0
hi(�) d��(
r)

]
.

Then Lemma 2.5 implies that

‖Tu‖�
r
1

�

n∑
i=1

�−1
(

1

q(0)

∫ 1

0
hi(�) d�

)
= 
Ĉ‖u‖. �

3. Proof of Theorem 2.1

Proof. Part (a): f0 = 0 implies that f i
0 = 0, i = 1, . . . , n. It follows from Lemma 2.7

that f̂ i
0 = 0, i = 1, . . . , n. Therefore, we can choose r1 > 0 so that f̂ i (r1)��(
)�(r1),

i = 1, . . . , n, where the constant 
 > 0 satisfies 
Ĉ < 1, and Ĉ is the positive constant de-
fined in Lemma 2.8. We have by Lemma 2.8 that ‖Tu‖�
Ĉ‖u‖ < ‖u‖ for u ∈ ��r1 .
Now, since f∞ = ∞, there exists a component f i of f such that f i∞ = ∞. Therefore,
there is an Ĥ > 0 such that f i(u)��(	)�(‖u‖) for u = (u1, . . . , un) ∈ Rn+ and ‖u‖�Ĥ ,
where 	 > 0 is chosen so that �	 > 1. Let r2 = max{2r1, 4Ĥ }. If u = (u1, . . . , un) ∈ ��r2 ,
then min1/4� t �3/4

∑n
i=1 ui(t)� 1

4‖u‖ = 1
4 r2 �Ĥ , which implies that f i(u(t))��(	)�

(
∑n

i=1 ui(t))=�(	
∑n

i=1 ui(t)) for t ∈ [ 1
4 , 3

4 ]. It follows from Lemma 2.6 that ‖Tu‖��	
‖u‖ > ‖u‖ for u ∈ ��r2 . By Lemma 2.2, i(T, �r1 , K) = 1 and i(T, �r2 , K) = 0. It
follows from the additivity of the fixed point index that i(T, �r2\�̄r1 , K) = −1. Thus,
i(T, �r2\�̄r1 , K) �= 0, which implies T has a fixed point u ∈ �r2\�̄r1 by the existence
property of the fixed point index. The fixed point u ∈ �r2\�̄r1 is the desired positive solution
of (3).
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Part (b): If f0 =∞, there exists a component f i such that f i
0 =∞. Therefore, there is an

r1 > 0 such that f i(u)��(	)�(‖u‖) for u = (u1, . . . , un) ∈ Rn+ and ‖u‖�r1, where 	 > 0
is chosen so that �	 > 1. If u = (u1, . . . , un) ∈ ��r1 , then f i(u(t))��(	)�(

∑n
i=1ui(t))=

�(	
∑n

i=1 ui(t)) for t ∈ [0, 1]. Lemma 2.6 implies that ‖Tu‖��	‖u‖ > ‖u‖ for u ∈ ��r1 .
We now determine �r2 . f∞=0 implies that f i∞=0, i=1, . . . , n. It follows from Lemma 2.7
that f̂ i∞ = 0, i = 1, . . . , n. Therefore there is an r2 > 2r1 such that f̂ i (r2)��(
)�(r2), i =
1, . . . , n, where the constant 
 > 0 satisfies 
Ĉ < 1, and Ĉ is the positive constant defined
in Lemma 2.8. Thus, we have by Lemma 2.8 that ‖Tu‖�
Ĉ‖u‖ < ‖u‖ for u ∈ ��r2 . By
Lemma 2.2, i(T, �r1 , K) = 0 and i(T, �r2 , K) = 1. It follows from the additivity of the
fixed point index that i(T, �r2\�̄r1 , K) = 1. Thus, T has a fixed point in �r2\�̄r1 , which is
the desired positive solution of (3). �

References

[1] C. Bandle, C.V. Coffman, M. Marcus, Nonlinear elliptic problems in annular domains, J. Differential
Equations 69 (1987) 322–345.

[2] C. Bandle, M. Kwong, Semilinear elliptic problems in annular domains, Z. Angew. Math. Phys. 40 (1989)
245–257.

[3] D. Dunninger, H. Wang, Existence and multiplicity of positive radial solutions for elliptic systems, Nonlinear
Anal. 29 (1997) 1051–1060.

[4] D.G. de Figueiredo, P. Lions, R.D. Nussbaum, A priori estimates and existence of positive solutions of
semilinear elliptic equations, J. Math. Pures Appl. 61 (1982) 41–63.

[5] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, FL, 1988.
[6] M. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
[7] S.S. Lin, On the existence of positive radial solutions for semilinear elliptic equations in annular domains,

J. Differential Equations 81 (1989) 221–233.
[8] W.-M. Ni, R.D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of �u+f (u, r)= 0,

Comm. Pure Appl. Math. 38 (1985) 67–108.
[9] H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential

Equations 109 (1994) 1–7.
[10] H. Wang, On the structure of positive radial solutions for quasilinear equations in annular domains, Adv.

Differential Equations 8 (2003) 111–128.
[11] H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl. 281 (2003)

287–306.


	Positive radial solutions for quasilinear systems in an annulus
	Introduction
	Preliminaries
	Proof of Theorem 2.1
	References


