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a b s t r a c t

We establish the existence of periodic solution of a class of non-autonomous second-order
systems, ẍ+µx+V (t, x) = 0, where V (t, x) = (v1(t, x), . . . , vn(t, x)), if lim|x|→∞

vi(t,x)
|x| =

0, i = 1, . . . , n, uniformly in t and V is bounded below or above for appropriate ranges
of µ.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

We study the existence of solutions of a class of periodic boundary value problems for non-autonomous second-order
systems.{

ẍ+ µx+ V (t, x) = 0, t ∈ [0, T ]
x(0) = x(T ), x′(0) = x′(T ), (1.1)

where x = (x1, . . . , xn), V (t, x) = (v1(t, x), . . . , vn(t, x)) ∈ C(R× Rn,Rn) is periodic of period T in the t variable, and µ is
a constant.
The existence of solutions of (1.1) has been studied by many researchers, see Mawhin andWillem [1] and the references

therein. The variational method has beenmostly used to prove the existence of solutions of (1.1). Fixed point theorems such
as Rothe’s theorem can also be used to prove the existence of solutions of (1.1). In this paper, we choose the fixed point
theorem in cones [2,3] to establish the existence of a solution for (1.1). We believe that the fixed point theorem in cones
can be further used to treat other cases of this problem. The fixed point theorem in cones has been employed to establish
the existence of positive solution boundary value problems with some superlinear and sublinear assumptions at zero and
infinity, see e. g. Erbe and the author [4], Torres [5], the author [6], Graef, Kong and the author [15]. Systems of differential
equations can be treated similarly by constructing appropriate product spaces [7–10]. In a recent paper, O’Regan and the
author [11] obtained the existence, multiplicity and nonexistence of positive periodic solutions of general second-order
systems. Precup [12,13] gave a vector version of the fixed point theorem in cones and applications to systems of equations
whose components have different sublinear or superlinear behaviors. In this paper,whilewe assume that all components are
sublinear at infinity, existence results may be established by using the theorems in [12]. It would be interesting to address
it in future research.
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Our result complements a few results in Mawhin and Willem [1] and Zhao and Wu [14]. The existence of solutions of
(1.1) is considered in [1, Theorem 3.7] with V (t, x) = ∇W (t, x) =

(
∂W
∂x1
, . . . , ∂W

∂xn

)
. Among other requirements,W (t, ·) in [1,

Theorem 3.7] is convex. [14] studied the existence of solutions of the following non-autonomous second-order systems,{
ẍ = ∇F(t, x), t ∈ [0, T ]
x(0) = x(T ), x′(0) = x′(T ), (1.2)

among other assumptions, F(t, x) in [14] is required to satisfy the following condition,

There exist g1, g2 ∈ L1([0, T ],R+) and
∫ T

0
g1(t)dt <

12
T
,

such that |∇F(t, x)|1 ≤ g1(t)|x|1 + g2(t), for all x ∈ Rn, (1.3)

where | · |1 is the Euclidean norm. In order that F(t, x) = − 12µ(|x|1)
2
− V (t, x)(∇F(t, x) = −µx − ∇V ) satisfies (1.3), µ

cannot take all negative values in most cases, which is more restrictive than Theorem 1.1(a). In addition, the solutions we
obtain here are twice continuously differentiable functions.
Ourmain result of this paper is Theorem1.1. Throughout the paper,wewill use the notationR+ = [0,∞),Rn+ = Π

n
i=1R+,

and denote by |x| =
∑n
i=1 |xi| the usual norm of Rn

+
for x = (x1, . . . , xn) ∈ Rn. Here we use the summation norm for

convenience. Theorem 1.1 is true for the Euclidean norm and the norm |x|∞ = max |xi|. Since we know that they are
equivalent for Rn, if lim|x|→∞

vi(t,x)
|x| = 0 for one of the norms, it is also true for others. We understand that a function

h : R × Rn → Rn is bounded below (above) if there is a constant c > 0 such that each component of h is greater than−c
(less than c) for all (t, x) ∈ [0, T ] × Rn.

Theorem 1.1. Assume that lim|x|→∞ vi(t,x)
|x| = 0, i = 1 . . . n, uniformly in t ∈ [0, T ].

(a) If µ ∈ (−∞, 0) and V (t, x) is bounded below, then (1.1) has a solution x(t) ∈ C2([0, T ],Rn).
(b) If µ ∈ (0, (πT )

2) and V (t, x) is bounded above, then (1.1) has a solution x(t) ∈ C2([0, T ],Rn).

2. Preliminary results

Consider the two scalar periodic boundary value problems{
−v′′ + kv = e(t), k ∈ (0,∞)
v(0) = v(T ), v′(0) = v′(T ), (2.4)

and u′′ + ku = e(t), k ∈
(
0,
(π
T

)2)
u(0) = u(T ), u′(0) = u′(T ),

(2.5)

where e(t) is a continuous function on [0, T ]. A direct calculation verifies that positive solutions of (2.4) and (2.5) can be
expressed in the following forms

v(t) =
∫ T

0
G1(t, s)e(s)ds, u(t) =

∫ T

0
G2(t, s)e(s)ds

respectively, where

G1(t, s) =


e
√
k(t−s)
+ e
√
k(T−t+s)

2
√
k(e
√
kT − 1)

, 0 ≤ s ≤ t ≤ T ,

e
√
k(s−t)
+ e
√
k(T−s+t)

2
√
k(e
√
kT − 1)

, 0 ≤ t ≤ s ≤ T .

G2(t, s) =


sin
√
k(t − s)+ sin

√
k(T − t + s)

2
√
k(1− cos

√
kT )

, 0 ≤ s ≤ t ≤ T ,

sin
√
k(s− t)+ sin

√
k(T − s+ t)

2
√
k(1− cos

√
kT )

, 0 ≤ t ≤ s ≤ T .

We will need some estimates on G1 and G2 in the following lemma. The estimates can be found in [9,11,5]. It can also be
proved by simple trig formulas. We omit its proof.
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Lemma 2.1. Let

m = min

 cot
√
kT
2

2
√
k
,

e
√
kT
2

√
k(e
√
kT − 1)

 > 0

and

M = max

{
1

2
√
k sin

√
kT
2

,
1+ e

√
kT

2
√
k(e
√
kT − 1)

}
> 0.

Then

m ≤ G1(t, s),G2(t, s) ≤ M for t, s ∈ [0, T ].

In general solutions of (1.1) are not necessarily positive. By choosing an appropriate transformation, wewill seek positive
solutions of a new system. A positive solution of systems of differential equations here simply requires that at least one
component of the solution is positive. This transformation has been used in semipositone problems. The two cases that
V (t, x) is bounded below or above are dealt with separately. Here we are able to rewrite this periodic boundary value
problem into appropriate integral equations according to ranges of the parameter µ. Let u = x+ P , P = (p, . . . , p), p > 0
is a constant. If V (t, x) is bounded below and µ < 0, then we rewrite (1.1) as

− ẍ− µx = V (t, x) (2.6)

and further let u = x+ P , (2.6) is transformed into

− ü− µu = −µP + V (t, u− P) (2.7)

where p > 0 is chosen so that−pµ+ vi(t, u− P) > 1, i = 1, . . . , n for (t, u) ∈ R× Rn.
If V (t, x) is bounded above and µ ∈ (0, (πT )

2), then we rewrite (1.1) as

ẍ+ µx = −V (t, x) (2.8)

and further let u = x+ P , (2.8) is transformed into

ü+ µu = µP − V (t, u− P) (2.9)

where p > 0 is chosen so that pµ− vi(t, u− P) > 1, i = 1, . . . , n for (t, u) ∈ R× Rn.
Now solutions of (1.1) can be rewritten as fixed points of operators T iu(t) in an appropriate Banach space, where

T iu(t) =
∫ T

0
G(t, s)f i(s, u(s))ds, i = 1, . . . , n 0 ≤ t ≤ T , (2.10)

and G, f i take different expressions for (2.7) and (2.9). When V (t, x) is bounded below and µ < 0,

G(t, s) = G1(t, s), f i(t, u) = −µp+ vi(t, u− P).

When V (t, x) is bounded above and µ ∈ (0, (πT )
2),

G(t, s) = G2(t, s), f i(t, u) = µp− vi(t, u− P).

In either case, we see that f i > 1 for (t, u) ∈ R × Rn and lim|u|→∞
fi(t,u)
|u| = 0, i = 1 . . . , n, uniformly in t if the conditions

of Theorem 1.1 hold. In the remaining of the paper, we only deal with f i. We summarize the properties of f i needed in the
following lemma.

Lemma 2.2. If the conditions of Theorem 1.1 hold. Then, for i = 1, . . . , n, f i(t, u) in (2.10) is continuous onR×Rn, f i(t, u) > 1
for (t, u) ∈ R× Rn, lim|u|→∞ f i(t,u)

|u| = 0 uniformly in t.

We shall use a well-known fixed point theorem in a cone to establish the existence of periodic solutions of (1.1). Let E
be a Banach space and K be a closed, nonempty subset of E. K is said to be a cone if (i) αu+ βv ∈ K for all u, v ∈ K and all
α, β ≥ 0 and (ii) u,−u ∈ K imply u = 0.

Lemma 2.3 ([2,3]). Let X be a Banach space and K (⊂ X) be a cone. Assume that Ω1, Ω2 are open subsets of X with
0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

T : K ∩ (Ω̄2 \Ω1)→ K

be a completely continuous operator such that either
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(i) ‖T u‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖T u‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖T u‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖T u‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω̄2 \Ω1).

Consider the Banach space X = C[0, T ] × · · · × C[0, T ]︸ ︷︷ ︸
n

, and for u = (u1, . . . , un) ∈ X , let

‖u‖ =
n∑
i=1

sup
t∈[0,T ]

|ui(t)|.

Let K be the cone given by

K = {u = (u1, . . . , un) ∈ X : ui(t) ≥ 0, t ∈ [0, T ], i = 1, . . . , n,

and min
0≤t≤T

n∑
i=1

ui(t) ≥
m
M
‖u‖}

Also, for r > 0, define Kr by

Kr = {u ∈ K : ‖u‖ < r}.

Note that ∂Kr = {u ∈ K : ‖u‖ = r}. For simplicity, we denote by T : K → X the operator

T = (T 1, . . . , T n)

where T i is defined in (2.10). Now we need to verify whether the operator T satisfies the conditions of Lemma 2.3.

Lemma 2.4. T (K) ⊂ K and T : K → K is completely continuous.

Proof. For u ∈ K , i = 1, . . . , n, we have

min
t∈[0,T ]

n∑
i=1

T iu(t) ≥
n∑
i=1

min
0≤t≤T

T ix(t)

≥

n∑
i=1

m
∫ T

0
f i(s, u(s))ds

=

n∑
i=1

m
M
M
∫ T

0
f i(s, u(s))ds

≥

n∑
i=1

m
M
sup
0≤t≤T

T iu(t)

≥
m
M

n∑
i=1

sup
0≤t≤T

T iu(t) =
m
M
‖T u‖.

Thus, T (K) ⊂ K . It is standard to verify that T is completely continuous, see e.g. [2]. �

For each i = 1, . . . , n, let f̂ i : R+ → R+ be the function given by

f̂ i(t) = max
u∈Rn
+
and |u|≤t

{max
s∈[0,T ]

f i(s, u)}.

Note that f̂ i(t) is monotone. Lemma 2.5 will simplify our proof. A more general form of the following lemma was proved
in [10]. Here we omit its proof.

Lemma 2.5 ([10]). If lim|u|→∞
maxs∈[0,T ] f i(s,u)

|u| = 0, then limt→∞
f̂ i(t)
t = 0.

3. Proof of Theorem 1.1

In view of Lemma 2.2, f i(t, u) > 1 for (t, u) ∈ [0, T ] × Rn. It then follows that there is a sufficiently small r1 > 0 such
that

f i(t, u) ≥ η|u|

for u = (u1, . . . , un) ∈ Rn
+
and |u| ≤ r1,where η > 0 is chosen so that

Tmη
m
M
> 1.
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If u = (u1, . . . , un) ∈ ∂Kr1 , then

‖T u‖ ≥ max
0≤t≤T

T iu(t)

≥ m
∫ T

0
f i(s, u(s))ds

≥ m
∫ T

0
η

n∑
i=1

ui(s)ds

≥ Tmη
m
M
‖u‖

≥ ‖u‖.

On the other hand, by the construction of f , we know that lim|u|→∞
f i(t,u)
|u| = 0 uniformly in t . Because of the uniformity in

t , it follows that lim|u|→∞
maxt∈[0,T ] f i(t,u)

|u| = 0. Thus Lemma 2.5 implies that limt→∞
f̂ i(t)
t = 0, i = 1, . . . , n. Therefore there

is an r2 > 2r1 such that

f̂ i(r2) ≤ εr2, i = 1, . . . , n,

where the constant ε > 0 satisfies

MnTε < 1.

Thus, for u ∈ ∂Kr2 , we have

‖T u‖ =
n∑
i=1

max
0≤t≤T

T iu(t)

≤ M
n∑
i=1

∫ T

0
f i(s, u(s))ds

≤ M
n∑
i=1

∫ T

0
max
τ∈[0,T ]

f i(τ , u(s))ds

≤ M
n∑
i=1

∫ T

0
f̂ i(r2)ds

≤ MnTε‖u‖
≤ ‖u‖.

By Lemma 2.3, it follows that Tλ has a fixed point u in Kr2 \ K̄r1 . Then x = u− P is the desired solution of (1.1). �
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